Diversifying microRNA sequence and function (original) (raw)
Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75, 843–854 (1993). CASPubMed Google Scholar
Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75, 855–862 (1993). References 1 and 2 report the discovery of the first miRNA, lin-4, and propose that it regulates mRNA expression post-transcriptionally. ArticleCASPubMed Google Scholar
Griffiths-Jones, S., Grocock, R. J., van Dongen, S., Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res.34, D140–D144 (2006). ArticleCASPubMed Google Scholar
Chiang, H. R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev.24, 992–1009 (2010). ArticleCASPubMedPubMed Central Google Scholar
Friedman, R. C., Farh, K. K., Burge, C. B. & Bartel, D. P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res.19, 92–105 (2009). Shows that more than half of all protein-coding genes in mammals have been evolutionarily selected to maintain pairing with miRNAs, indicating that most of the protein-coding transcriptome is regulated by miRNAs. ArticleCASPubMedPubMed Central Google Scholar
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116, 281–297 (2004). ArticleCASPubMed Google Scholar
Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol.57, 19–53 (2006). ArticleCASPubMed Google Scholar
Grimson, A. et al. Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals. Nature455, 1193–1197 (2008). ArticleCASPubMed Google Scholar
Molnar, A., Schwach, F., Studholme, D. J., Thuenemann, E. C. & Baulcombe, D. C. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature447, 1126–1129 (2007). ArticleCASPubMed Google Scholar
Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol.10, 126–139 (2009). ArticleCAS Google Scholar
Axtell, M. J., Westholm, J. O. & Lai, E. C. Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol.12, 221 (2011). ArticleCASPubMedPubMed Central Google Scholar
Siomi, H. & Siomi, M. C. Posttranscriptional regulation of microRNA biogenesis in animals. Mol. Cell38, 323–332 (2010). ArticleCASPubMed Google Scholar
Yang, J. S. & Lai, E. C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell43, 892–903 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA10, 1957–1966 (2004). ArticleCASPubMedPubMed Central Google Scholar
Corcoran, D. L. et al. Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS ONE4, e5279 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L. & Bradley, A. Identification of mammalian microRNA host genes and transcription units. Genome Res.14, 1902–1910 (2004). ArticleCASPubMedPubMed Central Google Scholar
Baskerville, S. & Bartel, D. P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA11, 241–247 (2005). ArticleCASPubMedPubMed Central Google Scholar
Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M. & Lai, E. C. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl Acad. Sci. USA102, 18017–18022 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kataoka, N., Fujita, M. & Ohno, M. Functional association of the Microprocessor complex with the spliceosome. Mol. Cell. Biol.29, 3243–3254 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature425, 415–419 (2003). ArticleCASPubMed Google Scholar
Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature432, 231–235 (2004). ArticleCASPubMed Google Scholar
Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature432, 235–240 (2004). ArticleCASPubMed Google Scholar
Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol.14, 2162–2167 (2004). ArticleCASPubMed Google Scholar
Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell125, 887–901 (2006). ArticleCASPubMed Google Scholar
Wu, H., Xu, H., Miraglia, L. J. & Crooke, S. T. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J. Biol. Chem.275, 36957–36965 (2000). ArticleCASPubMed Google Scholar
Billy, E., Brondani, V., Zhang, H., Muller, U. & Filipowicz, W. Specific interference with gene expression induced by long, double-stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl Acad. Sci. USA98, 14428–14433 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J.21, 4663–4670 (2002). ArticleCASPubMedPubMed Central Google Scholar
Okada, C. et al. A high-resolution structure of the pre-microRNA nuclear export machinery. Science326, 1275–1279 (2009). ArticleCASPubMed Google Scholar
Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev.17, 3011–3016 (2003). ArticleCASPubMedPubMed Central Google Scholar
Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science303, 95–98 (2004). ArticleCASPubMed Google Scholar
Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a Ran GTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA10, 185–191 (2004). ArticleCASPubMedPubMed Central Google Scholar
Zeng, Y. & Cullen, B. R. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res.32, 4776–4785 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature409, 363–366 (2001). ArticleCASPubMed Google Scholar
Hutvágner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science293, 834–838 (2001). ArticlePubMed Google Scholar
Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell106, 23–34 (2001). ArticleCASPubMed Google Scholar
Ketting, R. F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev.15, 2654–2659 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell117, 69–81 (2004). ArticleCASPubMed Google Scholar
Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J.21, 5875–5885 (2002). ArticleCASPubMedPubMed Central Google Scholar
Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell118, 57–68 (2004). ArticleCASPubMed Google Scholar
Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature465, 584–589 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yang, J. S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl Acad. Sci. USA107, 15163–15168 (2010). ArticlePubMedPubMed Central Google Scholar
Saito, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Processing of pre-microRNAs by the Dicer-1–Loquacious complex in Drosophila cells. PLoS Biol.3, e235 (2005). ArticleCASPubMedPubMed Central Google Scholar
Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol.3, e236 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cenik, E. S. et al. Phosphate and R2D2 restrict the substrate specificity of Dicer-2, an ATP-driven ribonuclease. Mol. Cell42, 172–184 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature436, 740–744 (2005). ArticleCASPubMedPubMed Central Google Scholar
Haase, A. D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep.6, 961–967 (2005). ArticleCASPubMedPubMed Central Google Scholar
Forman, J. J., Legesse-Miller, A. & Coller, H. A. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. Proc. Natl Acad. Sci. USA105, 14879–14884 (2008). ArticlePubMedPubMed Central Google Scholar
Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M. A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nature Struct. Mol. Biol.16, 144–150 (2009). ArticleCAS Google Scholar
Forman, J. J. & Coller, H. A. The code within the code: microRNAs target coding regions. Cell Cycle9, 1533–1541 (2010). ArticleCASPubMed Google Scholar
Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science310, 1817–1821 (2005). ArticleCASPubMed Google Scholar
Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell123, 1133–1146 (2005). ArticleCASPubMed Google Scholar
Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120, 15–20 (2005). ArticleCASPubMed Google Scholar
Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature438, 685–689 (2005). ArticleCASPubMed Google Scholar
Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science328, 1534–1539 (2010). References 71, 72, 94 and 96 show that target-RNA binding can alter miRNA stability in mammals, flies and worms. References 72 and 94 help explain how the presence or absence of targets may destabilize miRNAs. ArticleCASPubMedPubMed Central Google Scholar
Baccarini, A. et al. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr. Biol.21, 369–376 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yan, K. S. et al. Structure and conserved RNA binding of the PAZ domain. Nature426, 468–474 (2003). ArticleCASPubMed Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature426, 465–469 (2003). ArticleCASPubMed Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. NMR assignment of the Drosophila Argonaute2 PAZ domain. J. Biomol. NMR29, 421–422 (2004). ArticleCASPubMed Google Scholar
Lingel, A., Simon, B., Izaurralde, E. & Sattler, M. Nucleic acid 3′-end recognition by the Argonaute2 PAZ domain. Nature Struct. Mol. Biol.11, 576–577 (2004). ArticleCAS Google Scholar
Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing Argonaute silencing complex. Nature456, 209–213 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hsu, S.-H. et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J. Clin. Invest.122, 2871–2883 (2012). ArticleCASPubMedPubMed Central Google Scholar
Tsai, W.-C. et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J. Clin. Invest.122, 2884–2897 (2012). ArticleCASPubMedPubMed Central Google Scholar
Libri, V., Miesen, P., van Rij, R. P. & Buck, A. H. Regulation of microRNA biogenesis and turnover by animals and their viruses. Cell. Mol. Life Sci.http://dx.doi.org/10.1007/s00018-012-1257-1 (2013).
tenOever, B. R. RNA viruses and the host microRNA machinery. Nature Rev. Microbiol.11, 169–180 (2013). ArticleCAS Google Scholar
Pelisson, A., Sarot, E., Payen-Groschene, G. & Bucheton, A. A novel repeat-associated small interfering RNA-mediated silencing pathway downregulates complementary sense gypsy transcripts in somatic cells of the Drosophila ovary. J. Virol.81, 1951–1960 (2007). ArticleCASPubMed Google Scholar
Horwich, M. D. et al. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr. Biol.17, 1265–1272 (2007). ArticleCASPubMed Google Scholar
Ameres, S. L., Hung, J. H., Xu, J., Weng, Z. & Zamore, P. D. Target RNA-directed tailing and trimming purifies the sorting of endo-siRNAs between the two Drosophila Argonaute proteins. RNA17, 54–63 (2011). ArticleCASPubMedPubMed Central Google Scholar
Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol.12, 1484–1495 (2002). ArticleCASPubMedPubMed Central Google Scholar
Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science307, 932–935 (2005). Reports, for the first time, 2′-O-methyl modification of small RNAs, which is a stabilizing chemical modification that is added to all plant and some animal small RNA classes. ArticleCASPubMedPubMed Central Google Scholar
Li, J., Yang, Z., Yu, B., Liu, J. & Chen, X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr. Biol.15, 1501–1507 (2005). ArticleCASPubMedPubMed Central Google Scholar
Yang, Z., Ebright, Y. W., Yu, B. & Chen, X. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res.34, 667–675 (2006). ArticleCASPubMedPubMed Central Google Scholar
Abe, M. et al. WAVY LEAF1, an ortholog of Arabidopsis HEN1, regulates shoot development by maintaining microRNA and _trans_-acting small interfering RNA accumulation in rice. Plant Physiol.154, 1335–1346 (2010). ArticleCASPubMedPubMed Central Google Scholar
Vilkaitis, G., Plotnikova, A. & Klimasauskas, S. Kinetic and functional analysis of the small RNA methyltransferase HEN1: the catalytic domain is essential for preferential modification of duplex RNA. RNA16, 1935–1942 (2010). ArticleCASPubMedPubMed Central Google Scholar
Chatterjee, S. & Grosshans, H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature461, 546–549 (2009). ArticleCASPubMed Google Scholar
Song, E. et al. Sustained small interfering RNA-mediated human immunodeficiency virus type 1 inhibition in primary macrophages. J. Virol.77, 7174–7181 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chatterjee, S., Fasler, M., Bussing, I. & Grosshans, H. Target-mediated protection of endogenous microRNAs in C. elegans. Dev. Cell20, 388–396 (2011). ArticleCASPubMed Google Scholar
Berezikov, E. et al. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res.21, 203–215 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ruby, J. G. et al. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res.17, 1850–1864 (2007). ArticleCASPubMedPubMed Central Google Scholar
Morin, R. D. et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res.18, 610–621 (2008). ArticleCASPubMedPubMed Central Google Scholar
Seitz, H., Ghildiyal, M. & Zamore, P. D. Argonaute loading improves the 5′ precision of both microRNAs and their miRNA* strands in flies. Curr. Biol.18, 147–151 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rajagopalan, R., Vaucheret, H., Trejo, J. & Bartel, D. P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev.20, 3407–3425 (2006). ArticleCASPubMedPubMed Central Google Scholar
Westholm, J. O., Ladewig, E., Okamura, K., Robine, N. & Lai, E. C. Common and distinct patterns of terminal modifications to mirtrons and canonical microRNAs. RNA18, 177–192 (2012). ArticleCASPubMedPubMed Central Google Scholar
Okamura, K., Liu, N. & Lai, E. C. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol. Cell36, 431–444 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ghildiyal, M., Xu, J., Seitz, H., Weng, Z. & Zamore, P. D. Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA16, 43–56 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ruby, J. G. et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell127, 1193–1207 (2006). ArticleCASPubMed Google Scholar
Babiarz, J. E., Ruby, J. G., Wang, Y., Bartel, D. P. & Blelloch, R. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev.22, 2773–2785 (2008). ArticleCASPubMedPubMed Central Google Scholar
Glazov, E. A. et al. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res.18, 957–964 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ebhardt, H. A. et al. Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res.37, 2461–2470 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hundley, H. A. & Bass, B. L. ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem. Sci.35, 377–383 (2010). ArticleCASPubMedPubMed Central Google Scholar
Knight, S. W. & Bass, B. L. The role of RNA editing by ADARs in RNAi. Mol. Cell10, 809–817 (2002). ArticleCASPubMed Google Scholar
Habig, J. W., Aruscavage, P. J. & Bass, B. L. In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4. PLoS ONE3, e4052 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wu, D., Lamm, A. T. & Fire, A. Z. Competition between ADAR and RNAi pathways for an extensive class of RNA targets. Nature Struct. Mol. Biol.18, 1094–1101 (2011). ArticleCAS Google Scholar
Han, B. W., Hung, J. H., Weng, Z., Zamore, P. D. & Ameres, S. L. The 3′-to-5′ exoribonuclease Nibbler shapes the 3′ ends of microRNAs bound to Drosophila Argonaute1. Curr. Biol.21, 1878–1887 (2011). References119 and 120 describe the enzyme responsible for generating much of the 3′ heterogeneity observed inD. melanogastermiRNAs, revealing that exonucleolytic trimming of miRNAs after assembly into AGO proteins promotes the formation of active complexes. ArticleCASPubMedPubMed Central Google Scholar
Ketting, R. F., Haverkamp, T. H., van Luenen, H. G. & Plasterk, R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell99, 133–141 (1999). ArticleCASPubMed Google Scholar
Ketting, R. F. & Plasterk, R. H. A genetic link between co-suppression and RNA interference in C. elegans. Nature404, 296–298 (2000). ArticleCASPubMed Google Scholar
Grishok, A., Tabara, H. & Mello, C. C. Genetic requirements for inheritance of RNAi in C. elegans. Science287, 2494–2497 (2000). ArticleCASPubMed Google Scholar
Sijen, T. & Plasterk, R. H. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature426, 310–314 (2003). ArticleCASPubMed Google Scholar
Rissland, O. S., Mikulasova, A. & Norbury, C. J. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol. Cell. Biol.27, 3612–3624 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dreyfus, M. & Regnier, P. The poly(A) tail of mRNAs: bodyguard in eukaryotes, scavenger in bacteria. Cell111, 611–613 (2002). ArticleCASPubMed Google Scholar
Scott, D. D. & Norbury, C. J. RNA decay via 3′ uridylation. Biochim Biophys Acta1829, 654–665 (2013). ArticleCASPubMed Google Scholar
Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell138, 696–708 (2009). ArticleCASPubMed Google Scholar
Hagan, J. P., Piskounova, E. & Gregory, R. I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nature Struct. Mol. Biol.16, 1021–1025 (2009). References 128 and 129 report that LIN28-bound pre-miRNAs act as substrates for the TNTase ZCCHC11, thereby establishing the mechanism for inhibition of pre-miRNA processing by uridylation. ArticleCAS Google Scholar
Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell32, 276–284 (2008). ArticleCASPubMed Google Scholar
Joo, C., Fareh, M. & Kim, V. N. Bringing single-molecule spectroscopy to macromolecular protein complexes. Trends Biochem. Sci.38, 30–37 (2013). ArticleCASPubMed Google Scholar
Chang, H.-M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway. Nature497, 244–248 (2013). ArticleCASPubMedPubMed Central Google Scholar
Heo, I. et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell151, 521–532 (2012). Reveals that monouridylation of specific pre-miRNAs enhances Dicer-mediated processing by restoring a canonical two nucleotide 3′ overhang, which is required for efficient substrate recognition by Dicer. ArticleCASPubMed Google Scholar
Jones, M. R. et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nature Cell Biol.11, 1157–1163 (2009). ArticleCASPubMed Google Scholar
Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev.23, 433–438 (2009). ArticleCASPubMedPubMed Central Google Scholar
Burroughs, A. M. et al. A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res.20, 1398–1410 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhao, Y. et al. The Arabidopsis nucleotidyl transferase HESO1 uridylates unmethylated small RNAs to trigger their degradation. Curr. Biol.22, 689–694 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ibrahim, F. et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc. Natl Acad. Sci. USAhttp://dx.doi.org/10.1073/pnas.0912632107 (2010).
Ibrahim, F., Rohr, J., Jeong, W.-J., Hesson, J. & Cerutti, H. Untemplated oligoadenylation promotes degradation of RISC-cleaved transcripts. Science314, 1893 (2006). ArticleCASPubMed Google Scholar
Shen, B. & Goodman, H. M. Uridine addition after microRNA-directed cleavage. Science306, 997 (2004). ArticleCASPubMed Google Scholar
Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev.17, 49–63 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mallory, A. C. et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J.23, 3356–3364 (2004). ArticleCASPubMedPubMed Central Google Scholar
Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol.11, 599–606 (2004). ArticleCAS Google Scholar
Ameres, S. L., Martinez, J. & Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell130, 101–112 (2007). ArticleCASPubMed Google Scholar
Wee, L., Flores-Jasso, C. F., Salomon, W. & Zamore, P. D. Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell151, 1055–1067 (2012). Reports detailed kinetic analyses of AGO-directed small RNA–target RNA interactions in flies and mice. Establishes the biochemical basis for siRNA and miRNA function, which is determined by the relative abundance of small RNAs and their targets. ArticleCASPubMedPubMed Central Google Scholar
Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science305, 1434–1437 (2004). ArticleCASPubMed Google Scholar
Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain–siRNA guide complex. Nature434, 663–666 (2005). ArticleCASPubMedPubMed Central Google Scholar
Wang, Y. et al. Structure of an Argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature456, 921–926 (2008). ArticleCASPubMedPubMed Central Google Scholar
Parker, J. S., Parizotto, E. A., Wang, M., Roe, S. M. & Barford, D. Enhancement of the seed-target recognition step in RNA silencing by a PIWI/MID domain protein. Mol. Cell33, 204–214 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chi, S. W., Hannon, G. J. & Darnell, R. B. An alternative mode of microRNA target recognition. Nature Struct. Mol. Biol.19, 321–327 (2012). ArticleCAS Google Scholar
Long, D. et al. Potent effect of target structure on microRNA function. Nature Struct. Mol. Biol.14, 287–294 (2007). ArticleCAS Google Scholar
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nature Genet.39, 1278–1284 (2007). ArticleCASPubMed Google Scholar
Tafer, H. et al. The impact of target site accessibility on the design of effective siRNAs. Nature Biotech.26, 578–583 (2008). ArticleCAS Google Scholar
Obernosterer, G., Tafer, H. & Martinez, J. Target site effects in the RNA interference and microRNA pathways. Biochem. Soc. Trans.36, 1216–1219 (2008). ArticleCASPubMed Google Scholar
Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell131, 1273–1286 (2007). ArticleCASPubMed Google Scholar
Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell125, 1111–1124 (2006). ArticleCASPubMed Google Scholar
Huang, J. et al. Derepression of microRNA-mediated protein translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G) and its family members. J. Biol. Chem.282, 33632–33640 (2007). ArticleCASPubMed Google Scholar
Mishima, Y. et al. Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes Dev.23, 619–632 (2009). ArticleCASPubMedPubMed Central Google Scholar
Elcheva, I., Goswami, S., Noubissi, F. K. & Spiegelman, V. S. CRD-BP protects the coding region of βTrCP1 mRNA from miR-183-mediated degradation. Mol. Cell35, 240–246 (2009). ArticleCASPubMedPubMed Central Google Scholar
Goswami, S. et al. MicroRNA-340-mediated degradation of microphthalmia-associated transcription factor mRNA is inhibited by the coding region determinant-binding protein. J. Biol. Chem.285, 20532–20540 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jafarifar, F., Yao, P., Eswarappa, S. M. & Fox, P. L. Repression of VEGFA by CA-rich element-binding microRNAs is modulated by hnRNP L. EMBO J.30, 1324–1334 (2011). ArticleCASPubMedPubMed Central Google Scholar
Toledano, H., D'Alterio, C., Czech, B., Levine, E. & Jones, D. L. The _let-7_–Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature485, 605–610 (2012). ArticleCASPubMedPubMed Central Google Scholar
Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science297, 2053–2056 (2002). ArticleCASPubMed Google Scholar
Dunoyer, P., Lecellier, C. H., Parizotto, E. A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell16, 1235–1250 (2004). ArticleCASPubMedPubMed Central Google Scholar
Souret, F. F., Kastenmayer, J. P. & Green, P. J. AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol. Cell15, 173–183 (2004). ArticleCASPubMed Google Scholar
German, M. A. et al. Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nature Biotech.26, 941–946 (2008). ArticleCAS Google Scholar
Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol.18, 758–762 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jones-Rhoades, M. W. & Bartel, D. P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell14, 787–799 (2004). ArticleCASPubMed Google Scholar
Brodersen, P. et al. Widespread translational inhibition by plant miRNAs and siRNAs. Science320, 1185–1190 (2008). References 177 and 178 propose that, despite the large number of extensively complementary cleavage targets for plant miRNAs, translational repression may be a widespread mechanism by which plant miRNAs repress gene expression. ArticleCASPubMed Google Scholar
Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science304, 594–596 (2004). ArticleCASPubMed Google Scholar
Davis, E. et al. RNAi-mediated allelic _trans_-interaction at the imprinted Rtl1/Peg11 locus. Curr. Biol.15, 743–749 (2005). ArticleCASPubMed Google Scholar
Karginov, F. V. et al. Diverse endonucleolytic cleavage sites in the mammalian transcriptome depend upon microRNAs, Drosha, and additional nucleases. Mol. Cell38, 781–788 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell122, 553–563 (2005). ArticleCASPubMed Google Scholar
Jing, Q. et al. Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell120, 623–634 (2005). ArticleCASPubMed Google Scholar
Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433, 769–773 (2005). ArticleCASPubMed Google Scholar
Giraldez, A. J. et al. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science312, 75–79 (2006). ArticleCASPubMed Google Scholar
Rehwinkel, J. et al. Genome-wide analysis of mRNAs regulated by Drosha and Argonaute proteins in Drosophila melanogaster. Mol. Cell. Biol.26, 2965–2975 (2006). ArticleCASPubMedPubMed Central Google Scholar
Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature455, 58–63 (2008). ArticleCASPubMed Google Scholar
Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature466, 835–840 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science324, 218–223 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hendrickson, D. G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol.7, e1000238 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bazzini, A. A., Lee, M. T. & Giraldez, A. J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science336, 233–237 (2012). Proposes, together with reference 190, that animal miRNAs predominantly function by triggering mRNA decay. Reference 193 also suggests that translational repression may precede mRNA decay. ArticleCASPubMedPubMed Central Google Scholar
Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA11, 1640–1647 (2005). ArticleCASPubMedPubMed Central Google Scholar
Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev.20, 1885–1898 (2006). ArticlePubMedPubMed Central Google Scholar
Braun, J. E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell44, 120–133 (2011). ArticleCASPubMed Google Scholar
Thermann, R. & Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature447, 875–878 (2007). ArticleCASPubMed Google Scholar
Iwasaki, S., Kawamata, T. & Tomari, Y. Drosophila Argonaute1 and Argonaute2 employ distinct mechanisms for translational repression. Mol. Cell34, 58–67 (2009). ArticlePubMed Google Scholar
Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science317, 1764–1767 (2007). ArticleCASPubMed Google Scholar
Zdanowicz, A. et al. Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. Mol. Cell35, 881–888 (2009). ArticleCASPubMed Google Scholar
Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science336, 237–240 (2012). ArticleCASPubMedPubMed Central Google Scholar
Bruno, I. G. et al. Identification of a microRNA that activates gene expression by repressing nonsense-mediated RNA decay. Mol. Cell42, 500–510 (2011). ArticleCASPubMedPubMed Central Google Scholar
Place, R. F., Li, L. C., Pookot, D., Noonan, E. J. & Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl Acad. Sci. USA105, 1608–1613 (2008). ArticlePubMedPubMed Central Google Scholar
Schwartz, J. C. et al. Antisense transcripts are targets for activating small RNAs. Nature Struct. Mol. Biol.15, 842–848 (2008). ArticleCAS Google Scholar
Jangra, R. K., Yi, M. & Lemon, S. M. DDX6 (Rck/p54) is required for efficient hepatitis C virus replication but not for internal ribosome entry site-directed translation. J. Virol.84, 6810–6824 (2010). ArticleCASPubMedPubMed Central Google Scholar
Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science309, 1577–1581 (2005). ArticleCASPubMed Google Scholar
Lanford, R. E. et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science327, 198–201 (2010). ArticleCASPubMed Google Scholar
Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science318, 1931–1934 (2007). ArticleCASPubMed Google Scholar
Vasudevan, S. & Steitz, J. A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell128, 1105–1118 (2007). ArticleCASPubMedPubMed Central Google Scholar
Orom, U. A., Nielsen, F. C. & Lund, A. H. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell30, 460–471 (2008). ArticleCASPubMed Google Scholar
Li, X., Cassidy, J. J., Reinke, C. A., Fischboeck, S. & Carthew, R. W. A microRNA imparts robustness against environmental fluctuation during development. Cell137, 273–282 (2009). ArticleCASPubMedPubMed Central Google Scholar
Miska, E. A. et al. Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet.3, e215 (2007). ArticleCASPubMedPubMed Central Google Scholar
Seitz, H. Redefining microRNA targets. Curr. Biol.19, 870–873 (2009). Hypothesizes that in animals many endogenous miRNA target site-containing transcripts ('titrating' targets) may function to titrate miRNA activity rather than serving as targets for regulation. ArticleCASPubMed Google Scholar
Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA10, 544–550 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hutvagner, G., Simard, M. J., Mello, C. C. & Zamore, P. D. Sequence-specific inhibition of small RNA function. PLoS Biol.2, e98 (2004). ArticlePubMedPubMed Central Google Scholar
Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods4, 721–726 (2007). ArticleCASPubMed Google Scholar
Loya, C. M., Lu, C. S., Van Vactor, D. & Fulga, T. A. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nature Methods6, 897–903 (2009). References 216–219 describe strategies to competitively inhibit miRNAs for loss-of-function studies. ArticleCASPubMedPubMed Central Google Scholar
Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet.39, 1033–1037 (2007). ArticleCASPubMed Google Scholar
Todesco, M., Rubio-Somoza, I., Paz-Ares, J. & Weigel, D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet.6, e1001031 (2010). ArticleCASPubMedPubMed Central Google Scholar
Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell146, 353–358 (2011). ArticleCASPubMedPubMed Central Google Scholar
Karreth, F. A. et al. In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell147, 382–395 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell147, 358–369 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sumazin, P. et al. An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell147, 370–381 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chang, J. et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol.1, 106–113 (2004). ArticleCASPubMed Google Scholar
Mullokandov, G. et al. High-throughput assessment of microRNA activity and function using microRNA sensor and decoy libraries. Nature Methods9, 840–846 (2012). ArticleCASPubMedPubMed Central Google Scholar
Gentner, B. et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nature Methods6, 63–66 (2009). ArticleCASPubMed Google Scholar
Haraguchi, T., Ozaki, Y. & Iba, H. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res.37, e43 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cazalla, D., Yario, T. & Steitz, J. Down-regulation of a host microRNA by a herpesvirus saimiri noncoding RNA. Science328, 1563–1566 (2010). ArticleCASPubMedPubMed Central Google Scholar
Marcinowski, L. et al. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog.8, e1002510 (2012). ArticleCASPubMedPubMed Central Google Scholar
Libri, V. et al. Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target. Proc. Natl Acad. Sci. USA109, 279–284 (2012). ArticlePubMed Google Scholar
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. & Brown, P. O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE7, e30733 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature495, 384–388 (2013). ArticleCASPubMed Google Scholar
Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature495, 333–338 (2013). ArticleCASPubMed Google Scholar
Hwang, H. W., Wentzel, E. A. & Mendell, J. T. A hexanucleotide element directs microRNA nuclear import. Science315, 97–100 (2007). ArticleCASPubMed Google Scholar
Gantier, M. P. et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res.39, 5692–5703 (2011). ArticleCASPubMedPubMed Central Google Scholar
van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science316, 575–579 (2007). ArticleCASPubMed Google Scholar
Rissland, O. S., Hong, S. J. & Bartel, D. P. MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. Mol. Cell43, 993–1004 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zhang, Z. et al. Uracils at nucleotide position 9–11 are required for the rapid turnover of miR-29 family. Nucleic Acids Res.39, 4387–4395 (2011). ArticleCASPubMedPubMed Central Google Scholar