Building (mathematics) (original) (raw)

Property Value
dbo:abstract In der Mathematik sind Bruhat-Tits-Gebäude eine nicht-archimedische Variante symmetrischer Räume. Sie sind nach François Bruhat und Jacques Tits benannt. (de) In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings (named also after François Bruhat) plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups. (en) En mathématiques, un immeuble, aussi appelé l’immeuble Tits et l’immeuble Bruhat-Tits (nommé d'après François Bruhat et Jacques Tits) est une structure combinatoire et géométrique qui généralise simultanément certains aspects des variétés de drapeaux, des plans projectifs finis, et les espaces riemanniens symétriques. Introduite par Jacques Tits comme moyen de comprendre la structure des groupes exceptionnels de type de Lie, la théorie a également été utilisée pour l'étude de la géométrie et de la topologie des espaces homogènes des et leurs sous-groupes de symétrie discrets, de la même manière que les arbres ont été utilisés pour étudier les groupes libres. (fr) 数学における(ティッツの、あるいはブリュア–ティッツの)建物(たてもの、英: building, 仏: immeuble)は、とジャック・ティッツに名を因む、旗多様体、有限射影平面およびのある種の側面を一斉に一般化する組合せ論的かつ幾何学的な構造である。初め、建物はジャック・ティッツによっての構造を理解するための手段として導入され、その理論は自由群の研究に木が用いられたのと同じ仕方で、その離散的対称変換部分群の等質空間の幾何および位相を研究するのにも用いられた。 (ja)
dbo:thumbnail wiki-commons:Special:FilePath/Bruhat-Tits-tree-for-Q-2.png?width=300
dbo:wikiPageExternalLink http://web.univ-ubs.fr/lmam/barre/henri.pdf%7Cdoi=10.1007/s10711-007-9206-0 http://www.numdam.org/item%3Fid=PMIHES_1972__41__5_0%7Cdoi= http://www.numdam.org/item%3Fid=PMIHES_1995__82__169_0%7Cdoi=10.1007/bf02698640%7Cciteseerx=10.1.1.30.8282 http://www.numdam.org/numdam-bin/fitem%3Fid=AIF_1995__45_4_1037_0%7Cdoi=10.5802/aif.1483%7Caccess-date=2008-01-03%7Carchive-url=https:/web.archive.org/web/20110605032335/http:/www.numdam.org/numdam-bin/fitem%3Fid=AIF_1995__45_4_1037_0%23%7Carchive-date=2011-06-05%7Curl-status=dead%7Cdoi-access=free http://www.math.umn.edu/~garrett/m/buildings https://archive.org/details/geometricveincox0000unse/page/519 https://archive.org/details/lecturesonbuildi0000rona https://www.springer.com/mathematics/numbers/book/978-3-540-22290-3 http://hal.inria.fr/docs/00/09/43/63/PDF/_04a5_Euclidean_buildings_Grenoble_.pdf
dbo:wikiPageID 275015 (xsd:integer)
dbo:wikiPageLength 26534 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1111162754 (xsd:integer)
dbo:wikiPageWikiLink dbr:Projective_plane dbr:Mostow_rigidity_theorem dbr:Mostow_rigidity dbc:Algebraic_combinatorics dbr:Archimedean_property dbr:Hyperbolic_group dbr:Dynkin_diagram dbr:Incidence_geometry dbr:Intrinsic_metric dbr:Lie_group dbr:(B,_N)_pair dbc:Geometric_group_theory dbc:Group_theory dbr:Mathematics dbr:Generalized_polygon dbr:Generalized_quadrangle dbr:Geometric_group_theory dbr:Subring dbr:François_Bruhat dbr:French_language dbr:Geometry dbr:George_Mostow dbr:Weyl_distance_function dbr:Link_(geometry) dbr:Submodules dbr:Compactification_(mathematics) dbr:Orthonormal_basis dbr:Automorphism dbr:CAT(k)_space dbr:Tree_(graph_theory) dbr:Galois_extension dbr:Galois_group dbr:Local_field dbr:Abstract_simplicial_complex dbr:Aleksandr_Danilovich_Aleksandrov dbr:Algebra dbc:Mathematical_structures dbr:Cyclic_permutation dbr:Field_(mathematics) dbr:P-adic_integer dbr:P-adic_number dbr:Graph_theory dbr:Kac–Moody_algebra dbr:Tessellation dbr:Simplicial_complex dbr:Riemannian_symmetric_space dbr:Grigory_Margulis dbr:Group_(mathematics) dbr:Group_action_(mathematics) dbr:Hilbert_space dbr:Jacques_Tits dbr:Coxeter_complex dbr:Coxeter_group dbr:Flag_complex dbr:Affine_Hecke_algebra dbr:Reflection_group dbr:Dihedral_group dbr:Borel_subgroup dbr:Classification_of_finite_simple_groups dbr:Group_of_Lie_type dbr:Group_representation dbr:Incidence_structure dbr:Bruhat_decomposition dbr:Buekenhout_geometry dbr:Orbifold dbr:Flag_manifold dbr:Localization_of_a_ring dbr:Flag_(linear_algebra) dbr:Schreier_refinement_theorem dbr:P-adic_Lie_group dbr:Weyl_group dbr:Affine_Weyl_group dbr:BN_pair dbr:Jordan–Hölder_decomposition dbr:P-adic_norm dbr:Parabolic_subgroup dbr:Symmetric_spaces dbr:Outer_automorphism dbr:Tits_system dbr:File:Bruhat-Tits-tree-for-Q-2.png dbr:Hyperbolic_building dbr:Margulis_arithmeticity dbr:Martin_L._Brown dbr:Tits_geometry dbr:Tits_simplicity_theorem dbr:Twin_building
dbp:first William M. (en)
dbp:id T/t092900 (en)
dbp:last Kantor (en)
dbp:title Tits building (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:= dbt:Citation dbt:Colbegin dbt:Colend dbt:Improve_categories dbt:Math dbt:Mvar dbt:Short_description dbt:Harvnb dbt:Su dbt:Norm dbt:Abs
dct:subject dbc:Algebraic_combinatorics dbc:Geometric_group_theory dbc:Group_theory dbc:Mathematical_structures
gold:hypernym dbr:Combinatorial
rdf:type yago:WikicatMathematicalStructures yago:Artifact100021939 yago:Object100002684 yago:PhysicalEntity100001930 yago:YagoGeoEntity yago:YagoPermanentlyLocatedEntity yago:Structure104341686 yago:Whole100003553
rdfs:comment In der Mathematik sind Bruhat-Tits-Gebäude eine nicht-archimedische Variante symmetrischer Räume. Sie sind nach François Bruhat und Jacques Tits benannt. (de) In mathematics, a building (also Tits building, named after Jacques Tits) is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings (named also after François Bruhat) plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups. (en) En mathématiques, un immeuble, aussi appelé l’immeuble Tits et l’immeuble Bruhat-Tits (nommé d'après François Bruhat et Jacques Tits) est une structure combinatoire et géométrique qui généralise simultanément certains aspects des variétés de drapeaux, des plans projectifs finis, et les espaces riemanniens symétriques. Introduite par Jacques Tits comme moyen de comprendre la structure des groupes exceptionnels de type de Lie, la théorie a également été utilisée pour l'étude de la géométrie et de la topologie des espaces homogènes des et leurs sous-groupes de symétrie discrets, de la même manière que les arbres ont été utilisés pour étudier les groupes libres. (fr) 数学における(ティッツの、あるいはブリュア–ティッツの)建物(たてもの、英: building, 仏: immeuble)は、とジャック・ティッツに名を因む、旗多様体、有限射影平面およびのある種の側面を一斉に一般化する組合せ論的かつ幾何学的な構造である。初め、建物はジャック・ティッツによっての構造を理解するための手段として導入され、その理論は自由群の研究に木が用いられたのと同じ仕方で、その離散的対称変換部分群の等質空間の幾何および位相を研究するのにも用いられた。 (ja)
rdfs:label Bruhat-Tits-Gebäude (de) Building (mathematics) (en) Immeuble de Bruhat-Tits (fr) 建物 (数学) (ja)
owl:sameAs freebase:Building (mathematics) yago-res:Building (mathematics) wikidata:Building (mathematics) dbpedia-de:Building (mathematics) dbpedia-fr:Building (mathematics) dbpedia-he:Building (mathematics) dbpedia-ja:Building (mathematics) https://global.dbpedia.org/id/4cvcE
prov:wasDerivedFrom wikipedia-en:Building_(mathematics)?oldid=1111162754&ns=0
foaf:depiction wiki-commons:Special:FilePath/Bruhat-Tits-tree-for-Q-2.png
foaf:isPrimaryTopicOf wikipedia-en:Building_(mathematics)
is dbo:knownFor of dbr:François_Bruhat
is dbo:wikiPageDisambiguates of dbr:Building_(disambiguation)
is dbo:wikiPageRedirects of dbr:Building_theory dbr:Buildings_theory dbr:Bruhat-Tits_building dbr:BruhatTits_building dbr:Bruhat–Tits_building dbr:Tits_building dbr:Tits'_buildings dbr:Tits_buildings
is dbo:wikiPageWikiLink of dbr:Moufang_polygon dbr:Algebraic_torus dbr:Annette_Werner dbr:Hyperbolic_group dbr:Building_(disambiguation) dbr:Building_theory dbr:Buildings_theory dbr:Iwahori_subgroup dbr:Lie_theory dbr:Cornelia_Druțu dbr:Generalized_polygon dbr:Geometric_group_theory dbr:Wolf_Prize_in_Mathematics dbr:Real_tree dbr:François_Bruhat dbr:Weyl_distance_function dbr:Mark_Ronan dbr:Tree_(graph_theory) dbr:Field_with_one_element dbr:Discrete_geometry dbr:Jacques_Tits dbr:Coxeter_complex dbr:Tetrakis_hexahedron dbr:Reductive_group dbr:Group_of_Lie_type dbr:Orbifold dbr:Klein_polyhedron dbr:Shelling_(topology) dbr:Rigid_analytic_space dbr:Flat_manifold dbr:Moy–Prasad_filtration dbr:Tutte–Coxeter_graph dbr:Bruhat-Tits_building dbr:BruhatTits_building dbr:Bruhat–Tits_building dbr:Tits_building dbr:Tits'_buildings dbr:Tits_buildings
is dbp:knownFor of dbr:François_Bruhat
is foaf:primaryTopic of wikipedia-en:Building_(mathematics)