Constant Time Delay Research Papers (original) (raw)
We study two simple yet general complexity classes, which provide a unifying framework for efficient query evaluation in areas like graph databases and information extraction, among others. We investigate the complexity of three... more
We study two simple yet general complexity classes, which provide a unifying framework for efficient query evaluation in areas like graph databases and information extraction, among others. We investigate the complexity of three fundamental algorithmic problems for these classes: enumeration, counting and uniform generation of solutions, and show that they have several desirable properties in this respect. Both complexity classes are defined in terms of non deterministic logarithmic-space transducers (NL transducers). For the first class, we consider the case of unambiguous NL transducers, and we prove constant delay enumeration, and both counting and uniform generation of solutions in polynomial time. For the second class, we consider unrestricted NL transducers, and we obtain polynomial delay enumeration, approximate counting in polynomial time, and polynomial-time randomized algorithms for uniform generation. More specifically, we show that each problem in this second class admits a fully polynomial-time randomized approximation scheme (FPRAS) and a polynomial-time Las Vegas algorithm (with preprocessing) for uniform generation. Remarkably , the key idea to prove these results is to show that the fundamental problem #NFA admits an FPRAS, where #NFA is the problem of counting the number of strings of length n (given in unary) accepted by a non-deterministic finite automaton (NFA). While this problem is known to be #P-complete and, more precisely, SpanL-complete, it was open whether this problem admits an FPRAS. In this work, we solve this open problem, and obtain as a welcome corollary that every function in SpanL admits an FPRAS.
- by Önder Pekcan and +1
- •
- Engineering, Materials Science, Free Radical, Activation Energy
- by Brent Maundy and +1
- •
- Oscillations, Oscillators, Positive Feedback, Fractional Calculus
- by Cynthia Owsley
- •
- Aging, Vision, Humans, Aged
- by Jan Davidsson and +1
- •
- Technology, Kinetics, Time of Flight, Physical sciences
Perceptual direction detection thresholds for yaw rotation about an earth-vertical axis were measured at seven frequencies (0.05, 0.1, 0.2, 0.5, 1, 2, and 5 Hz) in seven subjects in the dark. Motion stimuli consisted of single cycles of... more
Perceptual direction detection thresholds for yaw rotation about an earth-vertical axis were measured at seven frequencies (0.05, 0.1, 0.2, 0.5, 1, 2, and 5 Hz) in seven subjects in the dark. Motion stimuli consisted of single cycles of sinusoidal acceleration and were generated by a motion platform. An adaptive two-alternative categorical forced-choice procedure was used. The subjects had to indicate by button presses whether they perceived yaw rotation to the left or to the right. Thresholds were measured using a 3-down, 1-up staircase paradigm. Mean yaw rotation velocity thresholds were 2.8 deg s−1 for 0.05 Hz, 2.5 deg s−1 for 0.1 Hz, 1.7 deg s−1 for 0.2 Hz, 0.7 deg s−1 for 0.5 Hz, 0.6 deg s−1 for 1 Hz, 0.4 deg s−1 for 2 Hz, and 0.6 deg s−1 for 5 Hz. The results show that motion thresholds increase at 0.2 Hz and below and plateau at 0.5 Hz and above. Increasing velocity thresholds at lower frequencies qualitatively mimic the high-pass characteristics of the semicircular canals, since the increase at 0.2 Hz and below would be consistent with decreased gain/sensitivity observed in the VOR at lower frequencies. In fact, the measured dynamics are consistent with a high pass filter having a threshold plateau of 0.71 deg s-1 and a cut-off frequency of 0.23 Hz, which corresponds to a time constant of approximately 0.70 s. These findings provide no evidence for an influence of velocity storage on perceptual yaw rotation thresholds.
- by Fred W Mast and +1
- •
- Motion perception, Humans, Female, Male
From a comparison of the photoresponses and membrane properties of photoreceptors from 20 species of Diptera, we conclude that coding in the time domain is matched to the dictates of visual ecology. This matching involves the dynamics of... more
From a comparison of the photoresponses and membrane properties of photoreceptors from 20 species of Diptera, we conclude that coding in the time domain is matched to the dictates of visual ecology. This matching involves the dynamics of phototransduction and the use of an appropriate mix of potassium conductances to tune the photoreceptor membrane. Rapidly flying, manoeuvrable diurnal Diptera from several families have fast photoreceptors, with corner frequencies (the frequency at which signal power falls by a half) of between 50 and 107 Hz. The ponderous and predominantly nocturnal tipulids have slow photoreceptors with fully light adapted corner frequencies of 16 to 19 Hz. Dark adapted fast photoreceptors have a lower gain (as indicated by lower noise levels), a lower sensitivity, and light adapt more rapidly than dark adapted slow photoreceptors. Fast cells also have much lower input resistances and shorter time constants. Fast photoreceptors rectify more strongly in the steady state because of a weakly inactivating delayed rectifier potassium conductance with fast and slow components of activation. Slow photoreceptors rectify less strongly in the steady state because their membrane properties are dominated by strongly inactivating outward currents with reversal potentials in the range — 80 to -90 mV. The differences between potassium conductances match the differing functional requirements of fast and slow photoreceptors. The non-inactivating delayed rectifier promotes the rapid response of fast cells by reducing the membrane time constant. This is an expensive strategy, involving large conductances and currents. Slowly flying nocturnal insects do not require a high speed of response. The potassium conductances in their slow photoreceptors inactivate to avoid costly and unnecessary ion fluxes. Both the dynamics of the photoresponse and photoreceptor membrane properties exhibit sexual dimorphism. Light adapted photoreceptors in the enlarged male dorsal eye of Bibio markii have a corner frequency of 42 Hz, compared with 27 Hz for cells in the smaller female eye. This difference in frequency response correlates with the male's higher spatial acuity and is accompanied by consistent differences in potassium conductance activation rate. We conclude that the divison between fast and slow cells is the product of cellular constraints, metabolic costs and the requirements of coding efficiency at different light levels and retinal image velocities.
The time constant of applied temperature sensor and sensor location influence the sought model error most significantly. The proper choice of these technical parameters, in a way minimizing the model error is possible only as a result of... more
The time constant of applied temperature sensor and sensor location influence the sought model error most significantly. The proper choice of these technical parameters, in a way minimizing the model error is possible only as a result of optimization process. The simulation methods significantly raise the effectiveness of such the experiments. The results presented in paper have been achieved in Department of Applied Physics of Technical University Delft.
This paper investigates typical behaviors like damped oscillations in fractional order (FO) dynamical systems. Such response occurs due to the presence of, what is conceived as, pseudo-damping and meta-damping in some special class of FO... more
This paper investigates typical behaviors like damped oscillations in fractional order (FO) dynamical systems. Such response occurs due to the presence of, what is conceived as, pseudo-damping and meta-damping in some special class of FO systems. Here, approximation of such damped oscillation in FO systems with the conventional notion of integer order damping and time constant has been carried out using Genetic Algorithm (GA). Next, a multilayer feed-forward Artificial Neural Network (ANN) has been trained using the GA based results to predict the optimal pseudo and meta-damping from knowledge of the maximum order or number of terms in the FO dynamical system.
Abstract. Time series of ocean properties provide a measure of global ice volume and monitor key features of the wind-driven and Censity-driven circulations over the past 400,000 years. Cycles with periods near 23,000, 41,000, and 100,000... more
Abstract. Time series of ocean properties provide a measure of global ice volume and monitor key features of the wind-driven and Censity-driven circulations over the past 400,000 years. Cycles with periods near 23,000, 41,000, and 100,000 years dominate this climatic narrative. When the narrative is examined in a geographic array of time series, the phase of each climatic oscillation is seen to progress through the system in essentially the same geographic sequence in all three cycles. We argue that
MRI systems often use magnetic field gradient and shim pulse-shaping networks (pre-emphasis) to correct for magnetic field distortions caused by eddy currents. A pre-emphasis system that uses up to 16 fixed resistor-capacitor (RC) time... more
MRI systems often use magnetic field gradient and shim pulse-shaping networks (pre-emphasis) to correct for magnetic field distortions caused by eddy currents. A pre-emphasis system that uses up to 16 fixed resistor-capacitor (RC) time constants per channel with programmable amplitude coefficients is described. The magnetic fields induced by the pre-emphasis RC time constants serve as a set of basis functions for compensating eddy-current fields induced by the gradient set. The resultant time-varying magnetic field gradient accurately reflects the gradient specified by the pulse programmer. Reductions in eddy-current fields are demonstrated for actively shielded and unshielded gradient sets.
We describe a neutron/gamma pulse shape discrimination (PSD) system that overcomes count rate limitations of previous methods for distinguishing neutrons from gammas in liquid scintillation detectors. Previous methods of PSD usually... more
We describe a neutron/gamma pulse shape discrimination (PSD) system that overcomes count rate limitations of previous methods for distinguishing neutrons from gammas in liquid scintillation detectors. Previous methods of PSD usually involve pulse shaping time constants that allow throughput of tens of thousands counts per second. Time correlated measurements require many millions of counts per second to accurately characterize nuclear material samples. To rapidly inspect many test articles, a high-throughput system is desired. To add neutron - gamma distinction to the analysis provides a much desired enhancement to the characterizations. However, if the PSD addition significantly slows down the inspection throughput, this PSD feature defeats any analysis advantage. Our goal for the fast PSD system is to provide sorted timing pulses to a fast, multi-channel, time-correlation processor at rates approaching several million counts per second enabling high throughput, enhanced inspection of nuclear materials.