Campbell, P. J. et al. Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proc. Natl Acad. Sci. USA105, 13081–13086 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pleasance, E. D. et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature463, 191–196 (2010). ArticleCASPubMed Google Scholar
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.366, 883–892 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell148, 873–885 (2012). ArticleCASPubMed Google Scholar
Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell148, 886–895 (2012). References 13 and 14 provide proof of principle that next-generation sequencing technologies can be combined with single-cell approaches can be used to investigate intra-tumoural heterogeneity. ArticleCASPubMedPubMed Central Google Scholar
Anderson, K. et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature469, 356–361 (2011). ArticleCASPubMed Google Scholar
Wang, J. et al. Quantifying EGFR alterations in the lung cancer genome with nanofluidic digital PCR arrays. Clin. Chem.56, 623–632 (2010). ArticleCASPubMed Google Scholar
Anderson, A. R., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell127, 905–915 (2006). This is a comprehensive review of the literature from the field of mathematical modelling in cancer evolution. ArticleCASPubMed Google Scholar
Michor, F., Iwasa, Y. & Nowak, M. A. Dynamics of cancer progression. Nature Rev. Cancer4, 197–205 (2004). ArticleCAS Google Scholar
Attolini, C. S. & Michor, F. Evolutionary theory of cancer. Ann. NY Acad. Sci.1168, 23–51 (2009). ArticleCASPubMed Google Scholar
Greenman, C. D. et al. Estimation of rearrangement phylogeny for cancer genomes. Genome Res.22, 346–361 (2012). In this article, a mathematical framework is presented for reconstructing temporal sequences of rearrangements and hence evolutionary selection. ArticleCASPubMedPubMed Central Google Scholar
Futreal, P. A. et al. A census of human cancer genes. Nature Rev. Cancer4, 177–183 (2004). ArticleCAS Google Scholar
Blanquet, V. et al. Spectrum of germline mutations in the RB1 gene: a study of 232 patients with hereditary and non hereditary retinoblastoma. Hum. Mol. Genet.4, 383–388 (1995). ArticleCASPubMed Google Scholar
Persson, M. et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl Acad. Sci. USA106, 18740–18744 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ellis, M. J. et al. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature486, 353–360 (2012). This was one of the first studies to correlate somatic mutation changes identified through next-generation sequencing, with treatment responses. Somatic mutations are also mapped to distinct pathways of relevance to tumour cell biology. ArticleCASPubMedPubMed Central Google Scholar
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature486, 346–352 (2012). This study is an integrated analysis of copy number and gene expression data with long-term clinical follow-up providing a novel molecular stratification of the breast cancer population. ArticleCASPubMedPubMed Central Google Scholar
Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature486, 395–399 (2012). ArticleCASPubMed Google Scholar
Perreard, L. et al. Classification and risk stratification of invasive breast carcinomas using a real-time quantitative RT-PCR assay. Breast Cancer Res.8, R23 (2006). ArticleCASPubMedPubMed Central Google Scholar
Parsons, D. W. et al. The genetic landscape of the childhood cancer medulloblastoma. Science331, 435–439 (2011). ArticleCASPubMed Google Scholar
Ng, C. K. et al. The role of tandem duplicator phenotype in tumour evolution in high-grade serous ovarian cancer. J. Pathol.226, 703–712 (2012). ArticleCASPubMed Google Scholar
McBride, D. J. et al. Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes. J. Pathol.227, 446–455 (2012). ArticleCASPubMedPubMed Central Google Scholar
Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell144, 27–40 (2011). ArticleCASPubMedPubMed Central Google Scholar
Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell148, 59–71 (2012). ArticleCASPubMedPubMed Central Google Scholar
Molenaar, J. J. et al. Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature483, 589–593 (2012). ArticleCASPubMed Google Scholar
Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature396, 643–649 (1998). ArticleCASPubMed Google Scholar
Pleasance, E. D. et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature463, 184–190 (2010). ArticleCASPubMed Google Scholar
Gatenby, R. A. et al. Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br. J. Cancer97, 646–653 (2007). ArticleCASPubMedPubMed Central Google Scholar
Schwartz, J. L., Jordan, R., Sun, J., Ma, H. & Hsieb, A. W. Dose-dependent changes in the spectrum of mutations induced by ionizing radiation. Radiat. Res.153, 312–317 (2000). ArticleCASPubMed Google Scholar
DeMarini, D. M. Genotoxicity of tobacco smoke and tobacco smoke condensate: a review. Mutat. Res.567, 447–474 (2004). ArticleCASPubMed Google Scholar
Le Calvez, F. et al. TP53 and KRAS mutation load and types in lung cancers in relation to tobacco smoke: distinct patterns in never, former, and current smokers. Cancer Res.65, 5076–5083 (2005). ArticleCASPubMed Google Scholar
Arkenau, H. T., Kefford, R. & Long, G. V. Targeting BRAF for patients with melanoma. Br. J. Cancer104, 392–398 (2011). ArticleCASPubMed Google Scholar
Su, X. et al. Cascading adoptive cell therapy for metastatic melanoma. Cancer Biother. Radiopharm.26, 401–406 (2011). ArticleCASPubMed Google Scholar
Srinivasan, D. & Plattner, R. Activation of ABL tyrosine kinases promotes invasion of aggressive breast cancer cells. Cancer Res.66, 5648–5655 (2006). ArticleCASPubMed Google Scholar
Antonescu, C. R. Gastrointestinal stromal tumor (GIST) pathogenesis, familial GIST, and animal models. Semin. Diagn. Pathol.23, 63–69 (2006). ArticlePubMed Google Scholar
Kwon, J. G. et al. Changes in the structure and function of ICC networks in ICC hyperplasia and gastrointestinal stromal tumors. Gastroenterology136, 630–639 (2009). ArticlePubMed Google Scholar
Chi, P. et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature467, 849–853 (2010). ArticleCASPubMedPubMed Central Google Scholar
Greenblatt, M. S., Chappuis, P. O., Bond, J. P., Hamel, N. & Foulkes, W. D. TP53 mutations in breast cancer associated with BRCA1 or BRCA2 germ-line mutations: distinctive spectrum and structural distribution. Cancer Res.61, 4092–4097 (2001). CASPubMed Google Scholar
Mahoney, C. L. et al. LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with increased sensitivity to MAPK and mTOR signalling inhibition. Br. J. Cancer100, 370–375 (2009). ArticleCASPubMedPubMed Central Google Scholar
Jones, C. J. et al. Evidence for a telomere-independent “clock” limiting RAS oncogene-driven proliferation of human thyroid epithelial cells. Mol. Cell. Biol.20, 5690–5699 (2000). ArticleCASPubMedPubMed Central Google Scholar
Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell88, 593–602 (1997). ArticleCASPubMed Google Scholar
Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses CDKN2A (p19(ARF)) and is amplified in a subset of human breast cancers. Nature Genet.26, 291–299 (2000). ArticleCASPubMed Google Scholar
Vance, K. W., Carreira, S., Brosch, G. & Goding, C. R. Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. Cancer Res.65, 2260–2268 (2005). ArticleCASPubMed Google Scholar
Notta, F. et al. Evolution of human BCR–ABL1 lymphoblastic leukaemia-initiating cells. Nature469, 362–367 (2011). ArticleCASPubMed Google Scholar
Bridgham, J. T., Ortlund, E. A. & Thornton, J. W. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution. Nature461, 515–519 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bissonnette, R. P., Echeverri, F., Mahboubi, A. & Green, D. R. Apoptotic cell death induced by c-MYC is inhibited by BCL-2. Nature359, 552–554 (1992). ArticleCASPubMed Google Scholar
Fanidi, A., Harrington, E. A. & Evan, G. I. Cooperative interaction between c-MYC and BCL-2 proto-oncogenes. Nature359, 554–556 (1992). ArticleCASPubMed Google Scholar
Rehman, F. L., Lord, C. J. & Ashworth, A. Synthetic lethal approaches to breast cancer therapy. Nature Rev. Clin. Oncol.7, 718–724 (2010). ArticleCAS Google Scholar
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature434, 917–921 (2005). ArticleCASPubMed Google Scholar
Swisher, E. M. et al. Secondary BRCA1 mutations in _BRCA1_-mutated ovarian carcinomas with platinum resistance. Cancer Res.68, 2581–2586 (2008). ArticleCASPubMedPubMed Central Google Scholar
Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature406, 641–645 (2000). ArticleCASPubMed Google Scholar
Bignell, G. R. et al. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. Genome Res.17, 1296–1303 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rudolph, K. L., Millard, M., Bosenberg, M. W. & DePinho, R. A. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nature Genet.28, 155–159 (2001). ArticleCASPubMed Google Scholar
Magrangeas, F., Avet-Loiseau, H., Munshi, N. C. & Minvielle, S. Chromothripsis identifies a rare and aggressive entity among newly diagnosed multiple myeloma patients. Blood118, 675–678 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science314, 268–274 (2006). ArticleCASPubMed Google Scholar
Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell150, 264–278 (2012). This study presents mutational data from normal haematopoietic stem cells, which were found to show similar mutational burden and signatures to those seen in acute leukaemias. ArticleCASPubMedPubMed Central Google Scholar
Martin, S. A., Hewish, M., Lord, C. J. & Ashworth, A. Genomic instability and the selection of treatments for cancer. J. Pathol.220, 281–289 (2010). CASPubMed Google Scholar
Vilar, E. & Gruber, S. B. Microsatellite instability in colorectal cancer—the stable evidence. Nature Rev. Clin. Oncol.7, 153–162 (2010). ArticleCAS Google Scholar
Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Rev. Genet.13, 189–203 (2012). ArticleCASPubMed Google Scholar
Cheng, Y. W. et al. CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clin. Cancer Res.14, 6005–6013 (2008). ArticleCASPubMedPubMed Central Google Scholar
Noushmehr, H. et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell17, 510–522 (2010). ArticleCASPubMedPubMed Central Google Scholar
Loeb, L. A., Bielas, J. H. & Beckman, R. A. Cancers exhibit a mutator phenotype: clinical implications. Cancer Res.68, 3551–3557 (2008). ArticleCASPubMed Google Scholar
Bodmer, W., Bielas, J. H. & Beckman, R. A. Genetic instability is not a requirement for tumor development. Cancer Res.68, 3558–3560 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature412, 341–346 (2001). ArticleCASPubMed Google Scholar
Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nature Genet.43, 830–837 (2011). ArticleCASPubMed Google Scholar
Migliazza, A. et al. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc. Natl Acad. Sci. USA92, 12520–12524 (1995). ArticleCASPubMedPubMed Central Google Scholar
Gandhi, M., Dillon, L. W., Pramanik, S., Nikiforov, Y. E. & Wang, Y. H. DNA breaks at fragile sites generate oncogenic RET/PTC rearrangements in human thyroid cells. Oncogene29, 2272–2280 (2010). ArticleCASPubMedPubMed Central Google Scholar
Letessier, A. et al. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature470, 120–123 (2011). ArticleCASPubMed Google Scholar
Lang, G. I. & Murray, A. W. Mutation rates across budding yeast chromosome VI are correlated with replication timing. Genome Biol. Evol.3, 799–811 (2011). ArticlePubMedPubMed Central Google Scholar
Veeriah, S. et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies. Nature Genet.42, 77–82 (2010). ArticleCASPubMed Google Scholar
Poulogiannis, G. et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc. Natl Acad. Sci. USA107, 15145–15150 (2010). ArticleCASPubMedPubMed Central Google Scholar
Neves, H., Ramos, C., da Silva, M. G., Parreira, A. & Parreira, L. The nuclear topography of ABL, BCR, PML, and RARα genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood93, 1197–1207 (1999). CASPubMed Google Scholar
Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell139, 1069–1083 (2009). ArticleCASPubMedPubMed Central Google Scholar
Markowitz, S. et al. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science268, 1336–1338 (1995). ArticleCASPubMed Google Scholar
Dunson, D. B. Nonparametric Bayes Applications to Biostatistics (Cambridge Univ. Press, 2010). Book Google Scholar
Weisenberger, D. J. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nature Genet.38, 787–793 (2006). ArticleCASPubMed Google Scholar
Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature463, 360–363 (2010). ArticleCASPubMedPubMed Central Google Scholar
Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genet.42, 181–185 (2010). ArticleCASPubMed Google Scholar
Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nature Genet.42, 722–726 (2010). ArticleCASPubMed Google Scholar
Figueroa, M. E. et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell17, 13–27 (2010). ArticleCASPubMedPubMed Central Google Scholar