Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis (original) (raw)
Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R. & Gordon, J. I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Rev. Microbiol.7, 776–788 (2008). ArticleCAS Google Scholar
Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nature Rev. Immunol.9, 313–323 (2009). ArticleCAS Google Scholar
Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol.10, 159–169 (2010). ArticleCAS Google Scholar
Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev.90, 859–904 (2010). ArticleCASPubMed Google Scholar
Cerf-Bensussan, N. & Gaboriau-Routhiau, V. The immune system and the gut microbiota: friends or foes? Nature Rev. Immunol.10, 735–744 (2010). ArticleCAS Google Scholar
Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. I. Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell127, 423–433 (2006). ArticleCASPubMedPubMed Central Google Scholar
Saha, S. et al. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-γ. Cell Host Microbe8, 147–162 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sansonetti, P. J. War and peace at mucosal surfaces. Nature Rev. Immunol.4, 953–964 (2004). ArticleCAS Google Scholar
Wehkamp, J., Fellermann, K., Herrlinger, K., Bevins, C. L. & Stange, E. F. Defensins in gastrointestinal diseases. Nature Clin. Pract. Gastroenterol. Hepatol.2, 406–415 (2005). ArticleCAS Google Scholar
Duerkop, B. A., Vaishnava, S. & Hooper, L. V. Immune responses to the microbiota at the intestinal mucosal surface. Immunity31, 368–376 (2009). ArticleCASPubMed Google Scholar
Porter, E. M., Bevins, C. L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci.59, 156–170 (2002). ArticleCASPubMed Google Scholar
Ouellette, A. J. Paneth cells and innate mucosal immunity. Curr. Opin. Gastroenterol.26, 547–553 (2010). PubMed Google Scholar
Wilson, C. L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science286, 113–117 (1999). ArticleCASPubMed Google Scholar
Salzman, N. H., Ghosh, D., Huttner, K. M., Paterson, Y. & Bevins, C. L. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature422, 522–526 (2003). ArticleCASPubMed Google Scholar
Brandl, K., Plitas, G., Schnabl, B., DeMatteo, R. P. & Pamer, E. G. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med.204, 1891–1900 (2007). ArticleCASPubMedPubMed Central Google Scholar
Salzman, N. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunol.11, 76–82 (2010). CAS Google Scholar
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464, 59–65 (2010). CASPubMedPubMed Central Google Scholar
Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe4, 337–349 (2008). ArticleCASPubMedPubMed Central Google Scholar
Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol.5, e177 (2007). ArticleCASPubMedPubMed Central Google Scholar
Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science307, 1915–1920 (2005). ArticleCASPubMed Google Scholar
Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature444, 1022–1023 (2006). ArticleCASPubMed Google Scholar
Wostmann, B. S. The germfree animal in nutritional studies. Annu. Rev. Nutr.1, 257–279 (1981). ArticleCASPubMed Google Scholar
Gustafsson, B. E. The physiological importance of the colonic microflora. Scand. J. Gastroenterol. Suppl.77, 117–131 (1982). CASPubMed Google Scholar
Hooper, L. V. & Gordon, J. I. Commensal Host-Bacterial Relationships in the Gut. Science292, 1115–1158 (2001). ArticleCASPubMed Google Scholar
Hooper, L. V., Midtvedt, T. & Gordon, J. I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr.22, 283–307 (2002). ArticleCASPubMed Google Scholar
Falk, P. G., Hooper, L. V., Midtvedt, T. & Gordon, J. I. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev.62, 1157–1170 (1998). CASPubMedPubMed Central Google Scholar
Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature456, 507–510 (2008). ArticleCASPubMed Google Scholar
Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nature Rev. Immunol.4, 478–485 (2004). ArticleCAS Google Scholar
Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science328, 1705–1709 (2010). ArticleCASPubMedPubMed Central Google Scholar
Putsep, K. et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem.275, 40478–40482 (2000). ArticleCASPubMed Google Scholar
Ayabe, T. et al. Activation of Paneth cell α-defensins in mouse small intestine. J. Biol. Chem.277, 5219–5228 (2002). ArticleCASPubMed Google Scholar
Hooper, L. V., Stappenbeck, T. S., Hong, C. V. & Gordon, J. I. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nature Immunol.4, 269–273 (2003). ArticleCAS Google Scholar
Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science313, 1126–1130 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity31, 677–689 (2009). ArticleCASPubMed Google Scholar
Talham, G. L., Jiang, H. Q., Bos, N. A. & Cebra, J. J. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect. Immun.67, 1992–2000 (1999). CASPubMedPubMed Central Google Scholar
Umesaki, Y., Setoyama, H., Matsumoto, S., Imaoka, A. & Itoh, K. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect. Immun.67, 3504–3511 (1999). CASPubMedPubMed Central Google Scholar
Heczko, U., Abe, A. & Finlay, B. B. Segmented filamentous bacteria prevent colonization of enteropathogenic Escherichia coli 0103 in rabbits. J. Infect. Dis.181, 1027–1033 (2000). ArticleCASPubMed Google Scholar
Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun.71, 2839–2858 (2003). ArticleCASPubMedPubMed Central Google Scholar
Garner, C. D. et al. Perturbation of the small intestine microbial ecology by streptomycin alters pathology in a Salmonella enterica serovar Typhimurium murine model of infection. Infect. Immun.77, 2691–2702 (2009). ArticleCASPubMedPubMed Central Google Scholar
Wells, C. L., Jechorek, R. P. & Erlandsen, S. L. Evidence for the translocation of Enterococcus faecalis across the mouse intestinal tract. J. Infect. Dis.162, 82–90 (1990). ArticleCASPubMed Google Scholar
Merrell, D. S. & Camilli, A. The cadA gene of Vibrio cholera is induce during infection and plays a role in acid tolerance. Mol. Microbiol.34, 836–849 (1999). ArticleCASPubMed Google Scholar
Sekirov, I. et al. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection. Infect. Immun.76, 4726–4736 (2008). ArticleCASPubMedPubMed Central Google Scholar
Croswell, A., Amir, E., Teggatz, P., Barman, M. & Salzman, N. H. Prolonged impact of antibiotics on intestinal microbial ecology and susceptibility to enteric Salmonella infection. Infect. Immun.77, 2741–2753 (2009). ArticleCASPubMedPubMed Central Google Scholar
Stecher, B. et al. Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog.6, e1000711 (2010). ArticleCASPubMedPubMed Central Google Scholar
Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe3, 213–223 (2008). ArticleCASPubMedPubMed Central Google Scholar
Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA107, 11971–11975 (2010). ArticlePubMedPubMed Central Google Scholar
Ochman, H. et al. Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol.8, e1000546 (2010). ArticleCASPubMedPubMed Central Google Scholar
Dethlefsen, L., Huse, S., Sogin, M. L. & Relman, D. A. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol.6, e280 (2008). ArticleCASPubMedPubMed Central Google Scholar
Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe2, 328–339 (2007). ArticleCASPubMed Google Scholar
Suzuki, K. et al. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl Acad. Sci. USA101, 1981–1986 (2004). ArticleCASPubMedPubMed Central Google Scholar
Meyer-Hoffert, U. et al. Secreted enteric antimicrobial activity localises to the mucus surface layer. Gut57, 764–771 (2008). ArticleCASPubMed Google Scholar
Mukherjee, S., Vaishnava, S. & Hooper, L. V. Multi-layered regulation of intestinal antimicrobial defense. Cell. Mol. Life Sci.65, 3019–3027 (2008). ArticleCASPubMed Google Scholar
Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc.Natl Acad. Sci. USA106, 15813–15818 (2009). ArticleCASPubMedPubMed Central Google Scholar
Satoh, Y., Habara, Y., Ono, K. & Kanno, T. Carbamylcholine- and catecholamine-induced intracellular calcium dynamics of epithelial cells in mouse ileal crypts. Gastroenterology108, 1345–1356 (1995). ArticleCASPubMed Google Scholar
Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol.1, 113–118 (2000). ArticleCAS Google Scholar
Ayabe, T. et al. Modulation of mouse Paneth cell α-defensin secretion by mIKCa1, a Ca2+-activated, intermediate conductance potassium channel. J. Biol. Chem.277, 3793–3800 (2002). ArticleCASPubMed Google Scholar
van der Flier, L. G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol.71, 241–260 (2009). ArticleCASPubMed Google Scholar
Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature449, 1003–1007 (2007). ArticleCASPubMed Google Scholar
Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell143, 134–144 (2010). ArticleCASPubMed Google Scholar
Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a pattern of neutral drift. Science330, 822–825 (2010). ArticleCASPubMed Google Scholar
Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell6, 25–36 (2010). ArticleCASPubMed Google Scholar
de Santa Barbara, P., van den Brink, G. R. & Roberts, D. J. Development and differentiation of the intestinal epithelium. Cell. Mol. Life Sci.60, 1322–1332 (2003). ArticleCASPubMedPubMed Central Google Scholar
Scoville, D. H., Sato, T., He, X. C. & Li, L. Current view: intestinal stem cells and signaling. Gastroenterology134, 849–864 (2008). ArticleCASPubMed Google Scholar
Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol.3, 710–720 (2003). ArticleCAS Google Scholar
Selsted, M. E. & Ouellette, A. J. Mammalian defensins in the antimicrobial immune response. Nature Immunol.6, 551–557 (2005). ArticleCAS Google Scholar
de Leeuw, E. et al. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II. FEBS Lett.584, 1543–1548 (2010). ArticleCASPubMedPubMed Central Google Scholar
Schneider, T. et al. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science328, 1168–1172 (2010). ArticleCASPubMed Google Scholar
Lehrer, R. I., Lichtenstein, A. K. & Ganz, T. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol.11, 105–128 (1993). ArticleCASPubMed Google Scholar
Yang, D. et al. β-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science286, 525–528 (1999). ArticleCASPubMed Google Scholar
Yang, D., Biragyn, A., Kwak, L. W. & Oppenheim, J. J. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol.23, 291–296 (2002). ArticleCASPubMed Google Scholar
Lencer, W. I. et al. Induction of epithelial chloride secretion by channel-forming cryptdins 2 and 3. Proc. Natl Acad. Sci. USA94, 8585–8589 (1997). ArticleCASPubMedPubMed Central Google Scholar
Yue, G. et al. Cryptdin 3 forms anion selective channels in cytoplasmic membranes of human embryonic kidney cells. Am. J. Physiol. Gastrointest. Liver Physiol.282, G757–G765 (2002). ArticleCASPubMed Google Scholar
Lehrer, R. I. et al. Multivalent binding of carbohydrates by the human α-defensin, HD5. J. Immunol.183, 480–490 (2009). ArticleCASPubMed Google Scholar
Huttner, K. M., Selsted, M. E. & Ouellette, A. J. Structure and diversity of the murine cryptdin gene family. Genomics19, 448–453 (1994). ArticleCASPubMed Google Scholar
Hornef, M. W., Putsep, K., Karlsson, J., Refai, E. & Andersson, M. Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Nature Immunol.5, 836–843 (2004). ArticleCAS Google Scholar
Shanahan, M. T., Tanabe, H. & Ouellette, A. J. Strain-specific polymorphisms in Paneth cell-defensins of C57BL/6 mice and evidence of vestigial myeloid-defensin pseudogenes. Infect. Immun.79, 459–473 (2010). ArticlePubMedPubMed Central Google Scholar
Lynn, D. J., Lloyd, A. T., Fares, M. A. & O'Farrelly, C. Evidence of positively selected sites in mammalian α-defensins. Mol. Biol. Evol.21, 819–827 (2004). ArticleCASPubMed Google Scholar
Ouellette, A. J., Pravtcheva, D., Ruddle, F. H. & James, M. Localization of the cryptdin locus on mouse chromosome 8. Genomics5, 233–239 (1989). ArticleCASPubMed Google Scholar
Ouellette, A. J. Paneth cell α-defensin synthesis and function. Curr. Top. Microbiol. Immunol.306, 1–25 (2006). CASPubMed Google Scholar
Shirafuji, Y. et al. Structural determinants of procryptdin recognition and cleavage by matrix metalloproteinase-7. J. Biol. Chem.278, 7910–7919 (2003). ArticleCASPubMed Google Scholar
Ghosh, D. et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nature Immunol.3, 583–590 (2002). ArticleCAS Google Scholar
Porter, E. et al. Isolation of human intestinal defensins from ileal neobladder urine. FEBS Lett.434, 272–276 (1998). ArticleCASPubMed Google Scholar
Ganz, T. et al. Increased inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood101, 2388–2392 (2003). ArticleCASPubMed Google Scholar
Qu, X.-D., Lloyd, K. C., Walsh, J. H. & Lehrer, R. I. Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells. Infect. Immun.64, 5161–5165 (1996). CASPubMedPubMed Central Google Scholar
Lambeau, G. & Gelb, M. H. Biochemistry and physiology of mammalian secreted phospholipases A2 . Annu. Rev. Biochem.77, 495–520 (2008). ArticleCASPubMed Google Scholar
Murakami, M., Taketomi, Y., Girard, C., Yamamoto, K. & Lambeau, G. Emerging roles of secreted phospholipase A2 enzymes: lessons from transgenic and knockout mice. Biochimie92, 561–582 (2010). ArticleCASPubMed Google Scholar
Nevalainen, T. J., Graham, G. G. & Scott, K. F. Antibacterial actions of secreted phospholipases A2. Review. Biochim. Biophys. Acta1781, 1–9 (2008). ArticleCASPubMed Google Scholar
Kennedy, B. P. et al. A natural disruption of the secretory group II phospholipase A2 gene in inbred mouse strains. J. Biol. Chem.270, 22378–22385 (1995). ArticleCASPubMed Google Scholar
MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of Apc _Min_-induced intestinal neoplasia. Cell81, 957–966 (1995). ArticleCASPubMed Google Scholar
Cormier, R. T. et al. Secretory phospholipase Pla2g2a confers resistance to intestinal tumorigenesis. Nature Genet.17, 88–91 (1997). ArticleCASPubMed Google Scholar
Lasserre, C., Colnot, C., Brechot, C. & Poirier, F. HIP/PAP gene, encoding a C-type lectin overexpressed in primary liver cancer, is expressed in nervous system as well as in intestine and pancreas of the postimplantation mouse embryo. Am. J. Pathol.154, 1601–1610 (1999). ArticleCASPubMedPubMed Central Google Scholar
Iovanna, J. L. & Dagorn, J. C. The multifunctional family of secreted proteins containing a C-type lectin-like domain linked to a short N-terminal peptide. Biochim. Biophys. Acta1723, 8–18 (2005). ArticleCASPubMed Google Scholar
Medveczky, P., Szmola, R. & Sahin-Toth, M. Proteolytic activation of human pancreatitis-associated protein is required for peptidoglycan binding and bacterial aggregation. Biochem. J.420, 335–343 (2009). ArticleCASPubMed Google Scholar
Mukherjee, S. et al. Regulation of C-type lectin antimicrobial activity by a flexible N-terminal prosegment. J. Biol. Chem.284, 4881–4888 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lehotzky, R. E. et al. Molecular basis for peptidoglycan recognition by a bactericidal lectin. Proc. Natl Acad. Sci. USA107, 7722–7727 (2010). ArticleCASPubMedPubMed Central Google Scholar
Christa, L. et al. HIP/PAP is an adhesive protein expressed in hepatocarcinoma, normal Paneth, and pancreatic cells. Am. J. Physiol.271, G993–G1002 (1996). CASPubMed Google Scholar
Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl Acad. Sci. USA105, 20858–20863 (2008). ArticleCASPubMedPubMed Central Google Scholar
Harder, J. & Schroder, J. M. RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J. Biol. Chem.277, 46779–46784 (2002). ArticleCASPubMed Google Scholar
Crabtree, B., Holloway, D. E., Baker, M. D., Acharya, K. R. & Subramanian, V. Biological and structural features of murine angiogenin-4, an angiogenic protein. Biochemistry46, 2431–2443 (2007). ArticleCASPubMed Google Scholar
Stappenbeck, T. S., Hooper, L. V. & Gordon, J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl Acad. Sci. USA99, 15451–15455 (2002). ArticleCASPubMedPubMed Central Google Scholar
Riley, M. A. Molecular mechanisms of bacteriocin evolution. Annu. Rev. Genet.32, 255–278 (1998). ArticleCASPubMed Google Scholar
Baba, T. & Schneewind, O. Instruments of microbial warfare: bacteriocin synthesis, toxicity and immunity. Trends Microbiol.6, 66–71 (1998). ArticleCASPubMed Google Scholar
Czaran, T. L., Hoekstra, R. F. & Pagie, L. Chemical warfare between microbes promotes biodiversity. Proc. Natl Acad. Sci. USA99, 786–790 (2002). ArticleCASPubMedPubMed Central Google Scholar
Duquesne, S., Destoumieux-Garzon, D., Peduzzi, J. & Rebuffat, S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep.24, 708–734 (2007). ArticleCASPubMed Google Scholar
Gillor, O., Etzion, A. & Riley, M. A. The dual role of bacteriocins as anti- and probiotics. Appl. Microbiol. Biotechnol.81, 591–606 (2008). ArticleCASPubMedPubMed Central Google Scholar
Richards, S. M., Strandberg, K. L. & Gunn, J. S. _Salmonella_-regulated lipopolysaccharide modifications. Subcell. Biochem.53, 101–122 (2010). ArticleCASPubMed Google Scholar
Kraus, D. & Peschel, A. Molecular mechanisms of bacterial resistance to antimicrobial peptides. Curr. Top. Microbiol. Immunol.306, 231–250 (2006). CASPubMed Google Scholar
Stecher, B. et al. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol.5, e244 (2007). ArticleCASPubMed Central Google Scholar
Barman, M. et al. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infect. Immun.76, 907–915 (2008). ArticleCASPubMed Google Scholar
Raffatellu, M. et al. Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe5, 476–486 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J. Clin. Invest.120, 4332–4341 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science307, 731–734 (2005). ArticleCASPubMed Google Scholar
Biswas, A. et al. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc. Natl Acad. Sci. USA107, 14739–14744 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nieuwenhuis, E. E. et al. Cd1d-dependent regulation of bacterial colonization in the intestine of mice. J. Clin. Invest.119, 1241–1250 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sartor, R. B. Microbial influences in inflammatory bowel diseases. Gastroenterology134, 577–594 (2008). ArticleCASPubMed Google Scholar
Wehkamp, J. & Stange, E. F. Paneth's disease. J. Crohn's Colitis4, 523–531 (2010). Article Google Scholar
Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature411, 599–603 (2001). ArticleCASPubMed Google Scholar
Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature411, 603–606 (2001). ArticleCASPubMed Google Scholar
Hampe, J. et al. Association of NOD2 (CARD15) genotype with clinical course of Crohn's disease: a cohort study. Lancet359, 1661–1665 (2002). ArticleCASPubMed Google Scholar
Lesage, S. et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet.70, 845–857 (2002). ArticleCASPubMedPubMed Central Google Scholar
Russell, R. K. et al. Genotype-pheotype analysis in childhood-onset Crohn's disease: NOD2/CARD15 variants consistently predict phenotypic characteristics of severe disease. Inflamm. Bowel Dis.11, 955–964 (2005). ArticlePubMed Google Scholar
Seiderer, J. et al. Homozygosity for the CARD15 frameshift mutation 1007fs is predictive of early onset of Crohn's disease with ileal stenosis, entero-enteral fistulas, and frequent need for surgical intervention with high risk of re-stenosis. Scand. J. Gastroenterol.41, 1421–1432 (2006). ArticleCASPubMed Google Scholar
van Es, J. H. et al. Wnt signaling induces maturation of Paneth cells in intestinal crypts. Nature Cell Biol.7, 381–386 (2005). ArticleCASPubMed Google Scholar
Wehkamp, J. et al. The Paneth cell α-defensin deficiency of ileal Crohn's disease is linked to Wnt/Tcf-4. J. Immunol.179, 3109–3118 (2007). ArticleCASPubMed Google Scholar
Koslowski, M. J. et al. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn's disease. PLoS ONE4, e4496 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rioux, J. D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nature Genet.39, 596–604 (2007). ArticleCASPubMed Google Scholar
Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16L1 in mouse and human intestinal Paneth cells. Nature456, 259–263 (2008). ArticleCASPubMedPubMed Central Google Scholar
Simms, L. A. et al. KCNN4 gene variant is associated with ileal Crohn's Disease in the Australian and New Zealand population. Am. J. Gastroenterol.105, 2209–2217 (2010). ArticleCASPubMed Google Scholar
Di, L. et al. Inhibition of the K+ channel KCa3.1 ameliorates T cell–mediated colitis. Proc. Natl Acad. Sci. USA107, 1541–1546 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell134, 743–756 (2008). ArticleCASPubMedPubMed Central Google Scholar
Klassen, H. et al. Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Lab. Anim.27, 141–150 (1993). Article Google Scholar
Yamauchi, K. E. & Snel, J. Transmission electron microscopic demonstration of phagocytosis and intracellual processing of segmented filamentous bacteria by intestinal epithelial cells of the chick ileum. Infect. Immun.68, 6496–6504 (2000). ArticleCASPubMedPubMed Central Google Scholar
Stepankova, R. et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. Inflamm. Bowel Dis.13, 1202–1211 (2007). ArticlePubMed Google Scholar
Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity32, 815–827 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 28 Jul 2010 (doi:10.1073/pnas.1000082107).
Paneth, J. Ueber die secernirenden Zellen des Dünndarm-Epithels. Arc. Mikrosk. Anat.31, 113–191 (1887). Article Google Scholar
Jones, D. E. & Bevins, C. L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem.267, 23216–23225 (1992). CASPubMed Google Scholar
Mallow, E. B. et al. Human enteric defensins: gene structure and developmental expression. J. Biol. Chem.271, 4038–4045 (1996). ArticleCASPubMed Google Scholar
Bry, L. et al. Paneth cell differentiation in the developing intestine of normal and transgenic mice. Proc. Natl Acad. Sci. USA91, 10335–10339 (1994). ArticleCASPubMedPubMed Central Google Scholar
Reilly, D. S., Tomassini, N., Bevins, C. L. & Zasloff, M. A Paneth cell analogue in Xenopus small intestine expresses antimicrobial peptide genes: conservation of an intestinal host-defense system. J. Histochem. Cytochem.42, 697–704 (1994). ArticleCASPubMed Google Scholar
Cunliffe, R. N. et al. Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut48, 176–185 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shen, B. et al. Human defensin 5 expression in intestinal metaplasia of the upper gastrointestinal tract. J. Clin. Pathol.58, 687–694 (2005). ArticleCASPubMedPubMed Central Google Scholar
Blache, P. et al. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J. Cell Biol.166, 37–47 (2004). ArticleCASPubMedPubMed Central Google Scholar
Batlle, E. et al. β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/EphrinB. Cell111, 251–263 (2002). ArticleCASPubMed Google Scholar
Bastide, P. et al. Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J. Cell Biol.178, 635–648 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mori-Akiyama, Y. et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology133, 539–546 (2007). ArticleCASPubMed Google Scholar
Yang, Q., Bermingham, N. A., Finegold, M. J. & Zoghbi, H. Y. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science294, 2155–2158 (2001). ArticleCASPubMed Google Scholar
Shroyer, N. F., Wallis, D., Venken, K. J., Bellen, H. J. & Zoghbi, H. Y. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev.19, 2412–2417 (2005). ArticleCASPubMedPubMed Central Google Scholar
Andreu, P. et al. Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development132, 1443–1451 (2005). ArticleCASPubMed Google Scholar
Porter, E., Liu, L., Oren, A., Anton, P. & Ganz, T. Localization of human intestinal defensin 5 in Paneth cell granules. Infect. Immun.65, 2389–2395 (1997). CASPubMedPubMed Central Google Scholar
Salzman, N. H., Underwood, M. A. & Bevins, C. L. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. Semin. Immunol.19, 70–83 (2007). ArticleCASPubMed Google Scholar
Zheng, W. et al. Evaluation of AGR2 and AGR3 as candidate genes for inflammatory bowel disease. Genes Immun.7, 11–18 (2006). ArticleCASPubMed Google Scholar
Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell141, 1135–1145 (2010). ArticleCASPubMedPubMed Central Google Scholar
Garabedian, E. M., Roberts, L. J. J., McNevin, M. S. & Gordon, J. I. Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J. Biol. Chem.272, 23729–23740 (1997). ArticleCASPubMed Google Scholar