Influence of microbial environment on autoimmunity (original) (raw)
Lo, S.S., Tun, R.Y., Hawa, M. & Leslie, R.D. Studies of diabetic twins. Diabetes Metab. Rev.7, 223–238 (1991). ArticleCASPubMed Google Scholar
Block, S.R., Winfield, J.B., Lockshin, M.D., D'Angelo, W.A. & Christian, C.L. Studies of twins with systemic lupus erythematosus. A review of the literature and presentation of 12 additional sets. Am. J. Med.59, 533–552 (1975). ArticleCASPubMed Google Scholar
Bach, J.F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med.347, 911–920 (2002). Fundamental work analyzing interactions of microbial environment and autoimmunity. ArticlePubMed Google Scholar
Muntoni, S. New insights into the epidemiology of type 1 diabetes in Mediterranean countries. Diabetes Metab. Res. Rev.15, 133–140 (1999). ArticleCASPubMed Google Scholar
Zipris, D. et al. TLR activation synergizes with Kilham rat virus infection to induce diabetes in BBDR rats. J. Immunol.174, 131–142 (2005). ArticleCASPubMed Google Scholar
Zipris, D. et al. TLR9-signaling pathways are involved in Kilham rat virus-induced autoimmune diabetes in the biobreeding diabetes-resistant rat. J. Immunol.178, 693–701 (2007). ArticleCASPubMed Google Scholar
Pozzilli, P., Signore, A., Williams, A.J. & Beales, P.E. NOD mouse colonies around the world–recent facts and figures. Immunol. Today14, 193–196 (1993). ArticleCASPubMed Google Scholar
Anderson, M.S. & Bluestone, J.A. The NOD mouse: a model of immune dysregulation. Annu. Rev. Immunol.23, 447–485 (2005). ArticleCASPubMed Google Scholar
Malkiel, S., Liao, L., Cunningham, M.W. & Diamond, B. T-cell-dependent antibody response to the dominant epitope of streptococcal polysaccharide, N-acetyl-glucosamine, is cross-reactive with cardiac myosin. Infect. Immun.68, 5803–5808 (2000). ArticleCASPubMedPubMed Central Google Scholar
Oldstone, M.B. Molecular mimicry and immune-mediated diseases. FASEB J.12, 1255–1265 (1998). ArticleCASPubMed Google Scholar
Benoist, C. & Mathis, D. Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat. Immunol.2, 797–801 (2001). ArticleCASPubMed Google Scholar
Munz, C., Lunemann, J.D., Getts, M.T. & Miller, S.D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol.9, 246–258 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Miller, S.D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nat. Med.3, 1133–1136 (1997). ArticleCASPubMed Google Scholar
Janeway, C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol.54, 1–13 (1989). Of exceptional importance. Set the modern paradigm of innate-adaptive immunity connection. ArticleCASPubMed Google Scholar
Medzhitov, R. Approaching the asymptote: 20 years later. Immunity30, 766–775 (2009). Important summary of the achievements in the field that was started by C.A. Janeway Jr. (ref.15). ArticleCASPubMed Google Scholar
Palm, N.W. & Medzhitov, R. Pattern recognition receptors and control of adaptive immunity. Immunol. Rev.227, 221–233 (2009). ArticleCASPubMed Google Scholar
Suzuki, T. et al. Diabetogenic effects of lymphoctye transfusion on the NOD or NOD nude mouse. in Immune Deficient Animals in Biomedical Research (eds. Rygaard, J., Graem, N. & Sprang-Thomsen, M.) 112–116 (Karger, Basel, Switzerland, 1987).
Wen, L. et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature455, 1109–1113 (2008). This work clearly showed the role of commensal bacteria in contol of autoimmunity ArticleCASPubMedPubMed Central Google Scholar
Rossini, A.A., Williams, R.M., Mordes, J.P., Appel, M.C. & Like, A.A. Spontaneous diabetes in the gnotobiotic BB/W rat. Diabetes28, 1031–1032 (1979). ArticleCASPubMed Google Scholar
Anderson, A.C. et al. High frequency of autoreactive myelin proteolipid protein-specific T cells in the periphery of naive mice: mechanisms of selection of the self-reactive repertoire. J. Exp. Med.191, 761–770 (2000). ArticleCASPubMedPubMed Central Google Scholar
Bjork, J., Kleinau, S., Midtvedt, T., Klareskog, L. & Smedegard, G. Role of the bowel flora for development of immunity to hsp 65 and arthritis in three experimental models. Scand. J. Immunol.40, 648–652 (1994). ArticleCASPubMed Google Scholar
Rehakova, Z. et al. Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum. Immunol.61, 555–558 (2000). ArticleCASPubMed Google Scholar
Sinkorova, Z., Capkova, J., Niederlova, J., Stepankova, R. & Sinkora, J. Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2(k)) male mice. Hum. Immunol.69, 845–850 (2008). ArticleCASPubMed Google Scholar
Maldonado, M.A. et al. The role of environmental antigens in the spontaneous development of autoimmunity in MRL-lpr mice. J. Immunol.162, 6322–6330 (1999). CASPubMed Google Scholar
Stranges, P.B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity26, 629–641 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gray, D.H., Gavanescu, I., Benoist, C. & Mathis, D. Danger-free autoimmune disease in Aire-deficient mice. Proc. Natl. Acad. Sci. USA104, 18193–18198 (2007). The work revealed that APECED is independent of innate-adaptive connection, a prototypic Group II disease in our proposed classification. Google Scholar
Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science298, 1395–1401 (2002). ArticleCASPubMed Google Scholar
Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol.8, 191–197 (2007). ArticleCASPubMed Google Scholar
Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest.118, 205–216 (2008). ArticleCASPubMed Google Scholar
Croker, B.A. et al. Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proc. Natl. Acad. Sci. USA105, 15028–15033 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yu, C.C. et al. B and T cells are not required for the viable motheaten phenotype. J. Exp. Med.183, 371–380 (1996). ArticleCASPubMed Google Scholar
Haas, T. et al. The DNA sugar backbone 2′ deoxyribose determines toll-like receptor 9 activation. Immunity28, 315–323 (2008). ArticleCASPubMed Google Scholar
Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol.8, 1327–1336 (2006). ArticleCASPubMed Google Scholar
Napirei, M. et al. Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat. Genet.25, 177–181 (2000). ArticleCASPubMed Google Scholar
Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet.28, 313–314 (2001). ArticleCASPubMed Google Scholar
Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell134, 587–598 (2008). ArticleCASPubMedPubMed Central Google Scholar
Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol.6, 49–56 (2005). ArticleCASPubMed Google Scholar
Crow, Y.J. et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet.38, 910–916 (2006). ArticleCASPubMed Google Scholar
Gaipl, U.S. et al. Clearance deficiency and systemic lupus erythematosus (SLE). J. Autoimmun.28, 114–121 (2007). ArticlePubMed Google Scholar
Pisitkun, P. et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science312, 1669–1672 (2006). ArticleCASPubMed Google Scholar
Deane, J.A. et al. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity27, 801–810 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sigurdsson, S. et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am. J. Hum. Genet.76, 528–537 (2005). ArticleCASPubMedPubMed Central Google Scholar
Miceli-Richard, C. et al. Association of an IRF5 gene functional polymorphism with Sjogren's syndrome. Arthritis Rheum.56, 3989–3994 (2007). ArticleCASPubMedPubMed Central Google Scholar
O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat. Rev. Immunol.7, 353–364 (2007). ArticleCASPubMed Google Scholar
Sigurdsson, S. et al. Comprehensive evaluation of the genetic variants of interferon regulatory factor 5 (IRF5) reveals a novel 5 bp length polymorphism as strong risk factor for systemic lupus erythematosus. Hum. Mol. Genet.17, 872–881 (2008). ArticleCASPubMed Google Scholar
Richez, C. et al. TLR4 ligands induce IFN-alpha production by mouse conventional dendritic cells and human monocytes after IFN-beta priming. J. Immunol.182, 820–828 (2009). ArticleCASPubMed Google Scholar
Lien, E. & Zipris, D. The role of Toll-like receptor pathways in the mechanism of type 1 diabetes. Curr. Mol. Med.9, 52–68 (2009). ArticleCASPubMed Google Scholar
Lang, K.S. et al. Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat. Med.11, 138–145 (2005). ArticleCASPubMed Google Scholar
Garza, K.M. et al. Enhanced T cell responses contribute to the genetic predisposition of CD8-mediated spontaneous autoimmunity. Eur. J. Immunol.32, 885–894 (2002). ArticleCASPubMed Google Scholar
Horwitz, M.S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat. Med.4, 781–785 (1998). ArticleCASPubMed Google Scholar
Ellerman, K.E. & Like, A.A. Susceptibility to diabetes is widely distributed in normal class IIu haplotype rats. Diabetologia43, 890–898 (2000). ArticleCASPubMed Google Scholar
LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol.8, 630–638 (2007). ArticleCASPubMed Google Scholar
Acosta-Rodriguez, E.V. et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat. Immunol.8, 639–646 (2007). ArticleCASPubMed Google Scholar
Manicassamy, S. et al. Toll-like receptor 2–dependent induction of vitamin A–metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat. Med.15, 401–409 (2009). ArticleCASPubMedPubMed Central Google Scholar
Smyth, D.J. et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet.38, 617–619 (2006). This and ref.64suggest, but do not prove, that viral infections in humans can accelerate T1D development either due to excessive MDA5 activation or due to poor virus clearance. ArticleCASPubMed Google Scholar
Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J.A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science324, 387–389 (2009). ArticleCASPubMedPubMed Central Google Scholar
Maeda, S. et al. Nod2 mutation in Crohn's disease potentiates NF-kappaB activity and IL-1beta processing. Science307, 734–738 (2005). ArticleCASPubMed Google Scholar
Kobayashi, K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307, 731–734 (2005). ArticleCASPubMed Google Scholar
Strober, W., Kitani, A., Fuss, I., Asano, N. & Watanabe, T. The molecular basis of NOD2 susceptibility mutations in Crohn's disease. Mucosal Immunol.1 (suppl. 1), S5–S9 (2008). ArticleCASPubMedPubMed Central Google Scholar
Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature440, 228–232 (2006). ArticleCASPubMed Google Scholar
Gurcel, L., Abrami, L., Girardin, S., Tschopp, J. & van der Goot, F.G. Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell126, 1135–1145 (2006). ArticleCASPubMed Google Scholar
Masters, S.L., Simon, A., Aksentijevich, I. & Kastner, D.L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol.27, 621–668 (2009). Comprehensive review of autoinflammatory diseases with clear distinction from autoimmunity. ArticleCASPubMedPubMed Central Google Scholar
Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol.27, 229–265 (2009). ArticleCASPubMed Google Scholar
Ben-Sasson, S.Z. et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc. Natl. Acad. Sci. USA106, 7119–7124 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ichinohe, T., Lee, H.K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med.206, 79–87 (2009). ArticleCASPubMedPubMed Central Google Scholar
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature453, 106–109 (2008). ArticleCASPubMed Google Scholar
Stockinger, B., Veldhoen, M. & Hirota, K. Modulation of Th17 development and function by activation of the aryl hydrocarbon receptor–the role of endogenous ligands. Eur. J. Immunol.39, 652–654 (2009). ArticleCASPubMed Google Scholar
Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol.12, 991–1045 (1994). ArticleCASPubMed Google Scholar
Jin, M.S. et al. Crystal structure of the TLR1–TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell130, 1071–1082 (2007). ArticleCASPubMed Google Scholar
Kim, H.M. et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell130, 906–917 (2007). ArticleCASPubMed Google Scholar
Bianchi, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol.81, 1–5 (2007). ArticleCASPubMed Google Scholar
Gao, B. & Tsan, M.F. Recombinant human heat shock protein 60 does not induce the release of tumor necrosis factor alpha from murine macrophages. J. Biol. Chem.278, 22523–22529 (2003). ArticleCASPubMed Google Scholar
Gao, B. & Tsan, M.F. Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem.278, 174–179 (2003). ArticleCASPubMed Google Scholar
Kovalchin, J.T. et al. In vivo delivery of heat shock protein 70 accelerates wound healing by up-regulating macrophage-mediated phagocytosis. Wound Repair Regen.14, 129–137 (2006). ArticlePubMed Google Scholar
Schauber, J. et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J. Clin. Invest.117, 803–811 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gilliet, M. & Lande, R. Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr. Opin. Immunol.20, 401–407 (2008). ArticleCASPubMed Google Scholar
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell118, 229–241 (2004). ArticleCASPubMed Google Scholar
Bianchi, M.E. & Manfredi, A.A. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev.220, 35–46 (2007). ArticleCASPubMed Google Scholar
Grover, A. et al. Mycobacterial infection induces the secretion of high-mobility group box 1 protein. Cell. Microbiol.10, 1390–1404 (2008). ArticleCASPubMed Google Scholar
Degryse, B. et al. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J. Cell Biol.152, 1197–1206 (2001). ArticleCASPubMedPubMed Central Google Scholar
Straino, S. et al. High-mobility group box 1 protein in human and murine skin: involvement in wound healing. J. Invest. Dermatol.128, 1545–1553 (2008). ArticleCASPubMed Google Scholar
Ranzato, E., Patrone, M., Pedrazzi, M. & Burlando, B. HMGb1 promotes scratch wound closure of HaCaT keratinocytes via ERK1/2 activation. Mol. Cell Biochem. published online, doi:10.1007/s11010-009-0192-4 (9 July 2009).
Chen, G.Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science323, 1722–1725 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature449, 564–569 (2007). ArticleCASPubMed Google Scholar
Tian, J. et al. Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol.8, 487–496 (2007). ArticleCASPubMed Google Scholar
Leadbetter, E.A. et al. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature416, 603–607 (2002). ArticleCASPubMed Google Scholar
Schaschl, H., Aitman, T.J. & Vyse, T.J. Copy number variation in the human genome and its implication in autoimmunity. Clin. Exp. Immunol.156, 12–16 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kim, H.S. et al. Toll-like receptor 2 senses beta-cell death and contributes to the initiation of autoimmune diabetes. Immunity27, 321–333 (2007). ArticleCASPubMed Google Scholar
Kelly, D., Conway, S. & Aminov, R. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol.26, 326–333 (2005). ArticleCASPubMed Google Scholar
Macpherson, A.J. & Slack, E. The functional interactions of commensal bacteria with intestinal secretory IgA. Curr. Opin. Gastroenterol.23, 673–678 (2007). ArticleCASPubMed Google Scholar
Hooper, L.V. Do symbiotic bacteria subvert host immunity? Nat. Rev. Microbiol.7, 367–374 (2009). ArticleCASPubMed Google Scholar
Hooper, L.V. et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science291, 881–884 (2001). ArticleCASPubMed Google Scholar
Hooper, L.V. & Gordon, J.I. Commensal host-bacterial relationships in the gut. Science292, 1115–1118 (2001). ArticleCASPubMed Google Scholar
Bauer, H., Horowitz, R.E., Levenson, S.M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am. J. Pathol.42, 471–483 (1963). CASPubMedPubMed Central Google Scholar
Yamanaka, T. et al. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches. J. Immunol.170, 816–822 (2003). ArticleCASPubMed Google Scholar
Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature456, 507–510 (2008). ArticleCASPubMed Google Scholar
Stappenbeck, T.S., Hooper, L.V. & Gordon, J.I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA99, 15451–15455 (2002). ArticleCASPubMedPubMed Central Google Scholar
Huber, J.A. et al. Microbial population structures in the deep marine biosphere. Science318, 97–100 (2007). ArticleCASPubMed Google Scholar
Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023 (2006). ArticleCASPubMed Google Scholar
Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature457, 480–484 (2009). ArticleCASPubMed Google Scholar
Sanos, S.L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells. Nat. Immunol.10, 83–91 (2009). ArticleCASPubMed Google Scholar
Ivanov, I.I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe4, 337–349 (2008). Shows specificity in the immunity-controlling functions of different types of microbiota. ArticleCASPubMedPubMed Central Google Scholar
Calcinaro, F. et al. Oral probiotic administration induces interleukin-10 production and prevents spontaneous autoimmune diabetes in the non-obese diabetic mouse. Diabetologia48, 1565–1575 (2005). ArticleCASPubMed Google Scholar
Wong, F.S. et al. The role of Toll-like receptors 3 and 9 in the development of autoimmune diabetes in NOD mice. Ann. NY Acad. Sci.1150, 146–148 (2008). ArticlePubMed Google Scholar
Richer, M.J. & Horwitz, M.S. Viral infections in the pathogenesis of autoimmune diseases: focus on type 1 diabetes. Front. Biosci.13, 4241–4257 (2008). ArticleCASPubMed Google Scholar
Zipris, D. Epidemiology of type 1 diabetes and what animal models teach us about the role of viruses in disease mechanisms. Clin. Immunol.131, 11–23 (2009). ArticleCASPubMed Google Scholar
Barton, E.S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature447, 326–329 (2007). ArticleCASPubMed Google Scholar
Hensley, S.E. et al. Murine norovirus infection has no significant effect on adaptive immunity to vaccinia virus or influenza A virus. J. Virol.83, 7357–7360 (2009). ArticleCASPubMedPubMed Central Google Scholar
Robertson, S.J. et al. Suppression of acute anti-friend virus CD8+ T-cell responses by coinfection with lactate dehydrogenase-elevating virus. J. Virol.82, 408–418 (2008). ArticleCASPubMed Google Scholar
Manolio, T.A., Brooks, L.D. & Collins, F.S.A. HapMap harvest of insights into the genetics of common disease. J. Clin. Invest.118, 1590–1605 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature423, 506–511 (2003). ArticleCASPubMed Google Scholar
Bottini, N. et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet.36, 337–338 (2004). ArticleCASPubMed Google Scholar
Lowe, C.E. et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat. Genet.39, 1074–1082 (2007). ArticleCASPubMed Google Scholar
Grant, S.F. et al. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes58, 290–295 (2009). ArticleCASPubMedPubMed Central Google Scholar
Loeser, S. & Penninger, J.M. Regulation of peripheral T cell tolerance by the E3 ubiquitin ligase Cbl-b. Semin. Immunol.19, 206–214 (2007). ArticleCASPubMed Google Scholar
Smyth, D.J. et al. PTPN22 Trp620 explains the association of chromosome 1p13 with type 1 diabetes and shows a statistical interaction with HLA class II genotypes. Diabetes57, 1730–1737 (2008). ArticleCASPubMed Google Scholar
Ridgway, W.M. et al. Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv. Immunol.100, 151–175 (2008). ArticlePubMedCAS Google Scholar
Duty, J.A. et al. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. J. Exp. Med.206, 139–151 (2009). ArticlePubMedPubMed Central Google Scholar
Blander, J.M. & Medzhitov, R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature440, 808–812 (2006). ArticleCASPubMed Google Scholar
Blander, J.M. & Medzhitov, R. On regulation of phagosome maturation and antigen presentation. Nat. Immunol.7, 1029–1035 (2006). ArticleCASPubMed Google Scholar
Chen, M. et al. Dendritic cell apoptosis in the maintenance of immune tolerance. Science311, 1160–1164 (2006). ArticleCASPubMed Google Scholar