Emerging properties of animal gene regulatory networks (original) (raw)
Oliveri, P., Tu, Q. & Davidson, E. H. Global regulatory logic for specification of an embryonic cell lineage. Proc. Natl Acad. Sci. USA105, 5955–5962 (2008)This paper provides proof of principle that if a developmental GRN is essentially complete, then it provides causal explanations for the biological functions of the process it controls. ADSCASPubMedPubMed Central Google Scholar
Peter, I. S. & Davidson, E. H. Modularity and design principles in the sea urchin embryo gene regulatory network. FEBS Lett.583, 3948–3958 (2009)This paper presents the latest comprehensive review of the sea urchin endomesoderm GRN, so far the most extensively validated large scale embryonic GRN, with special emphasis on the topologies of its spatial control sub-circuits. CASPubMedPubMed Central Google Scholar
Davidson, E. H. The Regulatory Genome. Gene Regulatory Networks in Development and Evolution (Academic Press/Elsevier, 2006) Google Scholar
Alon, U. Network motifs: theory and experimental approaches. Nature Rev. Genet.8, 450–461 (2007) CASPubMed Google Scholar
Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA100, 11980–11985 (2003) ADSCASPubMedPubMed Central Google Scholar
Ma, W., Trusina, A., El-Samad, H., Lim, W. A. & Tang, C. Defining network topologies that can achieve biochemical adaptation. Cell138, 760–773 (2009) CASPubMedPubMed Central Google Scholar
Peter, I. S. & Davidson, E. H. The endoderm gene regulatory network in sea urchin embryos up to mid-blastula stage. Dev. Biol.340, 188–199 (2010) CASPubMed Google Scholar
Oliveri, P. & Davidson, E. H. Built to run, not fail. Science315, 1510–1511 (2007) CASPubMed Google Scholar
Koide, T., Hayata, T. & Cho, K. W. Y. Xenopus as a model system to study transcriptional regulatory networks. Proc. Natl Acad. Sci. USA102, 4943–4948 (2005) ADSCASPubMedPubMed Central Google Scholar
Maduro, M. F. Structure and evolution of the C. elegans embryonic endomesoderm network. Biochim. Biophys. Acta1789, 250–260 (2009) CASPubMed Google Scholar
Chan, T.-M. et al. Developmental gene regulatory networks in the zebrafish embryo. Biochim. Biophys. Acta1789, 279–298 (2009) CASPubMed Google Scholar
Morley, R. H. et al. A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proc. Natl Acad. Sci. USA106, 3829–3834 (2009) ADSCASPubMedPubMed Central Google Scholar
Stathopoulos, A. & Levine, M. Genomic regulatory networks and animal development. Dev. Cell9, 449–462 (2005) CASPubMed Google Scholar
Hong, J.-W., Hendrix, D. A., Papatsenko, D. & Levine, M. S. How the Dorsal gradient works: insights from postgenome technologies. Proc. Natl Acad. Sci. USA105, 20072–20076 (2008)This review summarizes work regulatory control of Dorsal target genes expressed spatially along the dorsal/ventral axis of the syncytialDrosophilaembryo. ADSCASPubMedPubMed Central Google Scholar
Liberman, L. M. & Stathopoulos, A. Design flexibility in _cis_-regulatory control of gene expression: synthetic and comparative evidence. Dev. Biol.327, 578–589 (2009)This paper presents a novel experimental evidence of cis-regulatory design features in the syncytial dorsal-ventralDrosophilaspecification system. CASPubMed Google Scholar
Ochoa-Espinosa, A., Yu, D., Tsirigos, A., Struffi, P. & Small, S. Anterior-posterior positional information in the absence of a strong Bicoid gradient. Proc. Natl Acad. Sci. USA106, 3823–3828 (2009)This paper provides experimental evidence that the anterior/posterior specification system of theDrosophilaembryo is controlled by a network of gene interactions rather than only by quantitative positional values of Bicoid. ADSCASPubMedPubMed Central Google Scholar
Liberman, L. M., Teeves, G. T. & Stathopoulos, A. Quantitative imaging of the Dorsal nuclear gradient reveals limitations to threshold-dependent patterning in Drosophila . Proc. Natl Acad. Sci. USA106, 22317–22322 (2009) ADSCASPubMedPubMed Central Google Scholar
Huang, A. M., Rusch, J. & Levine, M. An anteroposterior Dorsal gradient in the Drosophila embryo. Genes Dev.11, 1963–1973 (1997) CASPubMedPubMed Central Google Scholar
Saka, Y. & Smith, J. C. A mechanism for sharp transition of morphogen gradient interpretation in Xenopus . BMC Dev. Biol.7, 47–55 (2007) PubMedPubMed Central Google Scholar
Davidson, E. H. Genomic Regulatory Systems: Development and Evolution (Academic Press/Elsevier, 2001) Google Scholar
Su, Y.-H. et al. A perturbation model of the gene regulatory network for oral and aboral ectoderm specification in the sea urchin embryo. Dev. Biol.329, 410–421 (2009) CASPubMedPubMed Central Google Scholar
Nikitina, N., Sauka-Spengler, T. & Bronner-Fraser, M. Dissecting early regulatory relationships in the lamprey neural crest gene network. Proc. Natl Acad. Sci. USA105, 20083–20088 (2008) ADSCASPubMedPubMed Central Google Scholar
Woodland, H. R. & Zorn, A. M. The core endodermal gene network of vertebrates: combining developmental precision with evolutionary flexibility. Bioessays30, 757–765 (2008) PubMed Google Scholar
Cvekl, A. & Duncan, M. K. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog. Retin. Eye Res.26, 555–597 (2007) CASPubMedPubMed Central Google Scholar
Kumar, J. P. The molecular circuitry governing retinal determination. Biochim. Biophys. Acta1789, 306–314 (2009) CASPubMed Google Scholar
Pimanda, J. E. et al. Gata2, Fli1, and Scl form a recursively wired gene-regulatory circuit during early hematopoietic development. Proc. Natl Acad. Sci. USA104, 17692–17697 (2007) ADSCASPubMedPubMed Central Google Scholar
Smith, P. A. & Mango, S. E. Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans . Dev. Biol.302, 25–39 (2007) CASPubMed Google Scholar
Cripps, R. M. & Olson, E. N. Control of cardiac development by an evolutionarily conserved transcription network. Dev. Biol.246, 14–28 (2002) CASPubMed Google Scholar
Reim, I., Mohler, J. P. & Frasch, M. _Tbx20_-related genes, mid and H15 are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila . Mech. Dev.122, 1056–1069 (2005) CASPubMed Google Scholar
Albert, R. & Othmer, H. G. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster . J. Theor. Biol.223, 1–18 (2003) MathSciNetCASPubMedPubMed Central Google Scholar
Nishi, Y., Ji, H., Wong, W. H., McMahon, A. P. & Vokes, S. A. Modeling the spatio-temporal network that drives patterning in the vertebrate central nervous system. Biochim. Biophys. Acta1789, 299–305 (2009) CASPubMed Google Scholar
Vokes, S. A., Ji, H., Wong, W. H. & McMahon, A. P. A genome-scale analysis of the _cis_-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev.22, 2651–2663 (2008) CASPubMedPubMed Central Google Scholar
Ririe, T. O., Fernandes, J. S. & Sternberg, P. W. The Caenorhabditis elegans vulva: A post-embryonic gene regulatory network controlling organogenesis. Proc. Natl Acad. Sci. USA105, 20095–20099 (2008) ADSCASPubMedPubMed Central Google Scholar
Graf, T. & Enver, T. Forcing cells to change lineages. Nature462, 587–594 (2009)This review comprehensively traverses the process of terminal lineage fate choice in pluripotential hematopoietic systems. ADSCASPubMed Google Scholar
Swiers, G., Patient, R. & Loose, M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev. Biol.294, 525–540 (2006) CASPubMed Google Scholar
Laslo, P. et al. Multilineage transcription priming and determination of alternate hematopoietic cell fates. Cell126, 755–766 (2006)This paper exemplifies a commonly used mathematical approach invoking bi-stable state kinetics to explain lineage choice. CASPubMed Google Scholar
Smith, J. & Davidson, E. H. Gene regulatory network subcircuit controlling a dynamic spatial pattern of signaling in the sea urchin embryo. Proc. Natl Acad. Sci. USA105, 20089–20094 (2008) ADSCASPubMedPubMed Central Google Scholar
Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl Acad. Sci. USA96, 8705–8710 (1999) ADSCASPubMedPubMed Central Google Scholar
Huang, S., Guo, Y.-P., May, G. & Enver, T. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol.305, 695–713 (2007) CASPubMed Google Scholar
Stopka, T., Amanatullah, D. F., Papetti, M. & Skoultchi, A. I. PU.1 inhibits the erythroid program by binding to GATA-1 on DNA and creating a repressive chromatin structure. EMBO J.24, 3712–3723 (2005) CASPubMedPubMed Central Google Scholar
Starck, J. et al. Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol. Cell. Biol.23, 1390–1402 (2003) CASPubMedPubMed Central Google Scholar
Rothenberg, E. V. Decision by committee: new light on the CD4/CD8-lineage choice. Immunol. Cell Biol.87, 109–112 (2009) CASPubMed Google Scholar
Wang, L. & Bosselut, R. CD4–CD8 lineage differentiation: Thpok-ing into the nucleus. J. Immunol.183, 2903–2910 (2009) CASPubMed Google Scholar
Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science319, 822–825 (2008) ADSCASPubMed Google Scholar
Narula, J., Smith, A. M. & Gottgens, B. and Igoshin, O. A. Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate. PLoS Comput. Biol.6, e1000771 (2010) PubMedPubMed Central Google Scholar
Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev.11, 774–785 (1997) CASPubMed Google Scholar
Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell3, 137–147 (2002) CASPubMed Google Scholar
Lagha, M. et al. Pax3:Foxc2 reciprocal repression in the somite modulates muscular versus vascular cell fate choice in multipotent progenitors. Dev. Cell17, 892–899 (2009) CASPubMed Google Scholar
Johnson, R. J., Jr, Chang, S., Etchberger, J. F., Ortiz, C. O. & Hobert, O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl Acad. Sci. USA102, 12449–12454 (2005) ADS Google Scholar
Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature463, 1035–1041 (2010) ADSCASPubMedPubMed Central Google Scholar
Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J. & Melton, D. A. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature455, 627–632 (2008) ADSCASPubMedPubMed Central Google Scholar
Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature441, 173–178 (2006) ADSCASPubMed Google Scholar
Hobert, O. Regulatory logic of neuronal diversity: Terminal selector genes and selector motifs. Proc. Natl Acad. Sci. USA105, 20067–20071 (2008) ADSCASPubMedPubMed Central Google Scholar
Bröhl, D. et al. A transcriptional network coordinately determines transmitter and peptidergic fate in the dorsal spinal chord. Dev. Biol.322, 381–393 (2008) PubMed Google Scholar
Yun, K. & Wold, B. Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr. Opin. Cell Biol.8, 877–889 (1996) CASPubMed Google Scholar
Pan, G. & Thomson, J. A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res.17, 42–49 (2007) CASPubMed Google Scholar
Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell122, 947–956 (2005) CASPubMedPubMed Central Google Scholar
Zhou, Q., Chipperfield, H., Melton, D. A. & Wong, W. H. A gene regulatory network in mouse embryonic stem cells. Proc. Natl Acad. Sci. USA104, 16438–16443 (2007) ADSCASPubMedPubMed Central Google Scholar
Boyer, L. A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature441, 349–353 (2006) ADSCASPubMed Google Scholar
Mortazavi, A., Chen Leeper Thompson, E., Garcia, S. T., Myers, R. M. & Wold, B. Comparative genomics modeling of the NRSF/REST repressor network: from single conserved sites to genome-wide repertoire. Genome Res.16, 1208–1221 (2006) CASPubMedPubMed Central Google Scholar
Zhu, X. & Rosenfeld, M. G. Transcriptional control of precursor proliferation in the early phases of pituitary development. Curr. Opin. Genet. Dev.14, 567–574 (2004) CASPubMed Google Scholar
Bessa, J. et al. meis1 regulates cyclin D1 and c-myc expression, and controls the proliferation of the multipotent cells in the early developing zebrafish eye. Development135, 799–803 (2008) CASPubMed Google Scholar
Christiaen, L. et al. The transcription/migration interface in heart precursors of Ciona intestinalis . Science320, 1349–1352 (2008)This paper presents direct evidence of the regulatory structure of a morphogenetic gene cassette, showing that only certain key genes are controlled by the upstream GRN while a majority are expressed anyway. ADSCASPubMed Google Scholar
Chanut-Delalande, H., Fernandes, I., Roch, F., Payre, F. & Plaza, S. Shavenbaby couples patterning to epidermal cell shape control. PLoS Biol.4, 1549–1561 (2006) CAS Google Scholar
Amit, I. et al. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science326, 257–263 (2009)This paper presents the most complete analysis yet available of structure and function in a physiological GRN. ADSCASPubMedPubMed Central Google Scholar
Rosenfeld, N. & Alon, U. Response delays and the structure of transcription networks. J. Mol. Biol.329, 645–654 (2003) CASPubMed Google Scholar
Bolouri, H. Computational Modeling of Gene Regulatory Networks – A Primer (Imperial College Press, 2008) Google Scholar
Sánchez, L. & Thieffry, D. A logical analysis of the gap gene system. J. Theor. Biol.211, 115–141 (2001) PubMed Google Scholar
Jaeger, J. et al. Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster . Genetics167, 1721–1737 (2004) CASPubMedPubMed Central Google Scholar
Perkins, T. J., Jaeger, J., Reintz, J. & Glass, L. Reverse engineering the gap gene network of Drosophila melanogaster . PLoS Comput. Biol.2, e051 (2006)This paper provides a comprehensive computational treatment of theDrosophilagap gene network using estimates of numerous constants obtained by high resolution imaging. ADS Google Scholar
Rivera-Pomar, R. & Jaeckle, H. From gradients to stripes in Drosophila mebryogenesis: filling in the gaps. Trends Genet.12, 478–483 (1996) CASPubMed Google Scholar
Kraut, R. & Levine, M. Mutually repressive interactions between the gap genes giant and Krüpple define middle body regions of the Drosophila embryo. Development111, 611–621 (1991) CASPubMed Google Scholar
Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature451, 535–540 (2008) ADSCASPubMed Google Scholar
Lembong, J., Yakoby, N. & Shvartsman, S. Y. Pattern formation by dynamically interacting network motifs. Proc. Natl Acad. Sci. USA106, 3213–3218 (2009) ADSCASPubMedPubMed Central Google Scholar
Dessaud, E. et al. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen Sonic hedgehog. PLoS Biol.8, e1000382 (2010)This paper provides a new insight into how positional values of Hedgehog ligand are used to set transcriptional thresholds. PubMedPubMed Central Google Scholar
Ribes, V. & Briscoe, J. Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback. Cold Spring Harb. Perspect. Biol.1, a002014 (2009)
Goentoro, L., Shoval, O., Kirschner, M. W. & Alon, U. The incoherent feedforward loop can provide fold-change detection in gene regulation. Mol. Cell36, 894–899 (2009)This analysis shows how a common GRN sub-circuit can operate to interpret relative changes in signal strength. CASPubMedPubMed Central Google Scholar
Goentoro, L. & Kirschner, M. W. Evidence that fold-change, and not absolute level, of β-catenin dictates Wnt signaling. Mol. Cell36, 872–884 (2009) CASPubMedPubMed Central Google Scholar
Spooner, C. J. et al. A recurrent network involving the transcription factors PU.1 and Gfi1 orchestrates innate and adaptive immune cell fates. Immunity31, 576–586 (2009) CASPubMedPubMed Central Google Scholar
Chickarmane, V., Enver, T. & Peterson, C. Computational modeling of the hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and irreversibility. PLoS Comput. Biol.5, e1000268 (2009)This paper presents an alternative computational treatment of lineage choice in a haematopoietic system.
Shea, M. A. & Ackers, G. K. The OR control system of bacteriophage lambda: A physical-chemical model for gene regulation. J. Mol. Biol.181, 211–230 (1985) CASPubMed Google Scholar
Bolouri, H. & Davidson, E. H. Transcriptional regulatory cascades in development: Initial rates, not steady state, determine network kinetics. Proc. Natl Acad. Sci. USA100, 9371–9376 (2003)This paper models sea urchin regulatory cascade kinetics and demonstrates using measured constants that genes are successively activated long before any of the transcriptional functions attain steady state. ADSCASPubMedPubMed Central Google Scholar
Materna, S. C., Nam, J. & Davidson, E. H. High accuracy, high-resolution prevalence measurement for the majority of locally expressed regulatory genes in early sea urchin development. Gene Expr. Patterns10, 177–184 (2010) CASPubMedPubMed Central Google Scholar
Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science311, 796–800 (2006)This paper introduced the theory that highly conserved GRN sub-circuits account for the phylogenetic distribution of major characters of the animal body plan. ADSCASPubMed Google Scholar
Erwin, D. H. & Davidson, E. H. The evolution of hierarchical gene regulatory networks. Nature Rev. Genet.10, 141–148 (2009) CASPubMed Google Scholar
Davidson, E. H. & Erwin, D. H. An integrated view of Precambrian eumetazoan evolution. Cold Spring Harb. Symp. Quant. Biol.74, 65–80 (2009) CASPubMed Google Scholar
Gao, F. & Davidson, E. H. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proc. Natl Acad. Sci. USA105, 6091–6096 (2008) ADSCASPubMedPubMed Central Google Scholar
Hinman, V. F. & Davidson, E. H. Evolutionary plasticity of developmental gene regulatory network architecture. Proc. Natl Acad. Sci. USA104, 19404–19409 (2007) ADSCASPubMedPubMed Central Google Scholar
Hinman, V. F., Yankura, K. A. & McCauley, B. S. Evolution of gene regulatory network architectures: Examples of subcircuit conservation and plasticity between classes of echinoderms. Biochim. Biophys. Acta1789, 326–332 (2009) CASPubMed Google Scholar
Bolouri, H. & Davidson, E. H. The gene regulatory network basis of the “community effect,” and analysis of a sea urchin embryo example. Dev. Biol.340, 170–178 (2010) CASPubMed Google Scholar