Condensin and cohesin complexity: the expanding repertoire of functions (original) (raw)
De Piccoli, G., Torres-Rosell, J. & Aragon, L. The unnamed complex: what do we know about Smc5–Smc6? Chromosome Res.17, 251–263 (2009). ArticleCASPubMed Google Scholar
Nasmyth, K. & Haering, C. H. Cohesin: its roles and mechanisms. Annu. Rev. Genet.43, 525–558 (2009). ArticleCASPubMed Google Scholar
Hudson, D. F., Marshall, K. M. & Earnshaw, W. C. Condensin: architect of mitotic chromosomes. Chromosome Res.17, 131–144 (2009). ArticleCASPubMed Google Scholar
Hirano, T. At the heart of the chromosome: SMC proteins in action. Nature Rev. Mol. Cell Biol.7, 311–322 (2006). ArticleCAS Google Scholar
Parelho, V. et al. Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell132, 422–433 (2008). ArticleCASPubMed Google Scholar
Wendt, K. S. et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature451, 796–801 (2008). ArticleCASPubMed Google Scholar
Stedman, W. et al. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J.27, 654–666 (2008). References 5–8 identified extensive overlaps between the chromosomal binding sites of cohesin and the mammalian insulator protein CTCF, and showed that cohesin contributes to the gene regulatory functions of CTCF. ArticleCASPubMedPubMed Central Google Scholar
Ling, J. Q. et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science312, 269–272 (2006). ArticleCASPubMed Google Scholar
Hadjur, S. et al. Cohesins form chromosomal _cis_-interactions at the developmentally regulated IFNG locus. Nature460, 410–413 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hou, C., Dale, R. & Dean, A. Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc. Natl Acad. Sci. USA107, 3651–3656 (2010). ArticleCASPubMedPubMed Central Google Scholar
Mishiro, T. et al. Architectural roles of multiple chromatin insulators at the human apolipoprotein gene cluster. EMBO J.28, 1234–1245 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nativio, R. et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2–H19 locus. PLoS Genet.5, e1000739 (2009). References 12–15 studied the effects of cohesin depletion in cultured cells on interphase chromosome looping and transcription. ArticlePubMedCASPubMed Central Google Scholar
Wendt, K. S. & Peters, J. M. How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res.17, 201–214 (2009). ArticleCASPubMed Google Scholar
Schmidt, D. et al. A CTCF-independent role for cohesin in tissue-specific transcription. Genome Res. 10 Mar 2010 (doi:10.1101/gr.100479.109). ArticleCASPubMedPubMed Central Google Scholar
Donze, D., Adams, C. R., Rine, J. & Kamakaka, R. T. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev.13, 698–708 (1999). ArticleCASPubMedPubMed Central Google Scholar
Valenzuela, L., Dhillon, N., Dubey, R. N., Gartenberg, M. R. & Kamakaka, R. T. Long-range communication between the silencers of HMR. Mol. Cell. Biol.28, 1924–1935 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schoenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nature Genet.42, 53–61 (2010). ArticleCASPubMed Google Scholar
Haeusler, R. A., Pratt-Hyatt, M., Good, P. D., Gipson, T. A. & Engelke, D. R. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev.22, 2204–2214 (2008). ArticleCASPubMedPubMed Central Google Scholar
Thompson, M., Haeusler, R. A., Good, P. D. & Engelke, D. R. Nucleolar clustering of dispersed tRNA genes. Science302, 1399–1401 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wang, B. D. & Strunnikov, A. Transcriptional homogenization of rDNA repeats in the episome-based nucleolus induces genome-wide changes in the chromosomal distribution of condensin. Plasmid59, 45–53 (2008). ArticleCASPubMed Google Scholar
D'Ambrosio, C. et al. Identification of _cis_-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev.22, 2215–2227 (2008). This paper and reference 22 provided evidence that the yeast condensin complex binds tRNA genes through interactions with the RNAPIII transcription factor TFIIIC and is required for their aggregation at the nucleolus. ArticleCASPubMedPubMed Central Google Scholar
Iwasaki, O., Tanaka, A., Tanizawa, H., Grewal, S. I. & Noma, K. Centromeric localization of dispersed Pol III genes in fission yeast. Mol. Biol. Cell21, 254–265 (2009). ArticlePubMed Google Scholar
Tsang, C. K., Wei, Y. & Zheng, X. F. Compacting DNA during the interphase: condensin maintains rDNA integrity. Cell Cycle6, 2213–2218 (2007). ArticleCASPubMed Google Scholar
Kobayashi, T. Strategies to maintain the stability of the ribosomal RNA gene repeats — collaboration of recombination, cohesion, and condensation. Genes Genet. Syst.81, 155–161 (2006). ArticleCASPubMed Google Scholar
Noma, K., Cam, H. P., Maraia, R. J. & Grewal, S. I. A role for TFIIIC transcription factor complex in genome organization. Cell125, 859–872 (2006). ArticleCASPubMed Google Scholar
Hartl, T. A., Smith, H. F. & Bosco, G. Chromosome alignment and transvection are antagonized by condensin II. Science322, 1384–1387 (2008). This paper showed that theD. melanogastercondensin II complex inhibits transvection and promotes the disassembly of polytene chromosomes, and can therefore antagonize interactions between homologous chromosomes during interphase. These findings raise interesting parallels between condensin function during mitosis and during interphase. ArticleCASPubMed Google Scholar
Chuang, P. T., Albertson, D. G. & Meyer, B. J. DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell79, 459–474 (1994). ArticleCASPubMed Google Scholar
Meyer, B. J. X-Chromosome dosage compensation. In WormBook (ed. The C. elegans Research Community) http://www.wormbook.org, doi:10.1895/wormbook.1.8.1 (2005). Google Scholar
Meyer, B. Targeting X chromosomes for repression. Curr. Opin. Genet. Dev. 8 Apr 2010 (doi:10.1016/j.gde.2010.03.008). ArticleCAS Google Scholar
Jans, J. et al. A condensin-like dosage compensation complex acts at a distance to control expression throughout the genome. Genes Dev.23, 602–618 (2009). This paper combined ChIP–chip mapping with functional assays to identify two classes of binding sites for theC. elegansDCC: those that recruit the complex in an autonomous, sequence-dependent manner and those that bind the DCC only when part of an intact X chromosome. The paper also correlated DCC binding with function, providing evidence that the DCC influences transcription at long range. ArticleCASPubMedPubMed Central Google Scholar
Ercan, S. et al. X chromosome repression by localization of the C. elegans dosage compensation machinery to sites of transcription initiation. Nature Genet.39, 403–408 (2007). ArticleCASPubMed Google Scholar
McDonel, P., Jans, J., Peterson, B. K. & Meyer, B. J. Clustered DNA motifs mark X chromosomes for repression by a dosage compensation complex. Nature444, 614–618 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ercan, S., Dick, L. L. & Lieb, J. D. The C. elegans dosage compensation complex propagates dynamically and independently of X chromosome sequence. Curr. Biol.19, 1777–1787 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lengronne, A. et al. Cohesin relocation from sites of chromosomal loading to places of convergent transcription. Nature430, 573–578 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cobbe, N., Savvidou, E. & Heck, M. M. Diverse mitotic and interphase functions of condensins in Drosophila. Genetics172, 991–1008 (2006). ArticleCASPubMedPubMed Central Google Scholar
Dej, K. J., Ahn, C. & Orr-Weaver, T. L. Mutations in the Drosophila condensin subunit dCAP-G: defining the role of condensin for chromosome condensation in mitosis and gene expression in interphase. Genetics168, 895–906 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bhalla, N., Biggins, S. & Murray, A. W. Mutation of YCS4, a budding yeast condensin subunit, affects mitotic and nonmitotic chromosome behavior. Mol. Biol. Cell13, 632–645 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lupo, R., Breiling, A., Bianchi, M. E. & Orlando, V. Drosophila chromosome condensation proteins Topoisomerase II and Barren colocalize with Polycomb and maintain Fab-7 PRE silencing. Mol. Cell7, 127–136 (2001). ArticleCASPubMed Google Scholar
Gullerova, M. & Proudfoot, N. J. Cohesin complex promotes transcriptional termination between convergent genes in S. pombe. Cell132, 983–995 (2008). This paper demonstrated that recruitment of cohesin to sites of convergent transcription during G1 requires overlapping antisense transcription and components of the RNAi pathway. During G2, cohesin complexes promote the use of upstream transcriptional termination sites at these loci. ArticleCASPubMed Google Scholar
Schmidt, C. K., Brookes, N. & Uhlmann, F. Conserved features of cohesin binding along fission yeast chromosomes. Genome Biol.10, R52 (2009). ArticlePubMedCASPubMed Central Google Scholar
Misulovin, Z. et al. Association of cohesin and Nipped-B with transcriptionally active regions of the Drosophila melanogaster genome. Chromosoma117, 89–102 (2008). ArticleCASPubMed Google Scholar
DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell64, 849–859 (1991). ArticleCASPubMed Google Scholar
Murrell, A., Heeson, S. & Reik, W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nature Genet.36, 889–893 (2004). ArticleCASPubMed Google Scholar
Rollins, R. A., Morcillo, P. & Dorsett, D. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics152, 577–593 (1999). CASPubMedPubMed Central Google Scholar
Pauli, A. et al. Cell-type-specific TEV protease cleavage reveals cohesin functions in Drosophila neurons. Dev. Cell14, 239–251 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schuldiner, O. et al. _piggyBac_-based mosaic screen identifies a postmitotic function for cohesin in regulating developmental axon pruning. Dev. Cell14, 227–238 (2008). References 54 and 55 utilized novel approaches to disrupt cohesin specifically in non-cycling neuronal cells inD. melanogaster. The resulting developmental phenotypes support non-mitotic roles for the complex. ArticleCASPubMedPubMed Central Google Scholar
Gosling, K. M., Goodnow, C. C., Verma, N. K. & Fahrer, A. M. Defective T-cell function leading to reduced antibody production in a _kleisin_-β mutant mouse. Immunology125, 208–217 (2008). ArticleCASPubMedPubMed Central Google Scholar
Gosling, K. M. et al. A mutation in a chromosome condensin II subunit, kleisin β, specifically disrupts T cell development. Proc. Natl Acad. Sci. USA104, 12445–12450 (2007). ArticleCASPubMedPubMed Central Google Scholar
Guacci, V., Koshland, D. & Strunnikov, A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell91, 47–57 (1997). ArticleCASPubMedPubMed Central Google Scholar
Losada, A., Hirano, M. & Hirano, T. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev.12, 1986–1997 (1998). ArticleCASPubMedPubMed Central Google Scholar
Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell91, 35–45 (1997). ArticleCASPubMed Google Scholar
Klein, F. et al. A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis. Cell98, 91–103 (1999). ArticleCASPubMed Google Scholar
Toth, A. et al. Functional genomics identifies monopolin: a kinetochore protein required for segregation of homologs during meiosis I. Cell103, 1155–1168 (2000). ArticleCASPubMed Google Scholar
Watanabe, Y. & Nurse, P. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature400, 461–464 (1999). ArticleCASPubMed Google Scholar
Brar, G. A., Hochwagen, A., Ee, L. S. & Amon, A. The multiple roles of cohesin in meiotic chromosome morphogenesis and pairing. Mol. Biol. Cell20, 1030–1047 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hochwagen, A., Tham, W. H., Brar, G. A. & Amon, A. The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell122, 861–873 (2005). ArticleCASPubMed Google Scholar
Bannister, L. A., Reinholdt, L. G., Munroe, R. J. & Schimenti, J. C. Positional cloning and characterization of mouse mei8, a disrupted allelle of the meiotic cohesin Rec8. Genesis40, 184–194 (2004). ArticleCASPubMed Google Scholar
Martinez-Perez, E. et al. Crossovers trigger a remodeling of meiotic chromosome axis composition that is linked to two-step loss of sister chromatid cohesion. Genes Dev.22, 2886–2901 (2008). ArticleCASPubMedPubMed Central Google Scholar
Bhatt, A. M. et al. The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J.19, 463–472 (1999). ArticleCASPubMed Google Scholar
Colaiacovo, M. P. et al. Synaptonemal complex assembly in C. elegans is dispensable for loading strand-exchange proteins but critical for proper completion of recombination. Dev. Cell5, 463–474 (2003). ArticleCASPubMed Google Scholar
Kleckner, N. Chiasma formation: chromatin/axis interplay and the role(s) of the synaptonemal complex. Chromosoma115, 175–194 (2006). ArticlePubMed Google Scholar
Severson, A. F., Ling, L., van Zuylen, V. & Meyer, B. J. The axial element protein HTP-3 promotes cohesin loading and meiotic axis assembly in C. elegans to implement the meiotic program of chromosome segregation. Genes Dev.23, 1763–1778 (2009). This paper showed that multiple cohesin complexes that differ in a single subunit perform specialized functions duringC. elegansmeiosis. Published data suggest that the involvement of multiple cohesins during meiosis may be conserved in many plants and animals. ArticleCASPubMedPubMed Central Google Scholar
Pasierbek, P. et al. A Caenorhabditis elegans cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes Dev.15, 1349–1360 (2001). ArticleCASPubMedPubMed Central Google Scholar
Goodyer, W. et al. HTP-3 links DSB formation with homolog pairing and crossing over during C. elegans meiosis. Dev. Cell14, 263–274 (2008). ArticleCASPubMed Google Scholar
Pasierbek, P. et al. The Caenorhabditis elegans SCC-3 homologue is required for meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Exp. Cell Res.289, 245–255 (2003). ArticleCASPubMed Google Scholar
Golubovskaya, I. N. et al. Alleles of afd1 dissect REC8 functions during meiotic prophase I. J. Cell Sci.119, 3306–3315 (2006). ArticleCASPubMed Google Scholar
Xu, H., Beasley, M. D., Warren, W. D., van der Horst, G. T. & McKay, M. J. Absence of mouse REC8 cohesin promotes synapsis of sister chromatids in meiosis. Dev. Cell8, 949–961 (2005). ArticleCASPubMed Google Scholar
Hagstrom, K. A., Holmes, V. F., Cozzarelli, N. R. & Meyer, B. J. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev.16, 729–742 (2002). ArticleCASPubMedPubMed Central Google Scholar
Chan, R. C., Severson, A. F. & Meyer, B. J. Condensin restructures chromosomes in preparation for meiotic divisions. J. Cell Biol.167, 613–625 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hartl, T. A., Sweeney, S. J., Knepler, P. J. & Bosco, G. Condensin II resolves chromosomal associations to enable anaphase I segregation in Drosophila male meiosis. PLoS Genet.4, e1000228 (2008). ArticlePubMedCASPubMed Central Google Scholar
Siddiqui, N. U., Stronghill, P. E., Dengler, R. E., Hasenkampf, C. A. & Riggs, C. D. Mutations in Arabidopsis condensin genes disrupt embryogenesis, meristem organization and segregation of homologous chromosomes during meiosis. Development130, 3283–3295 (2003). ArticleCASPubMed Google Scholar
Yu, H. G. & Koshland, D. E. Meiotic condensin is required for proper chromosome compaction, SC assembly, and resolution of recombination-dependent chromosome linkages. J. Cell Biol.163, 937–947 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yu, H. G. & Koshland, D. Chromosome morphogenesis: condensin-dependent cohesin removal during meiosis. Cell123, 397–407 (2005). ArticleCASPubMed Google Scholar
Mets, D. G. & Meyer, B. J. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell139, 73–86 (2009). This paper showed that condensin complexes regulate the number and distribution of DNA DSBs, and thereby COs, duringC. elegansmeiosis. Mutations that disrupt subunits of condensin I and II affect CO number and distribution in different ways, indicating that the two condensin complexes together influence the recombination landscape. ArticleCASPubMedPubMed Central Google Scholar
Tsai, C. J. et al. Meiotic crossover number and distribution are regulated by a dosage compensation protein that resembles a condensin subunit. Genes Dev.22, 194–211 (2008). ArticleCASPubMedPubMed Central Google Scholar
Revenkova, E. et al. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nature Cell Biol.6, 555–562 (2004). ArticleCASPubMed Google Scholar
Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell103, 375–386 (2000). ArticleCASPubMed Google Scholar
Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science293, 1320–1323 (2001). ArticleCASPubMed Google Scholar
Bernard, P. et al. A screen for cohesion mutants uncovers Ssl3, the fission yeast counterpart of the cohesin loading factor Scc4. Curr. Biol.16, 875–881 (2006). ArticleCASPubMed Google Scholar
Ciosk, R. et al. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell5, 243–254 (2000). ArticleCASPubMed Google Scholar
Seitan, V. C. et al. Metazoan Scc4 homologs link sister chromatid cohesion to cell and axon migration guidance. PLoS Biol.4, e242 (2006). ArticlePubMedCASPubMed Central Google Scholar
Watrin, E. et al. Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr. Biol.16, 863–874 (2006). ArticleCASPubMed Google Scholar
Toth, A. et al. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev.13, 320–333 (1999). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, T. S., Basu, A., Bermudez, V., Hurwitz, J. & Walter, J. C. Cdc7–Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev.22, 1894–1905 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ocampo-Hafalla, M. T., Katou, Y., Shirahige, K. & Uhlmann, F. Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma116, 531–544 (2007). ArticlePubMedPubMed Central Google Scholar
Gause, M. et al. Functional links between Drosophila Nipped-B and cohesin in somatic and meiotic cells. Chromosoma117, 51–66 (2008). ArticleCASPubMed Google Scholar
Kogut, I., Wang, J., Guacci, V., Mistry, R. K. & Megee, P. C. The Scc2/Scc4 cohesin loader determines the distribution of cohesin on budding yeast chromosomes. Genes Dev.23, 2345–2357 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kobayashi, T. & Ganley, A. R. Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science309, 1581–1584 (2005). ArticleCASPubMed Google Scholar
Revenkova, E. & Jessberger, R. Shaping meiotic prophase chromosomes: cohesins and synaptonemal complex proteins. Chromosoma115, 235–240 (2006). ArticleCASPubMed Google Scholar
Ono, T. et al. Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell115, 109–121 (2003). ArticleCASPubMed Google Scholar
Heidinger-Pauli, J. M., Unal, E., Guacci, V. & Koshland, D. The kleisin subunit of cohesin dictates damage-induced cohesion. Mol. Cell31, 47–56 (2008). This paper shows that, of many amino acid changes between Scc1 and Rec8, one is largely responsible for the different abilities of Scc1 cohesin and Rec8 cohesin to establish cohesion in response to DNA damage in G2/M phase. ArticleCASPubMed Google Scholar
Onn, I., Aono, N., Hirano, M. & Hirano, T. Reconstitution and subunit geometry of human condensin complexes. EMBO J.26, 1024–1034 (2007). ArticleCASPubMedPubMed Central Google Scholar
Gaszner, M. & Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nature Rev. Genet.7, 703–713 (2006). ArticleCASPubMed Google Scholar
Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet.33, 603–754 (1999). ArticleCASPubMed Google Scholar
Sakuno, T. & Watanabe, Y. Studies of meiosis disclose distinct roles of cohesion in the core centromere and pericentromeric regions. Chromosome Res.17, 239–249 (2009). ArticleCASPubMed Google Scholar
Lengronne, A. et al. Establishment of sister chromatid cohesion at the S. cerevisiae replication fork. Mol. Cell23, 787–799 (2006). ArticleCASPubMed Google Scholar
Ben-Shahar, T. R. et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science321, 563–566 (2008). ArticleCAS Google Scholar
Rowland, B. D. et al. Building sister chromatid cohesion: Smc3 acetylation counteracts an antiestablishment activity. Mol. Cell33, 763–774 (2009). ArticleCASPubMed Google Scholar
Unal, E. et al. A molecular determinant for the establishment of sister chromatid cohesion. Science321, 566–569 (2008). ArticlePubMedCAS Google Scholar
Zhang, J. et al. Acetylation of Smc3 by Eco1 is required for S phase sister chromatid cohesion in both human and yeast. Mol. Cell31, 143–151 (2008). ArticleCASPubMed Google Scholar
Strom, L. et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science317, 242–245 (2007). ArticlePubMedCAS Google Scholar
Unal, E., Heidinger-Pauli, J. M. & Koshland, D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science317, 245–248 (2007). ArticlePubMedCAS Google Scholar
Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M. A. & Nasmyth, K. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell105, 459–472 (2001). ArticleCASPubMed Google Scholar
Giet, R. & Glover, D. M. Drosophila Aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J. Cell Biol.152, 669–682 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lipp, J. J., Hirota, T., Poser, I. & Peters, J. M. Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J. Cell Sci.120, 1245–1255 (2007). ArticleCASPubMed Google Scholar
Takemoto, A. et al. Analysis of the role of Aurora B on the chromosomal targeting of condensin I. Nucleic Acids Res.35, 2403–2412 (2007). ArticleCASPubMedPubMed Central Google Scholar
Takemoto, A., Kimura, K., Yanagisawa, J., Yokoyama, S. & Hanaoka, F. Negative regulation of condensin I by CK2-mediated phosphorylation. EMBO J.25, 5339–5348 (2006). ArticleCASPubMedPubMed Central Google Scholar
St-Pierre, J. et al. Polo kinase regulates mitotic chromosome condensation by hyperactivation of condensin DNA supercoiling activity. Mol. Cell34, 416–426 (2009). ArticleCASPubMed Google Scholar
Miller, L. M., Plenefisch, J. D., Casson, L. P. & Meyer, B. J. xol-1: a gene that controls the male modes of both sex determination and X chromosome dosage compensation in C. elegans. Cell55, 167–183 (1988). ArticleCASPubMed Google Scholar
Rhind, N. R., Miller, L. M., Kopczynski, J. B. & Meyer, B. J. xol-1 acts as an early switch in the C. elegans male/hermaphrodite decision. Cell80, 71–82 (1995). ArticleCASPubMed Google Scholar
Dawes, H. E. et al. Dosage compensation proteins targeted to X chromosomes by a determinant of hermaphrodite fate. Science284, 1800–1804 (1999). ArticleCASPubMed Google Scholar
Chu, D. S. et al. A molecular link between gene-specific and chromosome-wide transcriptional repression. Genes Dev.16, 796–805 (2002). ArticleCASPubMedPubMed Central Google Scholar