dbo:abstract |
Ein Gruppenschema ist in der algebraischen Geometrie die Verallgemeinerung einer algebraischen Gruppe.Typische Beispiele sind affine algebraische Gruppen oder abelsche Varietäten. Im Unterschied zur klassischen Sichtweise können Gruppenschemata über beliebigen Schemata definiert werden. Solche finden Anwendung in der Theorie von Modulräumen abelscher Varietäten. (de) In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems. The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s. (en) 대수기하학에서 군 스킴(群scheme, 영어: group scheme, 프랑스어: schéma en groupe)은 군과 유사한 구조를 갖는 스킴이다. 즉, 대수군의 정의에서 대수다양체를 스킴으로 대체한 것이다. (ko) 在代數幾何中,一個概形上的群概形是範疇中的。藉由米田信夫引理,我們可以給出兩種刻劃: * 以乘法、單位元與逆元定義:存在中的態射 * 乘法: * 單位元: * 逆元: 並滿足結合律等等群的性質。 * 以函子性定義:點函子透過遺忘函子分解。。 換言之:對於任意的-概形,構成一個群;而且對任意-態射,誘導映射都是群同態。 * 代數群:設為域,上的連通、光滑群概形稱作上的代數群。 * 李代數:群概形自然地作用在它的全體向量場上。的全體左不變向量場稱作的李代數,記為;它是上的層。 (zh) |
dbo:wikiPageID |
510523 (xsd:integer) |
dbo:wikiPageLength |
20636 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1124930867 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Deformation_theory dbr:Algebraic_group dbr:Algebraic_topology dbr:Algebraic_torus dbr:John_Tate_(mathematician) dbr:Restriction_of_scalars dbc:Algebraic_groups dbr:Mathematics dbr:Natural_transformation dbr:Quotient_stack dbc:Duality_theories dbr:Elliptic_curve dbr:Geometric_invariant_theory dbr:Monodromy dbr:Andrew_Wiles dbr:Arithmetic_geometry dbr:Lie_algebra dbr:Fundamental_group_scheme dbr:Hopf_algebra dbr:Spectrum_of_a_ring dbr:GIT_quotient dbr:Alexander_Grothendieck dbr:Algebraic_geometry dbr:Diagonalizable_group dbr:Forgetful_functor dbr:Group_action_(mathematics) dbr:Invariant_theory dbr:Weil_restriction dbr:Abelian_variety dbr:Kernel_(category_theory) dbc:Hopf_algebras dbc:Scheme_theory dbr:Pontryagin_duality dbr:Springer_Science+Business_Media dbr:Class_field_theory dbr:Fiber_product_of_schemes dbr:Group-scheme_action dbr:Group-stack dbr:Group_functor dbr:Group_object dbr:Groupoid_scheme dbr:Inner_automorphism dbr:Michel_Demazure dbr:Michel_Raynaud dbr:Category_(mathematics) dbr:Category_of_groups dbr:Category_of_schemes dbr:Set_(mathematics) dbr:Scheme_(mathematics) dbr:Étale_group_scheme dbr:Rigid_analytic_space dbr:Yoneda_lemma dbr:Witt_vectors dbr:Supersingular dbr:Verschiebung dbr:Springer-Verlag dbr:Galois_representation dbr:Group_variety dbr:Shimura–Taniyama_conjecture dbr:Moduli_problem dbr:Dieudonné_ring |
dbp:wikiPageUsesTemplate |
dbt:Authority_control dbt:Citation dbt:Cite_book dbt:Main dbt:Reflist dbt:Group_theory_sidebar |
dct:subject |
dbc:Algebraic_groups dbc:Duality_theories dbc:Hopf_algebras dbc:Scheme_theory |
gold:hypernym |
dbr:Type |
rdf:type |
owl:Thing yago:Abstraction100002137 yago:Algebra106012726 yago:Cognition100023271 yago:Content105809192 yago:Discipline105996646 yago:Group100031264 yago:KnowledgeDomain105999266 yago:Mathematics106000644 yago:PsychologicalFeature100023100 yago:PureMathematics106003682 yago:WikicatHopfAlgebras yago:Science105999797 yago:WikicatAlgebraicGroups |
rdfs:comment |
Ein Gruppenschema ist in der algebraischen Geometrie die Verallgemeinerung einer algebraischen Gruppe.Typische Beispiele sind affine algebraische Gruppen oder abelsche Varietäten. Im Unterschied zur klassischen Sichtweise können Gruppenschemata über beliebigen Schemata definiert werden. Solche finden Anwendung in der Theorie von Modulräumen abelscher Varietäten. (de) 대수기하학에서 군 스킴(群scheme, 영어: group scheme, 프랑스어: schéma en groupe)은 군과 유사한 구조를 갖는 스킴이다. 즉, 대수군의 정의에서 대수다양체를 스킴으로 대체한 것이다. (ko) 在代數幾何中,一個概形上的群概形是範疇中的。藉由米田信夫引理,我們可以給出兩種刻劃: * 以乘法、單位元與逆元定義:存在中的態射 * 乘法: * 單位元: * 逆元: 並滿足結合律等等群的性質。 * 以函子性定義:點函子透過遺忘函子分解。。 換言之:對於任意的-概形,構成一個群;而且對任意-態射,誘導映射都是群同態。 * 代數群:設為域,上的連通、光滑群概形稱作上的代數群。 * 李代數:群概形自然地作用在它的全體向量場上。的全體左不變向量場稱作的李代數,記為;它是上的層。 (zh) In mathematics, a group scheme is a type of object from algebraic geometry equipped with a composition law. Group schemes arise naturally as symmetries of schemes, and they generalize algebraic groups, in the sense that all algebraic groups have group scheme structure, but group schemes are not necessarily connected, smooth, or defined over a field. This extra generality allows one to study richer infinitesimal structures, and this can help one to understand and answer questions of arithmetic significance. The category of group schemes is somewhat better behaved than that of group varieties, since all homomorphisms have kernels, and there is a well-behaved deformation theory. Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, (en) |
rdfs:label |
Gruppenschema (de) Group scheme (en) 군 스킴 (ko) 群概形 (zh) |
owl:sameAs |
freebase:Group scheme yago-res:Group scheme wikidata:Group scheme dbpedia-de:Group scheme dbpedia-ko:Group scheme dbpedia-zh:Group scheme https://global.dbpedia.org/id/4kotn |
prov:wasDerivedFrom |
wikipedia-en:Group_scheme?oldid=1124930867&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Group_scheme |
is dbo:wikiPageRedirects of |
dbr:Finite_flat_group_scheme dbr:Affine_group_scheme dbr:Cartier-Nishi_duality dbr:Cartier_Duality dbr:Finite_group_scheme dbr:Multiplicative_group_scheme |
is dbo:wikiPageWikiLink of |
dbr:Enriques–Kodaira_classification dbr:List_of_algebraic_geometry_topics dbr:Multiplicative_group dbr:Representation_theory dbr:Algebraic_group dbr:Algebraic_torus dbr:Hyperelliptic_surface dbr:Joseph_Wedderburn dbr:Unit_(ring_theory) dbr:List_of_group_theory_topics dbr:Néron_model dbr:Wiles's_proof_of_Fermat's_Last_Theorem dbr:Essentially_finite_vector_bundle dbr:Semistable_abelian_variety dbr:Quotient_stack dbr:Gauss_sum dbr:Glossary_of_algebraic_geometry dbr:Luc_Illusie dbr:Fundamental_group_scheme dbr:Hopf_algebra dbr:Identity_component dbr:William_C._Waterhouse dbr:Distribution_on_a_linear_algebraic_group dbr:Dual_abelian_variety dbr:Dual_module dbr:GIT_quotient dbr:Galois_module dbr:Hasse–Witt_matrix dbr:Linear_algebraic_group dbr:Schur_algebra dbr:Alexander_Grothendieck dbr:Equivariant_sheaf dbr:Finite_flat_group_scheme dbr:Formal_group_law dbr:Group_action dbr:Tate–Shafarevich_group dbr:Hyperspecial_subgroup dbr:Torsor_(algebraic_geometry) dbr:Weil_restriction dbr:Abelian_variety dbr:Blackboard_bold dbr:Coalgebra dbr:Moduli_stack_of_principal_bundles dbr:Reductive_group dbr:Divisor_(algebraic_geometry) dbr:Artin–Verdier_duality dbr:Group-scheme_action dbr:Group-stack dbr:Group_functor dbr:Group_object dbr:Group_representation dbr:Groupoid_object dbr:Michel_Demazure dbr:Cartier_duality dbr:Séminaire_Nicolas_Bourbaki_(1960–1969) dbr:Satake_isomorphism dbr:Séminaire_de_Géométrie_Algébrique_du_Bois_Marie dbr:Scheme_(mathematics) dbr:Verschiebung_operator dbr:Étale_group_scheme dbr:Unipotent dbr:Moy–Prasad_filtration dbr:Taniyama_group dbr:Tate_module dbr:Affine_group_scheme dbr:Cartier-Nishi_duality dbr:Cartier_Duality dbr:Finite_group_scheme dbr:Multiplicative_group_scheme |
is foaf:primaryTopic of |
wikipedia-en:Group_scheme |