Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature 1969, 224: 285–287. ArticleCASPubMed Google Scholar
Craig Montell. Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron 1989, 2: 1313–1323. Article Google Scholar
Hardie RC, Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron 1992, 8(4): 643–651. ArticleCASPubMed Google Scholar
Zhu X, Chu PB, Peyton M, Birnbaumer L. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett 1995, 373: 193–198. ArticleCASPubMed Google Scholar
Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C. TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci U S A 1995, 92: 9652–9656. ArticleCASPubMedPubMed Central Google Scholar
Himmel NJ, Cox DN. Transient receptor potential channels: Current perspectives on evolution, structure, function and nomenclature. Proc Biol Sci 2020, 287: 20201309. PubMedPubMed Central Google Scholar
Owsianik G, Talavera K, Voets T, Nilius B. Permeation and selectivity of TRP channels. Annu Rev Physiol 2006, 68: 685–717. ArticleCASPubMed Google Scholar
Bouron A, Kiselyov K, Oberwinkler J. Permeation, regulation and control of expression of TRP channels by trace metal ions. Pflugers Arch - Eur J Physiol 2015, 467: 1143–1164. ArticleCAS Google Scholar
Koivisto AP, Belvisi MG, Gaudet R, Szallasi A. Advances in TRP channel drug discovery: From target validation to clinical studies. Nat Rev Drug Discov 2022, 21: 41–59. ArticleCASPubMed Google Scholar
Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology 2021, 97: S6–S16. ArticlePubMed Google Scholar
GBD 2019 Stroke Collaborator. Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2021, 20: 795–820.
Campbell BCV, De Silva DA, MacLeod MR, Coutts SB, Schwamm LH, Davis SM. Ischaemic stroke. Nat Rev Dis Primers 2019, 5: 70. ArticlePubMed Google Scholar
Muoio V, Persson PB, Sendeski MM. The neurovascular unit - concept review. Acta Physiol (Oxf) 2014, 210: 790–798. ArticleCASPubMed Google Scholar
Jäkel S, Dimou L. Glial cells and their function in the adult brain: A journey through the history of their ablation. Front Cell Neurosci 2017, 11: 24. ArticlePubMedPubMed Central Google Scholar
Xiong Y, Wakhloo AK, Fisher M. Advances in acute ischemic stroke therapy. Circ Res 2022, 130: 1230–1251. ArticleCASPubMed Google Scholar
Yu WX, Huang SH, Wang YJ, Zhang M. Recanalization treatment for acute stroke: Can we skip the bridge? Neurosci Bull 2021, 37: 585–587. ArticlePubMedPubMed Central Google Scholar
Narayan SK, Grace Cherian S, Babu Phaniti P, Babu Chidambaram S, Rachel Vasanthi AH, Arumugam M. Preclinical animal studies in ischemic stroke: Challenges and some solutions. Animal Model Exp Med 2021, 4: 104–115. ArticlePubMedPubMed Central Google Scholar
Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol 2002, 1: 383–386. ArticleCASPubMed Google Scholar
Zong P, Lin Q, Feng J, Yue L. A systemic review of the integral role of TRPM2 in ischemic stroke: From upstream risk factors to ultimate neuronal death. Cells 2022, 11: 491. ArticleCASPubMedPubMed Central Google Scholar
Riccio A, Medhurst AD, Mattei C, Kelsell RE, Calver AR, Randall AD, et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res 2002, 109: 95–104. ArticleCASPubMed Google Scholar
Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B. New insights on the role of TRP channels in calcium signalling and immunomodulation: Review of pathways and implications for clinical practice. Clin Rev Allergy Immunol 2021, 60: 271–292. ArticleCASPubMedPubMed Central Google Scholar
Thakore P, Earley S. Transient receptor potential channels and endothelial cell calcium signaling. Compr Physiol 2019, 9: 1249–1277. ArticlePubMedPubMed Central Google Scholar
Verkhratsky A, Reyes RC, Parpura V. TRP channels coordinate ion signalling in astroglia. Rev Physiol Biochem Pharmacol 2014, 166: 1–22. CASPubMedPubMed Central Google Scholar
Çiğ B, Derouiche S, Jiang LH. Editorial: Emerging roles of TRP channels in brain pathology. Front Cell Dev Biol 2021, 9: 705196. ArticlePubMedPubMed Central Google Scholar
Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, et al. Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 1996, 16: 1189–1196. ArticleCASPubMed Google Scholar
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, et al. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020, 209: 107497. ArticleCASPubMedPubMed Central Google Scholar
Veldhuis NA, Poole DP, Grace M, McIntyre P, Bunnett NW. The G protein-coupled receptor-transient receptor potential channel axis: Molecular insights for targeting disorders of sensation and inflammation. Pharmacol Rev 2015, 67: 36–73. ArticlePubMed Google Scholar
Venkatachalam K, Zheng F, Gill DL. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C. J Biol Chem 2003, 278: 29031–29040. ArticleCASPubMed Google Scholar
Saleh SN, Albert AP, Large WA. Obligatory role for phosphatidylinositol 4, 5-bisphosphate in activation of native TRPC1 store-operated channels in vascular myocytes. J Physiol 2009, 587: 531–540. ArticleCASPubMed Google Scholar
Tai Y, Jia Y. TRPC channels and neuron development, plasticity, and activities. Adv Exp Med Biol 2017, 976: 95–110. ArticleCASPubMed Google Scholar
Negri S, Faris P, Berra-Romani R, Guerra G, Moccia F. Endothelial transient receptor potential channels and vascular remodeling: Extracellular Ca2 + entry for angiogenesis, arteriogenesis and vasculogenesis. Front Physiol 2019, 10: 1618. ArticlePubMed Google Scholar
Jeon J, Bu F, Sun G, Tian JB, Ting SM, Li J, et al. Contribution of TRPC channels in neuronal excitotoxicity associated with neurodegenerative disease and ischemic stroke. Front Cell Dev Biol 2020, 8: 618663. ArticlePubMed Google Scholar
Formoso K, Susperreguy S, Freichel M, Birnbaumer L. RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways. Sci Rep 2020, 10: 7227. ArticleCASPubMedPubMed Central Google Scholar
Partida-Sanchez S, Desai BN, Schwab A, Zierler S. Editorial: TRP channels in inflammation and immunity. Front Immunol 2021, 12: 684172. ArticleCASPubMedPubMed Central Google Scholar
Vahidinia Z, Joghataei MT, Beyer C, Karimian M, Tameh AA. G-protein-coupled receptors and ischemic stroke: A focus on molecular function and therapeutic potential. Mol Neurobiol 2021, 58: 4588–4614. ArticleCASPubMed Google Scholar
Qin C, Yang S, Chu YH, Zhang H, Pang XW, Chen L, et al. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022, 7: 215. ArticleCASPubMedPubMed Central Google Scholar
Dietrich A, Fahlbusch M, Gudermann T. Classical transient receptor potential 1 (TRPC1): Channel or channel regulator? Cells 2014, 3: 939–962. ArticlePubMedPubMed Central Google Scholar
Beech DJ, Muraki K, Flemming R. Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 2004, 559: 685–706. ArticleCASPubMedPubMed Central Google Scholar
Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier WF, Romanin C, Zhu MX, et al. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 2000, 275: 27799–27805. ArticleCASPubMed Google Scholar
Hofmann T, Schaefer M, Schultz G, Gudermann T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 2002, 99: 7461–7466. ArticleCASPubMedPubMed Central Google Scholar
Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 2001, 29: 645–655. ArticlePubMed Google Scholar
Storch U, Forst AL, Philipp M, Gudermann T, Schnitzler MMY. Transient receptor potential channel 1 (TRPC1) reduces calcium permeability in heteromeric channel complexes. J Biol Chem 2012, 287: 3530–3540. ArticleCASPubMed Google Scholar
Wang GX, Poo MM. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 2005, 434: 898–904. ArticleCASPubMed Google Scholar
Shim S, Yuan JP, Kim JY, Zeng W, Huang G, Milshteyn A, et al. Peptidyl-prolyl isomerase FKBP52 controls chemotropic guidance of neuronal growth cones via regulation of TRPC1 channel opening. Neuron 2009, 64: 471–483. ArticleCASPubMedPubMed Central Google Scholar
Narayanan KL, Irmady K, Subramaniam S, Unsicker K, Halbach OVB. Evidence that TRPC1 is involved in hippocampal glutamate-induced cell death. Neurosci Lett 2008, 446(2–3): 117–122. ArticleCASPubMed Google Scholar
Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature 2003, 426: 285–291. ArticleCASPubMed Google Scholar
Reiner A, Levitz J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron 2018, 98: 1080–1098. ArticleCASPubMedPubMed Central Google Scholar
Lepannetier S, Gualdani R, Tempesta S, Schakman O, Seghers F, Kreis A, et al. Activation of TRPC1 channel by metabotropic glutamate receptor mGluR5 modulates synaptic plasticity and spatial working memory. Front Cell Neurosci 2018, 12: 318. ArticlePubMedPubMed Central Google Scholar
Xu N, Meng H, Liu T, Feng Y, Qi Y, Wang H. TRPC1 deficiency exacerbates cerebral ischemia/reperfusion-induced neurological injury by potentiating Nox4-derived reactive oxygen species generation. Cell Physiol Biochem 2018, 51: 1723–1738. ArticleCASPubMed Google Scholar
Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 2005, 434: 894–898. ArticleCASPubMed Google Scholar
Becker EBE, Oliver PL, Glitsch MD, Banks GT, Achilli F, Hardy A, et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A 2009, 106: 6706–6711. ArticleCASPubMedPubMed Central Google Scholar
Jia Y, Zhou J, Tai Y, Wang Y. TRPC channels promote cerebellar granule neuron survival. Nat Neurosci 2007, 10: 559–567. ArticleCASPubMed Google Scholar
Hartmann J, Dragicevic E, Adelsberger H, Henning HA, Sumser M, Abramowitz J, et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron 2008, 59: 392–398. ArticleCASPubMedPubMed Central Google Scholar
Berg AP, Sen N, Bayliss DA. TrpC3/C7 and Slo2.1 are molecular targets for metabotropic glutamate receptor signaling in rat striatal cholinergic interneurons. J Neurosci 2007, 27: 8845–8856. ArticleCASPubMedPubMed Central Google Scholar
Zhou J, Du W, Zhou K, Tai Y, Yao H, Jia Y, et al. Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci 2008, 11: 741–743. ArticleCASPubMed Google Scholar
Liu L, Gu L, Chen M, Zheng Y, Xiong X, Zhu S. Novel targets for stroke therapy: Special focus on TRPC channels and TRPC6. Front Aging Neurosci 2020, 12: 70. ArticlePubMedPubMed Central Google Scholar
Li H, Huang J, Du W, Jia C, Yao H, Wang Y. TRPC6 inhibited NMDA receptor activities and protected neurons from ischemic excitotoxicity. J Neurochem 2012, 123: 1010–1018. ArticleCASPubMed Google Scholar
Du W, Huang J, Yao H, Zhou K, Duan B, Wang Y. Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J Clin Invest 2010, 120: 3480–3492. ArticleCASPubMedPubMed Central Google Scholar
Lin Y, Zhang JC, Fu J, Chen F, Wang J, Wu ZL, et al. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation. J Cereb Blood Flow Metab 2013, 33: 253–262. ArticleCASPubMed Google Scholar
Guo C, Ma Y, Ma S, Mu F, Deng J, Duan J, et al. The role of TRPC6 in the neuroprotection of calycosin against cerebral ischemic injury. Sci Rep 2017, 7: 3039. ArticlePubMedPubMed Central Google Scholar
Chen J, Li Z, Hatcher JT, Chen QH, Chen L, Wurster RD, et al. Deletion of TRPC6 attenuates NMDA receptor-mediated Ca2+ entry and Ca2+-induced neurotoxicity following cerebral ischemia and oxygen-glucose deprivation. Front Neurosci 2017, 11: 138. ArticlePubMedPubMed Central Google Scholar
Shen H, Pan J, Pan L, Zhang N. TRPC6 inhibited NMDA current in cultured hippocampal neurons. Neuromol Med 2013, 15: 389–395. ArticleCAS Google Scholar
Chen X, Lu M, He X, Ma L, Birnbaumer L, Liao Y. TRPC3/6/7 knockdown protects the brain from cerebral ischemia injury via astrocyte apoptosis inhibition and effects on NF-кB translocation. Mol Neurobiol 2017, 54: 7555–7566. ArticleCASPubMed Google Scholar
Weick JP, Austin Johnson M, Zhang SC. Developmental regulation of human embryonic stem cell-derived neurons by calcium entry via transient receptor potential channels. Stem Cells 2009, 27: 2906–2916. ArticleCASPubMed Google Scholar
Stroh O, Freichel M, Kretz O, Birnbaumer L, Hartmann J, Egger V. NMDA receptor-dependent synaptic activation of TRPC channels in olfactory bulb granule cells. J Neurosci 2012, 32: 5737–5746. ArticleCASPubMedPubMed Central Google Scholar
Greka A, Navarro B, Oancea E, Duggan A, Clapham DE. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 2003, 6: 837–845. ArticleCASPubMed Google Scholar
Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 2009, 137: 761–772. ArticleCASPubMedPubMed Central Google Scholar
Riccio A, Li Y, Tsvetkov E, Gapon S, Yao GL, Smith KS, et al. Decreased anxiety-like behavior and Gαq/11-dependent responses in the amygdala of mice lacking TRPC4 channels. J Neurosci 2014, 34: 3653–3667. ArticleCASPubMedPubMed Central Google Scholar
Shen N, Wang L, Wu Y, Liu Y, Pei H, Xiang H. Adeno-associated virus packaged TRPC5 gene therapy alleviated spinal cord ischemic reperfusion injury in rats. Neuroreport 2020, 31: 29–36. ArticleCASPubMed Google Scholar
Guo J, Li J, Xia L, Wang Y, Zhu J, Du J, et al. Transient receptor potential canonical 5-scramblase signaling complex mediates neuronal phosphatidylserine externalization and apoptosis. Cells 2020, 9: 547. ArticleCASPubMedPubMed Central Google Scholar
Shen XY, Gao ZK, Han Y, Yuan M, Guo YS, Bi X. Activation and role of astrocytes in ischemic stroke. Front Cell Neurosci 2021, 15: 755955. ArticleCASPubMedPubMed Central Google Scholar
Shirakawa H, Sakimoto S, Nakao K, Sugishita A, Konno M, Iida S, et al. Transient receptor potential canonical 3 (TRPC3) mediates thrombin-induced astrocyte activation and upregulates its own expression in cortical astrocytes. J Neurosci 2010, 30: 13116–13129. ArticleCASPubMedPubMed Central Google Scholar
Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M, et al. Dual functions of microglia in ischemic stroke. Neurosci Bull 2019, 35: 921–933. ArticlePubMedPubMed Central Google Scholar
Echeverry S, Rodriguez MJ, Torres YP. Transient receptor potential channels in microglia: Roles in physiology and disease. Neurotox Res 2016, 30: 467–478. ArticleCASPubMed Google Scholar
Mizoguchi Y, Kato TA, Seki Y, Ohgidani M, Sagata N, Horikawa H, et al. Brain-derived neurotrophic factor (BDNF) induces sustained intracellular Ca2+ elevation through the up-regulation of surface transient receptor potential 3 (TRPC3) channels in rodent microglia. J Biol Chem 2014, 289: 18549–18555. ArticleCASPubMedPubMed Central Google Scholar
Iadecola C, Buckwalter MS, Anrather J. Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J Clin Invest 2020, 130: 2777–2788. ArticleCASPubMedPubMed Central Google Scholar
Candelario-Jalil E, Dijkhuizen RM, Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 2022, 53: 1473–1486. ArticleCASPubMedPubMed Central Google Scholar
Paria BC, Vogel SM, Ahmmed GU, Alamgir S, Shroff J, Malik AB, et al. Tumor necrosis factor-alpha-induced TRPC1 expression amplifies store-operated Ca2+ influx and endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2004, 287: L1303–L1313. ArticleCASPubMed Google Scholar
Paria BC, Bair AM, Xue J, Yu Y, Malik AB, Tiruppathi C. Ca2+ influx induced by protease-activated receptor-1 activates a feed-forward mechanism of TRPC1 expression via nuclear factor-kappaB activation in endothelial cells. J Biol Chem 2006, 281: 20715–20727. ArticleCASPubMed Google Scholar
Shekhar S, Liu Y, Wang S, Zhang H, Fang X, Zhang J, et al. Novel mechanistic insights and potential therapeutic impact of TRPC6 in neurovascular coupling and ischemic stroke. Int J Mol Sci 2021, 22: 2074. ArticleCASPubMedPubMed Central Google Scholar
Duncan LM, Deeds J, Hunter J, Shao J, Holmgren LM, Woolf EA, et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res 1998, 58: 1515–1520. CASPubMed Google Scholar
Kraft R, Harteneck C. The mammalian melastatin-related transient receptor potential cation channels: An overview. Pflugers Arch - Eur J Physiol 2005, 451: 204–211. ArticleCAS Google Scholar
Guo J, She J, Zeng W, Chen Q, Bai XC, Jiang Y. Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 2017, 552: 205–209. ArticleCASPubMedPubMed Central Google Scholar
Mederos Y, Schnitzler M, Wäring J, Gudermann T, Chubanov V. Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J 2008, 22: 1540–1551. Article Google Scholar
Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 2002, 109: 397–407. ArticleCASPubMed Google Scholar
Hofmann T, Chubanov V, Gudermann T, Montell C. TRPM5 is a voltage-modulated and Ca2+activated monovalent selective cation channel. Curr Biol 2003, 13: 1153–1158. ArticleCASPubMed Google Scholar
Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, et al. Coding of sweet, bitter, and umami tastes: Different receptor cells sharing similar signaling pathways. Cell 2003, 112: 293–301. ArticleCASPubMed Google Scholar
Duan J, Li Z, Li J, Santa-Cruz A, Sanchez-Martinez S, Zhang J, et al. Structure of full-length human TRPM4. Proc Natl Acad Sci U S A 2018, 115: 2377–2382. ArticleCASPubMedPubMed Central Google Scholar
Monteilh-Zoller MK, Hermosura MC, Nadler MJS, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 2003, 121: 49–60. ArticleCASPubMedPubMed Central Google Scholar
Li M, Jiang J, Yue L. Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 2006, 127: 525–537. ArticleCASPubMedPubMed Central Google Scholar
Kashio M, Tominaga M. TRP channels in thermosensation. Curr Opin Neurobiol 2022, 75: 102591. ArticleCASPubMed Google Scholar
Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 2005, 438: 1022–1025. ArticleCASPubMed Google Scholar
Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, Ito F, et al. Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics 1998, 54: 124–131. ArticleCASPubMed Google Scholar
Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 2001, 411: 595–599. ArticleCASPubMed Google Scholar
Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 2001, 293: 1327–1330. ArticleCASPubMed Google Scholar
Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 2002, 9: 163–173. ArticleCASPubMed Google Scholar
Lange I, Yamamoto S, Partida-Sanchez S, Mori Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal 2009, 2: ra23. ArticlePubMedPubMed Central Google Scholar
Zhong Z, Zhai Y, Liang S, Mori Y, Han R, Sutterwala FS, et al. TRPM2 links oxidative stress to NLRP3 inflammasome activation. Nat Commun 2013, 4: 1611. ArticlePubMed Google Scholar
Mittal M, Nepal S, Tsukasaki Y, Hecquet CM, Soni D, Rehman J, et al. Neutrophil activation of endothelial cell-expressed TRPM2 mediates transendothelial neutrophil migration and vascular injury. Circ Res 2017, 121: 1081–1091. ArticleCASPubMedPubMed Central Google Scholar
Almasi S, Kennedy BE, El-Aghil M, Sterea AM, Gujar S, Partida-Sánchez S, et al. TRPM2 channel-mediated regulation of autophagy maintains mitochondrial function and promotes gastric cancer cell survival via the JNK-signaling pathway. J Biol Chem 2018, 293: 3637–3650. ArticleCASPubMedPubMed Central Google Scholar
Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, et al. A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem 2003, 278: 16222–16229. ArticleCASPubMed Google Scholar
Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, et al. Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 2005, 95: 715–723. ArticleCASPubMed Google Scholar
Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, Minami T, et al. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci 2006, 101: 66–76. ArticleCASPubMed Google Scholar
Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, Hurn PD, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab 2011, 31: 2160–2168. ArticleCASPubMedPubMed Central Google Scholar
Ostapchenko VG, Chen M, Guzman MS, Xie YF, Lavine N, Fan J, et al. The transient receptor potential melastatin 2 (TRPM2) channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment. J Neurosci 2015, 35: 15157–15169. ArticleCASPubMedPubMed Central Google Scholar
Verma S, Quillinan N, Yang YF, Nakayama S, Cheng J, Kelley MH, et al. TRPM2 channel activation following in vitro ischemia contributes to male hippocampal cell death. Neurosci Lett 2012, 530: 41–46. ArticleCASPubMedPubMed Central Google Scholar
Nakayama S, Vest R, Traystman RJ, Herson PS. Sexually dimorphic response of TRPM2 inhibition following cardiac arrest-induced global cerebral ischemia in mice. J Mol Neurosci 2013, 51: 92–98. ArticleCASPubMedPubMed Central Google Scholar
Alim I, Teves L, Li R, Mori Y, Tymianski M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J Neurosci 2013, 33: 17264–17277. ArticleCASPubMedPubMed Central Google Scholar
Ye M, Yang W, Ainscough JF, Hu XP, Li X, Sedo A, et al. TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia. Cell Death Dis 2014, 5: e1541. ArticleCASPubMedPubMed Central Google Scholar
Huang S, Turlova E, Li F, Bao MH, Szeto V, Wong R, et al. Transient receptor potential melastatin 2 channels (TRPM2) mediate neonatal hypoxic-ischemic brain injury in mice. Exp Neurol 2017, 296: 32–40. ArticleCASPubMed Google Scholar
Liu HW, Gong LN, Lai K, Yu XF, Liu ZQ, Li MX, et al. Bilirubin gates the TRPM2 channel as a direct agonist to exacerbate ischemic brain damage. Neuron 2023, 111: 1609-1625.e6. ArticleCASPubMedPubMed Central Google Scholar
Xie YF, Belrose JC, Lei G, Tymianski M, Mori Y, MacDonald JF, et al. Dependence of NMDA/GSK-3β mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses. Mol Brain 2011, 4: 44. ArticleCASPubMedPubMed Central Google Scholar
Zong P, Feng J, Yue Z, Li Y, Wu G, Sun B, et al. Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron 2022, 110: 1944-1958.e8. ArticleCASPubMedPubMed Central Google Scholar
Miyanohara J, Kakae M, Nagayasu K, Nakagawa T, Mori Y, Arai K, et al. TRPM2 channel aggravates CNS inflammation and cognitive impairment via activation of microglia in chronic cerebral hypoperfusion. J Neurosci 2018, 38: 3520–3533. ArticleCASPubMedPubMed Central Google Scholar
Lee M, Cho T, Jantaratnotai N, Wang YT, McGeer E, McGeer PL. Depletion of GSH in glial cells induces neurotoxicity: Relevance to aging and degenerative neurological diseases. FASEB J 2010, 24: 2533–2545. ArticleCASPubMed Google Scholar
Hecquet CM, Ahmmed GU, Vogel SM, Malik AB. Role of TRPM2 channel in mediating H2O2-induced Ca2+ entry and endothelial hyperpermeability. Circ Res 2008, 102: 347–355. ArticleCASPubMed Google Scholar
Zong P, Feng J, Li CX, Jellison ER, Yue Z, Miller B, et al. Activation of endothelial TRPM2 exacerbates blood-brain barrier degradation in ischemic stroke. Cardiovasc Res 2023: cvad126.
Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood-brain barrier. Nature 2010, 468: 557–561. ArticleCASPubMed Google Scholar
Jiang Q, Gao Y, Wang C, Tao R, Wu Y, Zhan K, et al. Nitration of TRPM2 as a molecular switch induces autophagy during brain pericyte injury. Antioxid Redox Signal 2017, 27: 1297–1316. ArticleCASPubMed Google Scholar
Zhang Z, Zhang W, Jung DY, Ko HJ, Lee Y, Friedline RH, et al. TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab 2012, 302: E807–E816. ArticleCASPubMedPubMed Central Google Scholar
Zong P, Feng J, Yue Z, Yu AS, Mori Y, Yue L. TRPM2 deficiency protects against atherosclerosis by inhibiting TRPM2-CD36 inflammatory axis in macrophages. bioRxiv 2021.07.29.454234; doi: https://doi.org/10.1101/2021.07.29.454234
Beceiro S, Radin JN, Chatuvedi R, Piazuelo MB, Horvarth DJ, Cortado H, et al. TRPM2 ion channels regulate macrophage polarization and gastric inflammation during Helicobacter pylori infection. Mucosal Immunol 2017, 10: 493–507. ArticleCASPubMed Google Scholar
Knowles H, Heizer JW, Li Y, Chapman K, Ogden CA, Andreasen K, et al. Transient Receptor Potential Melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. Proc Natl Acad Sci U S A 2011, 108: 11578–11583. ArticleCASPubMedPubMed Central Google Scholar
Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, et al. Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc Natl Acad Sci U S A 2012, 109: 6745–6750. ArticleCASPubMedPubMed Central Google Scholar
Zou J, Ainscough JF, Yang W, Sedo A, Yu SP, Mei ZZ, et al. A differential role of macrophage TRPM2 channels in Ca2+ signaling and cell death in early responses to H2O2. Am J Physiol Cell Physiol 2013, 305: C61–C69. ArticleCASPubMed Google Scholar
Zong P, Feng J, Yue Z, Yu AS, Vacher J, Jellison ER, et al. TRPM2 deficiency in mice protects against atherosclerosis by inhibiting TRPM2-CD36 inflammatory axis in macrophages. Nat Cardiovasc Res 2022, 1: 344–360. ArticlePubMedPubMed Central Google Scholar
Gelderblom M, Melzer N, Schattling B, Göb E, Hicking G, Arunachalam P, et al. Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke. Stroke 2014, 45: 3395–3402. ArticleCASPubMed Google Scholar
Zhang H, Yu P, Lin H, Jin Z, Zhao S, Zhang Y, et al. The discovery of novel ACA derivatives as specific TRPM2 inhibitors that reduce ischemic injury both in vitro and in vivo. J Med Chem 2021, 64: 3976–3996. ArticleCASPubMed Google Scholar
Xu XZ, Moebius F, Gill DL, Montell C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci U S A 2001, 98: 10692–10697. ArticleCASPubMedPubMed Central Google Scholar
Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, et al. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 2005, 280: 6423–6433. ArticleCASPubMed Google Scholar
Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, et al. The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4, 5-biphosphate. EMBO J 2006, 25: 467–478. ArticleCASPubMedPubMed Central Google Scholar
Huang Y, Fliegert R, Guse AH, Lü W, Du J. A structural overview of the ion channels of the TRPM family. Cell Calcium 2020, 85: 102111. ArticleCASPubMed Google Scholar
Dutta Banik D, Martin LE, Freichel M, Torregrossa AM, Medler KF. TRPM4 and TRPM5 are both required for normal signaling in taste receptor cells. Proc Natl Acad Sci U S A 2018, 115: E772–E781. ArticlePubMedPubMed Central Google Scholar
Mehta RI, Tosun C, Ivanova S, Tsymbalyuk N, Famakin BM, Kwon MS, et al. Sur1-Trpm4 cation channel expression in human cerebral infarcts. J Neuropathol Exp Neurol 2015, 74: 835–849. ArticleCASPubMed Google Scholar
Sala-Rabanal M, Wang S, Nichols CG. On potential interactions between non-selective cation channel TRPM4 and sulfonylurea receptor SUR1. J Biol Chem 2012, 287: 8746–8756. ArticleCASPubMedPubMed Central Google Scholar
Stokum JA, Kwon MS, Woo SK, Tsymbalyuk O, Vennekens R, Gerzanich V, et al. SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 2018, 66: 108–125. ArticlePubMed Google Scholar
Stokum JA, Shim B, Negoita S, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, et al. Cation flux through SUR1-TRPM4 and NCX1 in astrocyte endfeet induces water influx through AQP4 and brain swelling after ischemic stroke. Sci Signal 2023, 16: eadd6364. ArticleCASPubMedPubMed Central Google Scholar
Woo SK, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Gerzanich V, Simard JM. SUR1-TRPM4 channels, not KATP, mediate brain swelling following cerebral ischemia. Neurosci Lett 2020, 718: 134729. ArticlePubMed Google Scholar
Gerzanich V, Kwon MS, Woo SK, Ivanov A, Simard JM. SUR1-TRPM4 channel activation and phasic secretion of MMP-9 induced by tPA in brain endothelial cells. PLoS One 2018, 13: e0195526. ArticlePubMedPubMed Central Google Scholar
Yan J, Bengtson CP, Buchthal B, Hagenston AM, Bading H. Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science 2020, 370: eaay3302. ArticleCASPubMed Google Scholar
Becerra A, Echeverría C, Varela D, Sarmiento D, Armisén R, Nuñez-Villena F, et al. Transient receptor potential melastatin 4 inhibition prevents lipopolysaccharide-induced endothelial cell death. Cardiovasc Res 2011, 91: 677–684. ArticleCASPubMed Google Scholar
Loh KP, Ng G, Yu CY, Fhu CK, Yu D, Vennekens R, et al. TRPM4 inhibition promotes angiogenesis after ischemic stroke. Pflugers Arch - Eur J Physiol 2014, 466: 563–576. ArticleCAS Google Scholar
Chen B, Ng G, Gao Y, Low SW, Sandanaraj E, Ramasamy B, et al. Non-invasive multimodality imaging directly shows TRPM4 inhibition ameliorates stroke reperfusion injury. Transl Stroke Res 2019, 10: 91–103. ArticleCASPubMed Google Scholar
Serafini N, Dahdah A, Barbet G, Demion M, Attout T, Gautier G, et al. The TRPM4 channel controls monocyte and macrophage, but not neutrophil, function for survival in sepsis. J Immunol 2012, 189: 3689–3699. ArticleCASPubMed Google Scholar
Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP. TRPM4 regulates calcium oscillations after T cell activation. Science 2004, 306: 1374–1377. ArticleCASPubMed Google Scholar
Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, et al. LTRPC7 is a Mg. ATP-regulated divalent cation channel required for cell viability. Nature 2001, 411: 590–595. ArticleCASPubMed Google Scholar
Runnels LW, Yue L, Clapham DE. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 2001, 291: 1043–1047. ArticleCASPubMed Google Scholar
Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 2014, 157: 1061–1072. ArticleCASPubMedPubMed Central Google Scholar
Chubanov V, Waldegger S, Schnitzler MMY, Vitzthum H, Sassen MC, Seyberth HW, et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci U S A 2004, 101: 2894–2899. ArticleCASPubMedPubMed Central Google Scholar
Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, et al. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 2003, 114: 191–200. ArticleCASPubMed Google Scholar
Runnels LW, Yue L, Clapham DE. The TRPM7 channel is inactivated by PIP2 hydrolysis. Nat Cell Biol 2002, 4: 329–336. ArticleCASPubMed Google Scholar
Numata T, Shimizu T, Okada Y. TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol 2007, 292: C460–C467. ArticleCASPubMed Google Scholar
Oancea E, Wolfe JT, Clapham DE. Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 2006, 98: 245–253. ArticleCASPubMed Google Scholar
Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 2008, 322: 756–760. ArticleCASPubMedPubMed Central Google Scholar
Jin J, Wu LJ, Jun J, Cheng X, Xu H, Andrews NC, et al. The channel kinase, TRPM7, is required for early embryonic development. Proc Natl Acad Sci U S A 2012, 109: E225–E233. ArticleCASPubMed Google Scholar
Sah R, Mesirca P, van den Boogert M, Rosen J, Mably J, Mangoni ME, et al. Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc Natl Acad Sci U S A 2013, 110: E3037–E3046. ArticleCASPubMedPubMed Central Google Scholar
Mittermeier L, Demirkhanyan L, Stadlbauer B, Breit A, Recordati C, Hilgendorff A, et al. TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc Natl Acad Sci U S A 2019, 116: 4706–4715. ArticleCASPubMedPubMed Central Google Scholar
Yuqiang Liu. TRPM7 is required for normal synapse density, learning, and memory at different developmental stages. Cell Rep 2018, 23: 3480–3491. Article Google Scholar
Jiang ZJ, Li W, Yao LH, Saed B, Rao Y, Grewe BS, et al. TRPM7 is critical for short-term synaptic depression by regulating synaptic vesicle endocytosis. Elife 2021, 10: e66709. ArticleCASPubMedPubMed Central Google Scholar
Abumaria N, Li W, Clarkson AN. Role of the chanzyme TRPM7 in the nervous system in health and disease. Cell Mol Life Sci 2019, 76: 3301–3310. ArticleCASPubMedPubMed Central Google Scholar
Lin J, Xiong ZG. TRPM7 is a unique target for therapeutic intervention of stroke. Int J Physiol Pathophysiol Pharmacol 2017, 9: 211–216. CASPubMedPubMed Central Google Scholar
Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, et al. A key role for TRPM7 channels in anoxic neuronal death. Cell 2003, 115: 863–877. ArticleCASPubMed Google Scholar
Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, et al. Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 2009, 12: 1300–1307. ArticleCASPubMed Google Scholar
Zhang P, Li W, Liu Y, Gao Y, Abumaria N. Neuroprotective effects of TRPM7 deletion in parvalbumin GABAergic vs. glutamatergic neurons following ischemia. Cells 2022, 11: 1178. ArticleCASPubMedPubMed Central Google Scholar
Inoue K, Branigan D, Xiong ZG. Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 2010, 285: 7430–7439. ArticleCASPubMedPubMed Central Google Scholar
Morris DR, Levenson CW. Neurotoxicity of Zinc. Advances in Neurobiology. Cham: Springer International Publishing, 2017: 303–312.
Wu W, Wang X, Liao L, Chen J, Wang Y, Yao M, et al. The TRPM7 channel reprograms cellular glycolysis to drive tumorigenesis and angiogenesis. Cell Death Dis 2023, 14: 183. ArticleCASPubMedPubMed Central Google Scholar
Paravicini TM, Yogi A, Mazur A, Touyz RM. Dysregulation of vascular TRPM7 and annexin-1 is associated with endothelial dysfunction in inherited hypomagnesemia. Hypertension 2009, 53: 423–429. ArticleCASPubMed Google Scholar
Cesare P, McNaughton P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc Natl Acad Sci U S A 1996, 93: 15435–15439. ArticleCASPubMedPubMed Central Google Scholar
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389: 816–824. ArticleCASPubMed Google Scholar
Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G, Bindels RJ. The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem 2001, 276: 1020–1025. ArticleCASPubMed Google Scholar
Saotome K, Singh AK, Yelshanskaya MV, Sobolevsky AI. Crystal structure of the epithelial calcium channel TRPV6. Nature 2016, 534: 506–511. ArticleCASPubMedPubMed Central Google Scholar
Chung MK, Güler AD, Caterina MJ. TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 2008, 11: 555–564. ArticleCASPubMed Google Scholar
Rosenbaum T, Islas LD. Molecular physiology of TRPV channels: Controversies and future challenges. Annu Rev Physiol 2023, 85: 293–316. ArticleCASPubMed Google Scholar
Prescott ED, Julius D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 2003, 300: 1284–1288. ArticleCASPubMed Google Scholar
Doerner JF, Hatt H, Ramsey IS. Voltage- and temperature-dependent activation of TRPV3 channels is potentiated by receptor-mediated PI(4, 5)P2 hydrolysis. J Gen Physiol 2011, 137: 271–288. ArticleCASPubMedPubMed Central Google Scholar
Wang B, Wu L, Chen J, Dong L, Chen C, Wen Z, et al. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct Target Ther 2021, 6: 94. ArticleCASPubMedPubMed Central Google Scholar
Sun X, Zakharian E. Regulation of the temperature-dependent activation of transient receptor potential vanilloid 1 (TRPV1) by phospholipids in planar lipid bilayers. J Biol Chem 2015, 290: 4741–4747. ArticleCASPubMedPubMed Central Google Scholar
Marrone MC, Morabito A, Giustizieri M, Chiurchiù V, Leuti A, Mattioli M, et al. TRPV1 channels are critical brain inflammation detectors and neuropathic pain biomarkers in mice. Nat Commun 2017, 8: 15292. ArticlePubMedPubMed Central Google Scholar
Shuba YM. Beyond neuronal heat sensing: Diversity of TRPV1 heat-capsaicin receptor-channel functions. Front Cell Neurosci 2020, 14: 612480. ArticleCASPubMed Google Scholar
Molinas AJR, Desmoulins LD, Hamling BV, Butcher SM, Anwar IJ, Miyata K, et al. Interaction between TRPV1-expressing neurons in the hypothalamus. J Neurophysiol 2019, 121: 140–151. ArticleCASPubMed Google Scholar
Balleza-Tapia H, Crux S, Andrade-Talavera Y, Dolz-Gaiton P, Papadia D, Chen G, et al. TrpV1 receptor activation rescues neuronal function and network gamma oscillations from Aβ-induced impairment in mouse hippocampus in vitro. Elife 2018, 7: e37703. ArticlePubMedPubMed Central Google Scholar
Hurtado-Zavala JI, Ramachandran B, Ahmed S, Halder R, Bolleyer C, Awasthi A, et al. TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus. Nat Commun 2017, 8: 15878. ArticleCASPubMedPubMed Central Google Scholar
Garami A, Pakai E, Oliveira DL, Steiner AA, Wanner SP, Almeida MC, et al. Thermoregulatory phenotype of the Trpv1 knockout mouse: Thermoeffector dysbalance with hyperkinesis. J Neurosci 2011, 31: 1721–1733. ArticleCASPubMedPubMed Central Google Scholar
Aneiros E, Cao L, Papakosta M, Stevens EB, Phillips S, Grimm C. The biophysical and molecular basis of TRPV1 proton gating. EMBO J 2011, 30: 994–1002. ArticleCASPubMedPubMed Central Google Scholar
Yenari MA, Hemmen TM. Therapeutic hypothermia for brain ischemia: Where have we come and where do we go? Stroke 2010, 41: S72–S74. ArticlePubMedPubMed Central Google Scholar
Gavva NR, Bannon AW, Surapaneni S, Hovland DN Jr, Lehto SG, Gore A, et al. The vanilloid receptor TRPV1 is tonically Activated In Vivo and involved in body temperature regulation. J Neurosci 2007, 27: 3366–3374. ArticleCASPubMedPubMed Central Google Scholar
Yue WWS, Yuan L, Braz JM, Basbaum AI, Julius D. TRPV1 drugs alter core body temperature via central projections of primary afferent sensory neurons. Elife 2022, 11: e80139. ArticleCASPubMedPubMed Central Google Scholar
Fosgerau K, Weber UJ, Gotfredsen JW, Jayatissa M, Buus C, Kristensen NB, et al. Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist. BMC Cardiovasc Disord 2010, 10: 51. ArticlePubMedPubMed Central Google Scholar
Cao Z, Balasubramanian A, Marrelli SP. Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 Min after reperfusion. Am J Physiol Regul Integr Comp Physiol 2014, 306: R149–R156. ArticleCASPubMed Google Scholar
Muzzi M, Felici R, Cavone L, Gerace E, Minassi A, Appendino G, et al. Ischemic neuroprotection by TRPV1 receptor-induced hypothermia. J Cereb Blood Flow Metab 2012, 32: 978–982. ArticleCASPubMedPubMed Central Google Scholar
Cao Z, Balasubramanian A, Pedersen SE, Romero J, Pautler RG, Marrelli SP. TRPV1-mediated pharmacological hypothermia promotes improved functional recovery following ischemic stroke. Sci Rep 2017, 7: 17685. ArticlePubMedPubMed Central Google Scholar
Huang M, Cheng G, Tan H, Qin R, Zou Y, Wang Y, et al. Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Exp Neurol 2017, 295: 66–76. ArticleCASPubMedPubMed Central Google Scholar
Miyanohara J, Shirakawa H, Sanpei K, Nakagawa T, Kaneko S. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice. Biochem Biophys Res Commun 2015, 467: 478–483. ArticleCASPubMed Google Scholar
Hakimizadeh E, Shamsizadeh A, Roohbakhsh A, Arababadi MK, Hajizadeh MR, Shariati M, et al. Inhibition of transient receptor potential vanilloid-1 confers neuroprotection, reduces tumor necrosis factor-alpha, and increases IL-10 in a rat stroke model. Fundam Clin Pharmacol 2017, 31: 420–428. ArticleCASPubMed Google Scholar
Yang XL, Wang X, Shao L, Jiang GT, Min JW, Mei XY, et al. TRPV1 mediates astrocyte activation and interleukin-1β release induced by hypoxic ischemia (HI). J Neuroinflammation 2019, 16: 114. ArticlePubMedPubMed Central Google Scholar
Zhang Y, Hou B, Liang P, Lu X, Wu Y, Zhang X, et al. TRPV1 channel mediates NLRP3 inflammasome-dependent neuroinflammation in microglia. Cell Death Dis 2021, 12: 1159. ArticleCASPubMedPubMed Central Google Scholar
Wang C, Huang W, Lu J, Chen H, Yu Z. TRPV1-mediated microglial autophagy attenuates alzheimer’s disease-associated pathology and cognitive decline. Front Pharmacol 2021, 12: 763866. ArticleCASPubMed Google Scholar
Ching LC, Chen CY, Su KH, Hou HH, Shyue SK, Kou YR, et al. Implication of AMP-activated protein kinase in transient receptor potential vanilloid type 1-mediated activation of endothelial nitric oxide synthase. Mol Med 2012, 18: 805–815. ArticleCASPubMedPubMed Central Google Scholar
Ching LC, Kou YR, Shyue SK, Su KH, Wei J, Cheng LC, et al. Molecular mechanisms of activation of endothelial nitric oxide synthase mediated by transient receptor potential vanilloid type 1. Cardiovasc Res 2011, 91: 492–501. ArticleCASPubMed Google Scholar
Adamczak J, Hoehn M. Poststroke angiogenesis, con: Dark side of angiogenesis. Stroke 2015, 46: e103–e104. ArticlePubMed Google Scholar
Zhu J, Song W, Li L, Fan X. Endothelial nitric oxide synthase: A potential therapeutic target for cerebrovascular diseases. Mol Brain 2016, 9: 30. ArticlePubMedPubMed Central Google Scholar
Lv Z, Xu X, Sun Z, Yang YX, Guo H, Li J, et al. TRPV1 alleviates osteoarthritis by inhibiting M1 macrophage polarization via Ca2+/CaMKII/Nrf2 signaling pathway. Cell Death Dis 2021, 12: 504. ArticleCASPubMedPubMed Central Google Scholar
Pumroy RA, Protopopova AD, Fricke TC, Lange IU, Haug FM, Nguyen PT, et al. Structural insights into TRPV2 activation by small molecules. Nat Commun 2022, 13: 2334. ArticleCASPubMedPubMed Central Google Scholar
Katanosaka K, Takatsu S, Mizumura K, Naruse K, Katanosaka Y. TRPV2 is required for mechanical nociception and the stretch-evoked response of primary sensory neurons. Sci Rep 2018, 8: 16782. ArticlePubMedPubMed Central Google Scholar
Nedungadi TP, Dutta M, Bathina CS, Caterina MJ, Cunningham JT. Expression and distribution of TRPV2 in rat brain. Exp Neurol 2012, 237: 223–237. ArticleCASPubMedPubMed Central Google Scholar
Shibasaki K, Murayama N, Ono K, Ishizaki Y, Tominaga M. TRPV2 enhances axon outgrowth through its activation by membrane stretch in developing sensory and motor neurons. J Neurosci 2010, 30: 4601–4612. ArticleCASPubMedPubMed Central Google Scholar
Cohen MR, Johnson WM, Pilat JM, Kiselar J, DeFrancesco-Lisowitz A, Zigmond RE, et al. Nerve growth factor regulates transient receptor potential vanilloid 2 via extracellular signal-regulated kinase signaling to enhance neurite outgrowth in developing neurons. Mol Cell Biol 2015, 35: 4238–4252. ArticleCASPubMedPubMed Central Google Scholar
Park U, Vastani N, Guan Y, Raja SN, Koltzenburg M, Caterina MJ. TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci 2011, 31: 11425–11436. ArticleCASPubMedPubMed Central Google Scholar
Zhang H, Xiao J, Hu Z, Xie M, Wang W, He D. Blocking transient receptor potential vanilloid 2 channel in astrocytes enhances astrocyte-mediated neuroprotection after oxygen-glucose deprivation and reoxygenation. Eur J Neurosci 2016, 44: 2493–2503. ArticlePubMed Google Scholar
Hassan S, Eldeeb K, Millns PJ, Bennett AJ, Alexander SP, Kendall DA. Cannabidiol enhances microglial phagocytosis via transient receptor potential (TRP) channel activation. Br J Pharmacol 2014, 171: 2426–2439. ArticleCASPubMedPubMed Central Google Scholar
Luo H, Rossi E, Saubamea B, Chasseigneaux S, Cochois V, Choublier N, et al. Cannabidiol increases proliferation, migration, tubulogenesis, and integrity of human brain endothelial cells through TRPV2 activation. Mol Pharm 2019, 16: 1312–1326. ArticleCASPubMed Google Scholar
Peng S, Poole DP, Veldhuis NA. Mini-review: Dissecting receptor-mediated stimulation of TRPV4 in nociceptive and inflammatory pathways. Neurosci Lett 2022, 770: 136377. ArticleCASPubMed Google Scholar
Peier AM, Reeve AJ, Andersson DA, Moqrich A, Earley TJ, Hergarden AC, et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 2002, 296: 2046–2049. ArticleCASPubMed Google Scholar
Smith GD, Gunthorpe MJ, Kelsell RE, Hayes PD, Reilly P, Facer P, et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 2002, 418: 186–190. ArticleCASPubMed Google Scholar
Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 2002, 418: 181–186. ArticleCASPubMed Google Scholar
Cao X, Yang F, Zheng J, Wang K. Intracellular proton-mediated activation of TRPV3 channels accounts for the exfoliation effect of α-hydroxyl acids on keratinocytes. J Biol Chem 2012, 287: 25905–25916. ArticleCASPubMedPubMed Central Google Scholar
Hu HZ, Xiao R, Wang C, Gao N, Colton CK, Wood JD, et al. Potentiation of TRPV3 channel function by unsaturated fatty acids. J Cell Physiol 2006, 208: 201–212. ArticleCASPubMedPubMed Central Google Scholar
Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 2006, 9: 628–635. ArticleCASPubMed Google Scholar
Ho JC, Lee CH. TRP channels in skin: From physiological implications to clinical significances. Biophysics (Nagoya-Shi) 2015, 11: 17–24. ArticleCASPubMed Google Scholar
Danso-Abeam D, Zhang J, Dooley J, Staats KA, van Eyck L, van Brussel T, et al. Olmsted syndrome: Exploration of the immunological phenotype. Orphanet J Rare Dis 2013, 8: 79. ArticlePubMedPubMed Central Google Scholar
Duchatelet S, Guibbal L, de Veer S, Fraitag S, Nitschké P, Zarhrate M, et al. Olmsted syndrome with erythromelalgia caused by recessive transient receptor potential vanilloid 3 mutations. Br J Dermatol 2014, 171: 675–678. ArticleCASPubMed Google Scholar
Duchatelet S, Pruvost S, de Veer S, Fraitag S, Nitschké P, Bole-Feysot C, et al. A new TRPV3 missense mutation in a patient with Olmsted syndrome and erythromelalgia. JAMA Dermatol 2014, 150: 303–306. ArticlePubMed Google Scholar
Eytan O, Fuchs-Telem D, Mevorach B, Indelman M, Bergman R, Sarig O, et al. Olmsted syndrome caused by a homozygous recessive mutation in TRPV3. J Invest Dermatol 2014, 134: 1752–1754. ArticleCASPubMed Google Scholar
Nilius B, Bíró T, Owsianik G. TRPV3: Time to decipher a poorly understood family member! J Physiol 2014, 592: 295–304. ArticleCASPubMed Google Scholar
Ni C, Yan M, Zhang J, Cheng R, Liang J, Deng D, et al. A novel mutation in TRPV3 gene causes atypical familial Olmsted syndrome. Sci Rep 2016, 6: 21815. ArticleCASPubMedPubMed Central Google Scholar
Greco C, Leclerc-Mercier S, Chaumon S, Doz F, Hadj-Rabia S, Molina T, et al. Use of epidermal growth factor receptor inhibitor erlotinib to treat palmoplantar keratoderma in patients with Olmsted syndrome caused by TRPV3 mutations. JAMA Dermatol 2020, 156: 191–195. ArticlePubMedPubMed Central Google Scholar
Moussaieff A, Yu J, Zhu H, Gattoni-Celli S, Shohami E, Kindy MS. Protective effects of incensole acetate on cerebral ischemic injury. Brain Res 2012, 1443: 89–97. ArticleCASPubMedPubMed Central Google Scholar
Chen X, Zhang J, Wang K. Inhibition of intracellular proton-sensitive Ca2+-permeable TRPV3 channels protects against ischemic brain injury. Acta Pharm Sin B 2022, 12: 2330–2347. ArticlePubMedPubMed Central Google Scholar
Toft-Bertelsen TL, MacAulay N. TRPing to the point of clarity: Understanding the function of the complex TRPV4 ion channel. Cells 2021, 10: 165. ArticleCASPubMedPubMed Central Google Scholar
Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 2008, 326: 443–452. ArticleCASPubMed Google Scholar
Malczyk M, Veith C, Fuchs B, Hofmann K, Storch U, Schermuly RT, et al. Classical transient receptor potential channel 1 in hypoxia-induced pulmonary hypertension. Am J Respir Crit Care Med 2013, 188: 1451–1459. ArticleCASPubMed Google Scholar
Yang XR, Lin AH, Hughes JM, Flavahan NA, Cao YN, Liedtke W, et al. Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2012, 302: L555–L568. ArticleCASPubMed Google Scholar
Kumar H, Lee SH, Kim KT, Zeng X, Han I. TRPV4: A sensor for homeostasis and pathological events in the CNS. Mol Neurobiol 2018, 55: 8695–8708. ArticleCASPubMed Google Scholar
Rungta RL, Choi HB, Tyson JR, Malik A, Dissing-Olesen L, Lin PJC, et al. The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell 2015, 161: 610–621. ArticleCASPubMed Google Scholar
Li L, Qu W, Zhou L, Lu Z, Jie P, Chen L, et al. Activation of transient receptor potential vanilloid 4 increases NMDA-activated current in hippocampal pyramidal neurons. Front Cell Neurosci 2013, 7: 17. ArticleCASPubMedPubMed Central Google Scholar
Hong Z, Tian Y, Qi M, Li Y, Du Y, Chen L, et al. Transient receptor potential vanilloid 4 inhibits γ-aminobutyric acid-activated current in hippocampal pyramidal neurons. Front Mol Neurosci 2016, 9: 77. ArticlePubMedPubMed Central Google Scholar
Özşimşek A, Nazıroğlu M. The involvement of TRPV4 on the hypoxia-induced oxidative neurotoxicity and apoptosis in a neuronal cell line: Protective role of melatonin. Neurotoxicology 2021, 87: 136–148. ArticlePubMed Google Scholar
Shibasaki K, Ikenaka K, Tamalu F, Tominaga M, Ishizaki Y. A novel subtype of astrocytes expressing TRPV4 (transient receptor potential vanilloid 4) regulates neuronal excitability via release of gliotransmitters. J Biol Chem 2014, 289: 14470–14480. ArticleCASPubMedPubMed Central Google Scholar
Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, et al. Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 2007, 148: 876–892. ArticleCASPubMed Google Scholar
Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, et al. The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One 2012, 7: e39959. ArticleCASPubMedPubMed Central Google Scholar
Hu X, Du L, Liu S, Lan Z, Zang K, Feng J, et al. A TRPV4-dependent neuroimmune axis in the spinal cord promotes neuropathic pain. J Clin Invest 2023, 133: e161507. ArticleCASPubMedPubMed Central Google Scholar
Nishimoto R, Derouiche S, Eto K, Deveci A, Kashio M, Kimori Y, et al. Thermosensitive TRPV4 channels mediate temperature-dependent microglia movement. Proc Natl Acad Sci U S A 2021, 118: e2012894118. ArticleCASPubMedPubMed Central Google Scholar
Beeken J, Mertens M, Stas N, Kessels S, Aerts L, Janssen B, et al. Acute inhibition of transient receptor potential vanilloid-type 4 cation channel halts cytoskeletal dynamism in microglia. Glia 2022, 70: 2157–2168. ArticleCASPubMed Google Scholar
Dutta B, Arya RK, Goswami R, Alharbi MO, Sharma S, Rahaman SO. Role of macrophage TRPV4 in inflammation. Lab Invest 2020, 100: 178–185. ArticleCASPubMed Google Scholar
Luo J, Qian A, Oetjen LK, Yu W, Yang P, Feng J, et al. TRPV4 channel signaling in macrophages promotes gastrointestinal motility via direct effects on smooth muscle cells. Immunity 2018, 49: 107-119.e4. ArticleCASPubMedPubMed Central Google Scholar
Yin J, Michalick L, Tang C, Tabuchi A, Goldenberg N, Dan Q, et al. Role of transient receptor potential vanilloid 4 in neutrophil activation and acute lung injury. Am J Respir Cell Mol Biol 2016, 54: 370–383. ArticleCASPubMed Google Scholar
Kumar H, Lim CS, Choi H, Joshi HP, Kim KT, Kim YH, et al. Elevated TRPV4 levels contribute to endothelial damage and scarring in experimental spinal cord injury. J Neurosci 2020, 40: 1943–1955. ArticleCASPubMedPubMed Central Google Scholar