Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression (original) (raw)
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods5, 621–628 (2008). ArticleCASPubMed Google Scholar
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol.28, 511–515 (2010). ArticleCASPubMedPubMed Central Google Scholar
Guttman, M. et al. Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol.28, 503–510 (2010). ArticleCASPubMedPubMed Central Google Scholar
Cabili, M. N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev.25, 1915–1927 (2011). ArticleCASPubMedPubMed Central Google Scholar
Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res.22, 1775–1789 (2012). ArticleCASPubMedPubMed Central Google Scholar
Guttman, M., Russell, P., Ingolia, N. T., Weissman, J. S. & Lander, E. S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell154, 240–251 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chew, G.-L. et al. Ribosome profiling reveals resemblance between long non-coding RNAs and 5' leaders of coding RNAs. Development140, 2828–2834 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ayupe, A. C. et al. Global analysis of biogenesis, stability and sub-cellular localization of lncRNAs mapping to intragenic regions of the human genome. RNA Biol.12, 877–892 (2015). ArticlePubMedPubMed Central Google Scholar
Washietl, S., Kellis, M. & Garber, M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res.24, 616–628 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hezroni, H. et al. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep.11, 1110–1122 (2015). ArticleCASPubMedPubMed Central Google Scholar
Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature505, 635–640 (2014). ArticleCASPubMed Google Scholar
Latos, P. A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science338, 1469–1472 (2012). ArticleCASPubMed Google Scholar
Ebisuya, M., Yamamoto, T., Nakajima, M. & Nishida, E. Ripples from neighbouring transcription. Nat. Cell Biol.10, 1106–1113 (2008). ArticleCASPubMed Google Scholar
Engreitz, J. M. et al. Local regulation of gene expression by lncRNA promoters, transcription, and splicing. Naturehttp://dx.doi.org/10.1038/nature20149 (2016).
Martens, J. A., Laprade, L. & Winston, F. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature429, 571–574 (2004). ArticleCASPubMed Google Scholar
Melé, M. & Rinn, J. L. 'Cat's cradling' the 3D genome by the act of LncRNA transcription. Mol. Cell62, 657–664 (2016). ArticleCASPubMed Google Scholar
Rinn, J. L. & Chang, H. Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem.81, 145–166 (2012). ArticleCASPubMed Google Scholar
Galupa, R. & Heard, E. X-Chromosome inactivation: new insights into cis and trans regulation. Curr. Opin. Genet. Dev.31, 57–66 (2015). ArticleCASPubMed Google Scholar
Wutz, A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat. Rev. Genet.12, 542–553 (2011). ArticleCASPubMed Google Scholar
Brown, C. J. et al. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature349, 38–44 (1991). ArticleCASPubMed Google Scholar
Brockdorff, N. et al. Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome. Nature351, 329–331 (1991). References 25 and 26 report the identification of the Xist RNA as a gene that is expressed exclusively from the Xi in both humans and mice. ArticleCASPubMed Google Scholar
Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell71, 515–526 (1992). ArticleCASPubMed Google Scholar
Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell71, 527–542 (1992). ArticleCASPubMed Google Scholar
Clemson, C. M., McNeil, J. A., Willard, H. F. & Lawrence, J. B. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol.132, 259–275 (1996). This reports that the Xist RNA coats the entire territory of the Xi in the nucleus. ArticleCASPubMed Google Scholar
Penny, G. D., Kay, G. F., Sheardown, S. A., Rastan, S. & Brockdorff, N. Requirement for Xist in X chromosome inactivation. Nature379, 131–137 (1996). This paper demonstrates a key role for the Xist RNA in XIC. ArticleCASPubMed Google Scholar
Marahrens, Y., Panning, B., Dausman, J., Strauss, W. & Jaenisch, R. Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev.11, 156–166 (1997). ArticleCASPubMed Google Scholar
Wutz, A., Rasmussen, T. P. & Jaenisch, R. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet.30, 167–174 (2002). This study identifies the A-repeat of Xist as essential for transcriptional silencing on the X chromosome and shows that different domains of the Xist RNA have separate functions. ArticleCASPubMed Google Scholar
Beletskii, A., Hong, Y. K., Pehrson, J., Egholm, M. & Strauss, W. M. PNA interference mapping demonstrates functional domains in the noncoding RNA Xist. Proc. Natl Acad. Sci. USA98, 9215–9220 (2001). ArticleCASPubMed Google Scholar
Lee, J. T. & Jaenisch, R. Long-range cis effects of ectopic X-inactivation centres on a mouse autosome. Nature386, 275–279 (1997). ArticleCASPubMed Google Scholar
Lee, J. T., Strauss, W. M., Dausman, J. A. & Jaenisch, R. A. 450 kb transgene displays properties of the mammalian X-inactivation center. Cell86, 83–94 (1996). ArticleCASPubMed Google Scholar
Cheng, J. et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science308, 1149–1154 (2005). ArticleCASPubMed Google Scholar
Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science316, 1484–1488 (2007). ArticleCASPubMed Google Scholar
Mondal, T., Rasmussen, M., Pandey, G. K., Isaksson, A. & Kanduri, C. Characterization of the RNA content of chromatin. Genome Res.20, 899–907 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sun, L. et al. Long noncoding RNAs regulate adipogenesis. Proc. Natl Acad. Sci. USA110, 3387–3392 (2013). ArticleCASPubMed Google Scholar
Alvarez-Dominguez, J. R. et al. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood123, 570–581 (2014). ArticleCASPubMedPubMed Central Google Scholar
Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet.42, 1113–1117 (2010). ArticleCASPubMedPubMed Central Google Scholar
Leontis, N. B., Lescoute, A. & Westhof, E. The building blocks and motifs of RNA architecture. Curr. Opin. Struct. Biol.16, 279–287 (2006). ArticleCASPubMedPubMed Central Google Scholar
Keohane, A. M., Lavender, J. S., O'Neill, L. P. & Turner, B. M. Histone acetylation and X inactivation. Dev. Genet.22, 65–73 (1998). ArticleCASPubMed Google Scholar
Wakefield, M. J., Keohane, A. M., Turner, B. M. & Graves, J. A. Histone underacetylation is an ancient component of mammalian X chromosome inactivation. Proc. Natl Acad. Sci. USA94, 9665–9668 (1997). ArticleCASPubMed Google Scholar
Keohane, A. M. et al. X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol.180, 618–630 (1996). ArticleCASPubMed Google Scholar
Csankovszki, G., Nagy, A. & Jaenisch, R. Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation. J. Cell Biol.153, 773–784 (2001). ArticleCASPubMedPubMed Central Google Scholar
Boggs, B. A. et al. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat. Genet.30, 73–76 (2002). ArticleCASPubMed Google Scholar
Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science300, 131–135 (2003). ArticleCASPubMed Google Scholar
Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell4, 481–495 (2003). ArticleCASPubMed Google Scholar
Smeets, D. et al. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin7, 8 (2014). ArticlePubMedPubMed Central Google Scholar
Naughton, C., Sproul, D., Hamilton, C. & Gilbert, N. Analysis of active and inactive X chromosome architecture reveals the independent organization of 30 nm and large-scale chromatin structures. Mol. Cell40, 397–409 (2010). ArticleCASPubMedPubMed Central Google Scholar
da Rocha, S. T. et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell53, 301–316 (2014). ArticleCASPubMed Google Scholar
Minajigi, A. et al. Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science349, 6245 (2015). References 56–58 report the development of new biochemical methods to define the proteins that interact with the Xist lncRNA and the identification of key proteins involved in Xist-mediated silencing. ArticleCAS Google Scholar
Monfort, A., Minin, G. Di, Postlmayr, A., Arieti, F. & Wutz, A. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep.12, 554–561 (2015). ArticleCASPubMedPubMed Central Google Scholar
Moindrot, B. et al. A pooled shRNA screen identifies Rbm15, Spen, and Wtap as factors required for Xist RNA-mediated silencing. Cell Rep.12, 562–572 (2015). ArticleCASPubMedPubMed Central Google Scholar
Shi, Y. et al. Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes Dev.15, 1140–1151 (2001). ArticleCASPubMedPubMed Central Google Scholar
Guenther, M. G., Barak, O. & Lazar, M. A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol. Cell. Biol.21, 6091–6101 (2001). ArticleCASPubMedPubMed Central Google Scholar
Guenther, M. G. et al. A core SMRT corepressor complex containing HDAC3 and TBL1, a WD40- repeat protein linked to deafness. Genes Dev.14, 1048–1057 (2000). CASPubMedPubMed Central Google Scholar
You, S. H. et al. Nuclear receptor co-repressors are required for the histone-deacetylase activity of HDAC3 in vivo. Nat. Struct. Mol. Biol.20, 182–187 (2013). ArticleCASPubMedPubMed Central Google Scholar
Plath, K., Mlynarczyk-Evans, S., Nusinow, D. A. & Panning, B. Xist RNA and the mechanism of X chromosome inactivation. Annu. Rev. Genet.36, 233–278 (2002). ArticleCASPubMed Google Scholar
Schoeftner, S. et al. Recruitment of PRC1 function at the initiation of X inactivation independent of PRC2 and silencing. EMBO J.25, 3110–3122 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kalantry, S. & Magnuson, T. The Polycomb group protein EED is dispensable for the initiation of random X-chromosome inactivation. PLoS Genet.2, e66 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kalantry, S. et al. The Polycomb group protein Eed protects the inactive X-chromosome from differentiation-induced reactivation. Nat. Cell Biol.8, 195–202 (2006). ArticleCASPubMedPubMed Central Google Scholar
Zhao, J., Sun, B. K., Erwin, J. A., Song, J. J. & Lee, J. T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science322, 750–756 (2008). ArticleCASPubMedPubMed Central Google Scholar
da Rocha, S. T. et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol. Cell53, 301–316 (2014). ArticleCASPubMed Google Scholar
Kaneko, S., Son, J., Shen, S. S., Reinberg, D. & Bonasio, R. PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat. Struct. Mol. Biol.20, 1258–1264 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kanhere, A. et al. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell38, 675–688 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yap, K. L. et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell38, 662–674 (2010). ArticleCASPubMedPubMed Central Google Scholar
Nagano, T. et al. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science322, 1717–1720 (2008). ArticleCASPubMed Google Scholar
Mayer, C., Neubert, M. & Grummt, I. The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep.9, 774–780 (2008). ArticleCASPubMedPubMed Central Google Scholar
Tsai, M. C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science329, 689–693 (2010). This study demonstrates that the HOTAIR lncRNA acts as a scaffold that brings together distinct regulatory complexes. ArticleCASPubMedPubMed Central Google Scholar
Yang, Y. W. et al. Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife3, e02046 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wang, K. C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature472, 120–124 (2011). This paper identifies the lncRNA HOTTIP and shows that it activates genes in close proximity to its locus. ArticleCASPubMedPubMed Central Google Scholar
Prensner, J. R. et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet.45, 1392–1398 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ng, S. Y., Bogu, G. K., Soh, B. S. & Stanton, L. W. The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol. Cell51, 349–359 (2013). ArticleCASPubMed Google Scholar
Lanz, R. B. et al. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell97, 17–27 (1999). ArticleCASPubMed Google Scholar
Davidovich, C. et al. Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. Mol. Cell57, 552–558 (2015). This reference and reference 73 show that PRC2 associates promiscuously with RNA in cells. ArticleCASPubMedPubMed Central Google Scholar
Rinn, J. L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell129, 1311–1323 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature494, 497–501 (2013). ArticleCASPubMedPubMed Central Google Scholar
Maison, C. et al. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet.30, 329–334 (2002). ArticlePubMed Google Scholar
Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal.3, ra8 (2010). PubMedPubMed Central Google Scholar
Pandey, R. R. et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell32, 232–246 (2008). ArticleCASPubMed Google Scholar
Hacisuleyman, E. et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol.21, 198–206 (2014). This study describes the Firre lncRNA, which localizes to sites on multiple chromosomes in a single nuclear compartment. ArticleCASPubMedPubMed Central Google Scholar
Hacisuleyman, E., Shukla, C. J., Weiner, C. L. & Rinn, J. L. Function and evolution of local repeats in the Firre locus. Nat. Commun.7, 11021 (2016). ArticleCASPubMedPubMed Central Google Scholar
Hasegawa, Y. et al. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell19, 469–476 (2010). This paper defines SAFA as a crucial RBP that is required for tethering Xist to DNA. ArticleCASPubMed Google Scholar
Hall, L. L. et al. Stable C0T-1 repeat RNA is abundant and is associated with euchromatic interphase chromosomes. Cell156, 907–919 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zappulla, D. C. & Cech, T. R. Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc. Natl Acad. Sci. USA101, 10024–10029 (2004). This paper demonstrates that the yeast TERC acts as a flexible scaffold of protein complexes. ArticleCASPubMed Google Scholar
Helbig, R. & Fackelmayer, F. O. Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma112, 173–182 (2003). ArticleCASPubMed Google Scholar
Soruco, M. M. L. et al. The CLAMP protein links the MSL complex to the X chromosome during Drosophila dosage compensation. Genes Dev.27, 1551–1556 (2013). ArticleCASPubMedPubMed Central Google Scholar
Meller, V. H. et al. Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr. Biol.10, 136–143 (2000). ArticleCASPubMed Google Scholar
Quinn, J. J. et al. Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat. Biotechnol.32, 933–940 (2014). ArticleCASPubMedPubMed Central Google Scholar
Simon, M. D. et al. The genomic binding sites of a noncoding RNA. Proc. Natl Acad. Sci. USA108, 20497–20502 (2011). ArticleCASPubMed Google Scholar
Quinn, J. J. & Chang, H. Y. In situ dissection of RNA functional subunits by domain-specific chromatin isolation by RNA purification (dChIRP). Methods Mol. Biol.1262, 199–213 (2015). ArticleCASPubMed Google Scholar
Engreitz, J. M. et al. RNA–RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell159, 188–199 (2014). ArticleCASPubMedPubMed Central Google Scholar
Engreitz, J. M. et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science341, 1237973 (2013). This study maps the genomic localization of the Xist lncRNA at high resolution upon initiation of XIC and shows that it spreads by using the 3D structure of the X chromosome. ArticleCASPubMedPubMed Central Google Scholar
Simon, M. D. et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature504, 465–469 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet.2, 292–301 (2001). ArticleCASPubMed Google Scholar
Maamar, H., Cabili, M. N., Rinn, J. & Raj, A. linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes Dev.27, 1260–1271 (2013). ArticleCASPubMedPubMed Central Google Scholar
Mohammad, F. et al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol. Cell. Biol.28, 3713–3728 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shechner, D. M., Hacisuleyman, E., Younger, S. T. & Rinn, J. L. Multiplexable, locus-specific targeting of long RNAs with CRISPR-display. Nat. Methods12, 664–670 (2015). ArticleCASPubMedPubMed Central Google Scholar
Ramírez, F. et al. High-affinity sites form an interaction network to facilitate spreading of the MSL complex across the X chromosome in Drosophila. Mol. Cell60, 146–162 (2015). ArticleCASPubMedPubMed Central Google Scholar
Sunwoo, H., Wu, J. Y. & Lee, J. T. The Xist RNA-PRC2 complex at 20-nm resolution reveals a low Xist stoichiometry and suggests a hit-and-run mechanism in mouse cells. Proc. Natl Acad. Sci. USA112, E4216–E4225 (2015). ArticleCASPubMed Google Scholar
Dodd, D. W., Gagnon, K. T. & Corey, D. R. Digital quantitation of potential therapeutic target RNAs. Nucleic Acid. Ther.23, 188–194 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tani, H., Nakamura, Y., Ijiri, K. & Akimitsu, N. Stability of MALAT-1, a nuclear long non-coding RNA in mammalian cells, varies in various cancer cells. Drug Discov. Ther.4, 235–239 (2010). CASPubMed Google Scholar
Brawerman, G. & Diez, J. Metabolism of the polyadenylate sequence of nuclear RNA and messenger RNA in mammalian cells. Cell5, 271–280 (1975). ArticleCASPubMed Google Scholar
Huang, S., Deerinck, T. J., Ellisman, M. H. & Spector, D. L. In vivo analysis of the stability and transport of nuclear poly(A)+ RNA. J. Cell Biol.126, 877–899 (1994). ArticleCASPubMed Google Scholar
He, D. C., Nickerson, J. A. & Penman, S. Core filaments of the nuclear matrix. J. Cell Biol.110, 569–580 (1990). ArticleCASPubMed Google Scholar
Nickerson, J. A., Krochmalnic, G., Wan, K. M. & Penman, S. Chromatin architecture and nuclear RNA. Proc. Natl Acad. Sci. USA86, 177–181 (1989). ArticleCASPubMed Google Scholar
Splinter, E. et al. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev.25, 1371–1383 (2011). This paper identifies large-scale structural changes on the Xi that depend on the Xist RNA but are independent of its silencing function. ArticleCASPubMedPubMed Central Google Scholar
Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell159, 1665–1680 (2014). This study maps the 3D architecture of the genome at 1 kb resolution and identifies unique architectural features of the Xi, including superloops. ArticleCASPubMedPubMed Central Google Scholar
Darrow, E. M. et al. Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc. Natl Acad. Sci. USA113, E4504–E4512 (2016). ArticleCASPubMed Google Scholar
Rego, A., Sinclair, P. B., Tao, W., Kireev, I. & Belmont, A. S. The facultative heterochromatin of the inactive X chromosome has a distinctive condensed ultrastructure. J. Cell Sci.121, 1119–1127 (2008). ArticleCASPubMed Google Scholar
Shevelyov, Y. Y. & Nurminsky, D. I. The nuclear lamina as a gene-silencing hub. Curr. Issues Mol. Biol.14, 27–38 (2012). CASPubMed Google Scholar
Amendola, M. & van Steensel, B. Mechanisms and dynamics of nuclear lamina–genome interactions. Curr. Opin. Cell Biol.28, 61–68 (2014). ArticleCASPubMed Google Scholar
Worman, H. J., Yuan, J., Blobel, G. & Georgatos, S. D. A lamin B receptor in the nuclear envelope. Proc. Natl Acad. Sci. USA85, 8531–8534 (1988). ArticleCASPubMed Google Scholar
Gruenbaum, Y., Margalit, A., Goldman, R. D., Shumaker, D. K. & Wilson, K. L. The nuclear lamina comes of age. Nat. Rev. Mol. Cell. Biol.6, 21–31 (2005). ArticleCASPubMed Google Scholar
Burke, B. & Stewart, C. L. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell. Biol.14, 13–24 (2013). ArticleCASPubMed Google Scholar
Chen, C. K. et al. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Sciencehttp://dx.doi.org/10.1126/science.aae0047 (2016).
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature485, 376–380 (2012). ArticleCASPubMedPubMed Central Google Scholar
Figueroa, D. M., Darrow, E. M. & Chadwick, B. P. Two novel DXZ4-associated long noncoding RNAs show developmental changes in expression coincident with heterochromatin formation at the human (Homo sapiens) macrosatellite repeat. Chromosome Res.23, 733–752 (2015). ArticleCASPubMedPubMed Central Google Scholar
Gonzalez, I., Mateos-Langerak, J., Thomas, A., Cheutin, T. & Cavalli, G. Identification of regulators of the three-dimensional polycomb organization by a microscopy-based genome-wide RNAi screen. Mol. Cell54, 485–499 (2014). ArticleCASPubMed Google Scholar
Cheutin, T. & Cavalli, G. Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr. Opin. Genet. Dev.25C, 30–37 (2014). ArticleCAS Google Scholar
Denholtz, M. et al. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization. Cell Stem Cell13, 602–616 (2013). ArticleCASPubMed Google Scholar
Schoenfelder, S. et al. Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nat. Genet.47, 1179–1186 (2015). ArticleCASPubMedPubMed Central Google Scholar
Nozawa, R. S. et al. Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat. Struct. Mol. Biol.20, 566–573 (2013). ArticleCASPubMed Google Scholar
Jacob, M. D., Audas, T. E., Uniacke, J., Trinkle-Mulcahy, L. & Lee, S. Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol. Biol. Cell24, 2943–2953 (2013). ArticleCASPubMedPubMed Central Google Scholar
Prasanth, K. V. et al. Regulating gene expression through RNA nuclear retention. Cell123, 249–263 (2005). ArticleCASPubMed Google Scholar
Clemson, C. M. et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol. Cell33, 717–726 (2009). ArticleCASPubMedPubMed Central Google Scholar
Sunwoo, H. et al. MEN ɛ/β nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res.19, 347–359 (2009). ArticleCASPubMedPubMed Central Google Scholar
Imamura, K. et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol. Cell53, 393–406 (2014). ArticleCASPubMed Google Scholar
Chen, L. L. & Carmichael, G. G. Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol. Cell35, 467–478 (2009). ArticleCASPubMedPubMed Central Google Scholar
Shevtsov, S. P. & Dundr, M. Nucleation of nuclear bodies by RNA. Nat. Cell Biol.13, 167–173 (2011). ArticleCASPubMed Google Scholar
Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol.13, 95–101 (2011). References 149, 150, 153 and 154 show that NEAT1 is essential for establishing and maintaining the paraspeckle nuclear body and is sufficient to nucleate the formation of a paraspeckle. ArticleCASPubMed Google Scholar
Lamond, A. I. & Spector, D. L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol.4, 605–612 (2003). ArticleCASPubMed Google Scholar
Hall, L. L., Smith, K. P., Byron, M. & Lawrence, J. B. Molecular anatomy of a speckle. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol.288, 664–675 (2006). ArticlePubMedPubMed Central Google Scholar
Khanna, N., Hu, Y. & Belmont, A. S. HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Curr. Biol.24, 1138–1144 (2014). ArticleCASPubMedPubMed Central Google Scholar
Änkö, M.-L. et al. The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes. Genome Biol.13, R17 (2012). ArticleCASPubMedPubMed Central Google Scholar
Miyagawa, R. et al. Identification of _cis_- and _trans_-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA18, 738–751 (2012). ArticleCASPubMedPubMed Central Google Scholar
Sanford, J. R. et al. Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res.19, 381–394 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tripathi, V. et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell39, 925–938 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bernard, D. et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J.29, 3082–3093 (2010). ArticleCASPubMedPubMed Central Google Scholar
Marshall, W. F., Marko, J. F., Agard, D. A. & Sedat, J. W. Chromosome elasticity and mitotic polar ejection force measured in living Drosophila embryos by four-dimensional microscopy-based motion analysis. Curr. Biol.11, 569–578 (2001). ArticleCASPubMed Google Scholar
Chubb, J. R., Boyle, S., Perry, P. & Bickmore, W. A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol.12, 439–445 (2002). ArticleCASPubMed Google Scholar
Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell155, 1049–1060 (2013). ArticleCASPubMedPubMed Central Google Scholar
Fackelmayer, F. O., Dahm, K., Renz, A., Ramsperger, U. & Richter, A. Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur. J. Biochem.221, 749–757 (1994). ArticleCASPubMed Google Scholar
Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol.30, 39–58 (2014). ArticleCASPubMed Google Scholar
Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell149, 753–767 (2012). This paper demonstrates that many RBPs contain low-complexity domains that undergo concentration-dependent phase transition, which may underlie the formation of some nuclear compartments. ArticleCASPubMedPubMed Central Google Scholar
Xiang, S. et al. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell163, 829–839 (2015). ArticleCASPubMedPubMed Central Google Scholar
Rocha, E. P. C. The organization of the bacterial genome. Annu. Rev. Genet.42, 211–233 (2008). ArticleCASPubMed Google Scholar
Melese, T. & Xue, Z. The nucleolus: an organelle formed by the act of building a ribosome. Curr. Opin. Cell Biol.7, 319–324 (1995). ArticleCASPubMed Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293 (2009). ArticleCASPubMedPubMed Central Google Scholar