Multiplicative group (original) (raw)

About DBpedia

In mathematics and group theory, the term multiplicative group refers to one of the following concepts: * the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, * the algebraic torus GL(1)..

Property Value
dbo:abstract In mathematics and group theory, the term multiplicative group refers to one of the following concepts: * the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, * the algebraic torus GL(1).. (en) In matematica e nella teoria dei gruppi il termine gruppo moltiplicativo si riferisce, a seconda del contesto ad uno dei seguenti concetti: * qualsiasi gruppo la cui operazione binaria è scritta con notazione moltiplicativa (invece di essere scritta con la usata per i gruppi abeliani), * il sottogruppo rispetto alla moltiplicazione degli elementi invertibili di un campo, di un anello, o altra struttura che abbia la moltiplicazione tra le sue operazioni. Nel caso di un campo F il gruppo è {F - {0}, •}, dove 0 si riferisce all'elemento zero di F e l'operazione binaria • è la moltiplicazione del campo, * il . (it) jest pierścieniem z dzieleniem (algebrą łączną z dzieleniem) wtedy i tylko wtedy, gdy w przeciwnym razie zbiór jest mniejszy, np. * algebraiczny torus jest szczególnym przypadkiem ogólniejszego pojęcia snopa ale pojawia się często poza geometrią algebraiczną pod nazwą grupa multiplikatywna; jest rozmaitością grupową. * w geometrii algebraicznej: snop grup abelowych reprezentowany przez schemat grupowy grupą przekrojów tego snopa nad afinicznym zbiorem otwartym jest grupa homomorfizmów pierścieni ; ta grupa jest naturalnie izomorficzna z grupą homomorfizmowi odpowiada jednoznacznie element przy czym Sam schemat też jest nazywany grupą multiplikatywną. (pl) 数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する: * 体、環、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元が乗法の下でなす群。体 F の場合には、群は {F ∖ {0}, •} である、ただし 0 は F の零元であり二項演算 • は体の乗法である。 * GL(1). (ja)
dbo:wikiPageID 1110742 (xsd:integer)
dbo:wikiPageLength 3674 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1072648142 (xsd:integer)
dbo:wikiPageWikiLink dbr:Algebraic_torus dbr:Positive_real_numbers dbc:Group_theory dbr:Mathematics dbr:Zero_element dbr:Multiplication dbr:Roots_of_unity dbr:Logarithm dbr:Identity_element dbr:Kummer_theory dbr:Additive_group dbc:Algebraic_structures dbr:Field_(mathematics) dbr:Finite_field dbr:Nilpotent_element dbr:Ring_(mathematics) dbr:Group_(mathematics) dbr:Invertible dbr:Prime_number dbr:Abelian_group dbc:Field_(mathematics) dbr:Binary_operation dbr:Pierre_Cartier_(mathematician) dbr:Fiber_product_of_schemes dbr:Group_isomorphism dbr:Group_scheme dbr:Group_theory dbr:If_and_only_if dbr:Michiel_Hazewinkel dbr:Multiplicative_group_of_integers_modulo_n dbr:Duality_theory_of_abelian_varieties dbr:Characteristic_(field) dbr:Reduced_scheme dbr:Structure_sheaf
dbp:date March 2015 (en)
dbp:reason this is not defined in this article nor in the linked article (en)
dbp:wikiPageUsesTemplate dbt:Clarify dbt:Isbn dbt:Group_theory_sidebar
dct:subject dbc:Group_theory dbc:Algebraic_structures dbc:Field_(mathematics)
rdf:type yago:Artifact100021939 yago:Object100002684 yago:PhysicalEntity100001930 yago:YagoGeoEntity yago:YagoPermanentlyLocatedEntity yago:Structure104341686 yago:Whole100003553 yago:WikicatAlgebraicStructures
rdfs:comment In mathematics and group theory, the term multiplicative group refers to one of the following concepts: * the group under multiplication of the invertible elements of a field, ring, or other structure for which one of its operations is referred to as multiplication. In the case of a field F, the group is (F ∖ {0}, •), where 0 refers to the zero element of F and the binary operation • is the field multiplication, * the algebraic torus GL(1).. (en) In matematica e nella teoria dei gruppi il termine gruppo moltiplicativo si riferisce, a seconda del contesto ad uno dei seguenti concetti: * qualsiasi gruppo la cui operazione binaria è scritta con notazione moltiplicativa (invece di essere scritta con la usata per i gruppi abeliani), * il sottogruppo rispetto alla moltiplicazione degli elementi invertibili di un campo, di un anello, o altra struttura che abbia la moltiplicazione tra le sue operazioni. Nel caso di un campo F il gruppo è {F - {0}, •}, dove 0 si riferisce all'elemento zero di F e l'operazione binaria • è la moltiplicazione del campo, * il . (it) 数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する: * 体、環、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元が乗法の下でなす群。体 F の場合には、群は {F ∖ {0}, •} である、ただし 0 は F の零元であり二項演算 • は体の乗法である。 * GL(1). (ja) jest pierścieniem z dzieleniem (algebrą łączną z dzieleniem) wtedy i tylko wtedy, gdy w przeciwnym razie zbiór jest mniejszy, np. * algebraiczny torus jest szczególnym przypadkiem ogólniejszego pojęcia snopa ale pojawia się często poza geometrią algebraiczną pod nazwą grupa multiplikatywna; jest rozmaitością grupową. * w geometrii algebraicznej: snop grup abelowych reprezentowany przez schemat grupowy grupą przekrojów tego snopa nad afinicznym zbiorem otwartym jest grupa homomorfizmów pierścieni ; ta grupa jest naturalnie izomorficzna z grupą homomorfizmowi odpowiada jednoznacznie element przy czym (pl)
rdfs:label Gruppo moltiplicativo (it) 乗法群 (ja) Multiplicative group (en) Grupa multiplikatywna (pl)
owl:sameAs freebase:Multiplicative group yago-res:Multiplicative group wikidata:Multiplicative group dbpedia-it:Multiplicative group dbpedia-ja:Multiplicative group dbpedia-pl:Multiplicative group https://global.dbpedia.org/id/3VMXo
prov:wasDerivedFrom wikipedia-en:Multiplicative_group?oldid=1072648142&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Multiplicative_group
is dbo:wikiPageDisambiguates of dbr:Multiplicative
is dbo:wikiPageRedirects of dbr:Group_scheme_of_roots_of_unity dbr:Group_scheme_of_multiplicative_units dbr:Multiplicative_Group dbr:Multiplicative_notation dbr:Multiplicative_subgroup
is dbo:wikiPageWikiLink of dbr:Root_of_unity dbr:Rotations_in_4-dimensional_Euclidean_space dbr:List_of_abstract_algebra_topics dbr:List_of_algebraic_geometry_topics dbr:Multiplicative dbr:Multiplicative_order dbr:Mellin_transform dbr:Determinant dbr:Algebraic-group_factorisation_algorithm dbr:Algebraic_K-theory dbr:Homomorphism dbr:Joseph_Wedderburn dbr:Robert_Langlands dbr:Valuation_(algebra) dbr:Incenter dbr:Indefinite_orthogonal_group dbr:Jacquet–Langlands_correspondence dbr:General_linear_group dbr:Gaussian_integer dbr:Glossary_of_algebraic_geometry dbr:Modular_arithmetic dbr:Multiplication dbr:Conformal_geometry dbr:Milnor_K-theory dbr:Lenstra_elliptic-curve_factorization dbr:Leonard_Eugene_Dickson dbr:ZMap_(software) dbr:Icosian dbr:Additive_group dbr:Wiener's_attack dbr:Galois_cohomology dbr:K-groups_of_a_field dbr:Linear_algebraic_group dbr:AKS_primality_test dbr:Exponentiation dbr:Field_(mathematics) dbr:Finite_field dbr:Basic_Number_Theory dbr:Brauer_group dbr:Discrete_Fourier_transform_over_a_ring dbr:Hilbert's_Theorem_90 dbr:Hilbert_symbol dbr:Hilbert–Mumford_criterion dbr:Isomorphism dbr:Primitive_element_theorem dbr:Group_(mathematics) dbr:Group_scheme_of_roots_of_unity dbr:Prime_number dbr:Asterisk dbr:Abelian_group dbr:Lagrange's_theorem_(group_theory) dbr:Torsion_(algebra) dbr:Weight_(representation_theory) dbr:Reductive_group dbr:Diffie–Hellman_problem dbr:Borel_fixed-point_theorem dbr:Squeeze_mapping dbr:Circle_group dbr:Class_field_theory dbr:Order_(group_theory) dbr:Orthogonal_group dbr:Socialist_millionaire_problem dbr:Special_linear_group dbr:Square_class dbr:Rigid_analytic_space dbr:Finite_ring dbr:Motivic_cohomology dbr:Moy–Prasad_filtration dbr:Mumford–Tate_group dbr:Tate_duality dbr:Norm_residue_isomorphism_theorem dbr:Proofs_of_quadratic_reciprocity dbr:Simple_extension dbr:Group_scheme_of_multiplicative_units dbr:Multiplicative_Group dbr:Multiplicative_notation dbr:Multiplicative_subgroup
is foaf:primaryTopic of wikipedia-en:Multiplicative_group