Exotic sphere (original) (raw)
En mathématiques, et plus précisément en topologie différentielle, une sphère exotique est une variété différentielle M qui est homéomorphe, mais non difféomorphe, à la n-sphère euclidienne standard. Autrement dit, M est une sphère du point de vue de ses propriétés topologiques, mais sa structure différentielle (qui définit, par exemple, la notion de vecteur tangent) n'est pas la structure usuelle, d'où l'adjectif « exotique ».
Property | Value |
---|---|
dbo:abstract | In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic"). The first exotic spheres were constructed by John Milnor in dimension as -bundles over . He showed that there are at least 7 differentiable structures on the 7-sphere. In any dimension showed that the diffeomorphism classes of oriented exotic spheres form the non-trivial elements of an abelian monoid under connected sum, which is a finite abelian group if the dimension is not 4. The classification of exotic spheres by Michel Kervaire and Milnor showed that the oriented exotic 7-spheres are the non-trivial elements of a cyclic group of order 28 under the operation of connected sum. (en) En mathématiques, et plus précisément en topologie différentielle, une sphère exotique est une variété différentielle M qui est homéomorphe, mais non difféomorphe, à la n-sphère euclidienne standard. Autrement dit, M est une sphère du point de vue de ses propriétés topologiques, mais sa structure différentielle (qui définit, par exemple, la notion de vecteur tangent) n'est pas la structure usuelle, d'où l'adjectif « exotique ». (fr) 미분위상수학에서 이국적 초구 모노이드(異國的超球monoid, 영어: monoid of exotic spheres)는 어떤 주어진 차원에서, 매끄러운 초구와 위상 동형이지만 미분 동형이 아닐 수 있는 매끄러운 유향 다양체들의 집합이다. 이 집합은 연결합을 통해 가환 모노이드를 이룬다. 4차원이 아닌 다른 모든 차원에서 이국적 초구 모노이드는 유한 아벨 군이지만, 4차원의 경우는 이 모노이드가 심지어 유한 집합인지 여부도 알려지지 않았다. (ko) In de differentiaaltopologie, een deelgebied van de wiskunde, is een exotische sfeer een differentieerbare variëteit die homeomorf is met de standaard euclidische -sfeer, maar niet daarmee diffeomorf. Dat betekent dat een dergelijke variëteit vanuit topologisch oogpunt weliswaar een sfeer is, maar vanuit het oogpunt van haar differentieerbare structuur juist geen sfeer is. Dus als dimensie heeft, bestaat er een homeomorfisme , maar is geen enkele een diffeomorfisme. De eerste exotische sferen werden in 1956 door John Milnor geconstrueerd in dimensie als -bundels over . Hij toonde aan dat er ten minste 7 differentieerbare structuren op de 7-sfeer bestaan. In 1959 liet Milnor in elke dimensie zien dat de diffeomorfisme klassen van georiënteerde exotische sferen niet-triviale elementen van een abelse monoïde onder verbonden som vormen, wat een eindige abelse groep is, wanneer de dimensie niet gelijk is aan 4. De classificatie van exotische sferen door Michel Kervaire en John Milnor (1963) heeft laten zien dat de georiënteerde exotische 7-sferen de niet-triviale elementen van een cyclische groep van orde 28 onder de operatie van de verbonden som zijn. (nl) Екзотична сфера — гладкий многовид М, що гомеоморфний, але не дифеоморфний стандартній n-сфері. (uk) Экзотическая сфера — гладкое многообразие М, которое гомеоморфно, но не диффеоморфно стандартной n-сфере. (ru) |
dbo:wikiPageExternalLink | http://www.nilesjohnson.net/seven-manifolds.html http://www.map.mpim-bonn.mpg.de/Gluck_construction%23References http://www.maths.ed.ac.uk/~aar/exotic.htm http://www.math.sunysb.edu/~jack/PREPRINTS/pcity-lec.pdf http://www.uni-math.gwdg.de/schick/publ/Groups%20of%20homotopy%20spheres%20I.pdf http://www.nilesjohnson.net/ https://eprints.ucm.es/17187/1/On%20twins%20in%20the%20four%20sphere.pdf https://web.archive.org/web/20110401030522/http:/www.manifoldatlas.him.uni-bonn.de/Exotic_spheres https://www.ams.org/notices/201106/rtx110600804p.pdf http://www.ima.umn.edu/2011-2012/SW1.30-2.1.12/ |
dbo:wikiPageID | 1114931 (xsd:integer) |
dbo:wikiPageLength | 28169 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1106870714 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:American_Journal_of_Mathematics dbr:Quaternion dbr:Kervaire_invariant_problem dbr:Bernoulli_number dbr:Derivative dbr:Algebraic_&_Geometric_Topology dbr:Annals_of_Mathematics dbr:Homeomorphic dbr:Index_of_a_subgroup dbr:J-homomorphism dbr:Continuous_function dbr:Critical_point_(mathematics) dbc:Surgery_theory dbr:Notices_of_the_American_Mathematical_Society dbr:Smooth_structure dbr:Edwin_E._Moise dbr:Boundary_(topology) dbr:Monoid dbr:N-sphere dbr:Connected_sum dbr:Proceedings_of_the_National_Academy_of_Sciences dbr:Smooth_function dbr:Stable_homotopy_groups_of_spheres dbr:Stephen_Smale dbc:Differential_structures dbr:Clutching_construction dbr:Commentarii_Mathematici_Helvetici dbr:Complex_manifold dbr:Kervaire_invariant dbr:Tuple dbr:H-cobordism dbc:Differential_topology dbc:Spheres dbr:Cyclic_group dbr:Exotic_R4 dbr:Exotic_sphere dbr:Fiber_bundle dbr:Diffeomorphism dbr:Differential_topology dbr:Grigori_Perelman dbr:Atlas_(topology) dbr:Abelian_group dbr:John_Milnor dbr:Surgery_theory dbr:Homeomorphism dbr:Homotopy_sphere dbr:Jean_Cerf dbr:Topology_(journal) dbr:Diffeomorphic dbr:Differentiable_manifold dbr:Bulletin_de_la_Société_Mathématique_de_France dbr:Piecewise_linear_manifold dbr:Poincaré_conjecture dbr:Michael_Freedman dbr:Orientability dbr:Cerf_theory dbr:Surgery_exact_sequence dbr:List_of_unsolved_problems_in_mathematics dbr:Finite_group dbr:Moise's_theorem dbr:Pseudoisotopy_theorem dbr:Parallelizable_manifold dbr:Seven-dimensional_space dbr:Morse_function dbr:Transactions_of_the_American_Mathematical_Society dbr:Springer-Verlag dbr:Kirby–Siebenmann_invariant dbr:Brieskorn_sphere dbr:The_Quarterly_Journal_of_Mathematics dbr:Alexander_Trick |
dbp:align | right (en) |
dbp:authorLink | Egbert Brieskorn (en) |
dbp:authorlink | Cameron Gordon (en) Michael Freedman (en) William Browder (en) Robert Gompf (en) John Milnor (en) Selman Akbulut (en) Julius Shaneson (en) Michel Kervaire (en) Sylvain Cappell (en) |
dbp:first | John (en) Michael (en) Robert (en) Scott (en) William (en) Cameron (en) Julius (en) Kevin (en) Michel (en) Selman (en) Egbert (en) Sylvain (en) Yuli B. (en) |
dbp:id | M/m063800 (en) |
dbp:last | Gordon (en) Morrison (en) Walker (en) Freedman (en) Akbulut (en) Browder (en) Brieskorn (en) Gompf (en) Milnor (en) Rudyak (en) Cappell (en) Kervaire (en) Shaneson (en) |
dbp:quote | -50.0 (dbd:second) |
dbp:title | Milnor sphere (en) |
dbp:txt | yes (en) |
dbp:width | 33.0 (dbd:perCent) |
dbp:wikiPageUsesTemplate | dbt:Springer dbt:As_of dbt:Citation dbt:Cite_journal dbt:Harv dbt:Harvtxt dbt:Main dbt:Math dbt:OEIS dbt:Pi dbt:Quote_box dbt:Reflist dbt:Short_description dbt:Use_dmy_dates dbt:Harvs |
dbp:year | 1956 (xsd:integer) 1963 (xsd:integer) 1966 (xsd:integer) 1969 (xsd:integer) 1976 (xsd:integer) 2010 (xsd:integer) |
dct:subject | dbc:Surgery_theory dbc:Differential_structures dbc:Differential_topology dbc:Spheres |
gold:hypernym | dbr:M |
rdf:type | dbo:Place yago:Artifact100021939 yago:Object100002684 yago:PhysicalEntity100001930 yago:YagoGeoEntity yago:YagoPermanentlyLocatedEntity yago:Structure104341686 yago:Whole100003553 yago:WikicatDifferentialStructures |
rdfs:comment | En mathématiques, et plus précisément en topologie différentielle, une sphère exotique est une variété différentielle M qui est homéomorphe, mais non difféomorphe, à la n-sphère euclidienne standard. Autrement dit, M est une sphère du point de vue de ses propriétés topologiques, mais sa structure différentielle (qui définit, par exemple, la notion de vecteur tangent) n'est pas la structure usuelle, d'où l'adjectif « exotique ». (fr) 미분위상수학에서 이국적 초구 모노이드(異國的超球monoid, 영어: monoid of exotic spheres)는 어떤 주어진 차원에서, 매끄러운 초구와 위상 동형이지만 미분 동형이 아닐 수 있는 매끄러운 유향 다양체들의 집합이다. 이 집합은 연결합을 통해 가환 모노이드를 이룬다. 4차원이 아닌 다른 모든 차원에서 이국적 초구 모노이드는 유한 아벨 군이지만, 4차원의 경우는 이 모노이드가 심지어 유한 집합인지 여부도 알려지지 않았다. (ko) Екзотична сфера — гладкий многовид М, що гомеоморфний, але не дифеоморфний стандартній n-сфері. (uk) Экзотическая сфера — гладкое многообразие М, которое гомеоморфно, но не диффеоморфно стандартной n-сфере. (ru) In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold M that is homeomorphic but not diffeomorphic to the standard Euclidean n-sphere. That is, M is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic"). (en) In de differentiaaltopologie, een deelgebied van de wiskunde, is een exotische sfeer een differentieerbare variëteit die homeomorf is met de standaard euclidische -sfeer, maar niet daarmee diffeomorf. Dat betekent dat een dergelijke variëteit vanuit topologisch oogpunt weliswaar een sfeer is, maar vanuit het oogpunt van haar differentieerbare structuur juist geen sfeer is. Dus als dimensie heeft, bestaat er een homeomorfisme , maar is geen enkele een diffeomorfisme. (nl) |
rdfs:label | Exotic sphere (en) Sphère exotique (fr) 이국적 초구 모노이드 (ko) Exotische sfeer (nl) Экзотическая сфера (ru) Екзотична сфера (uk) |
owl:sameAs | freebase:Exotic sphere yago-res:Exotic sphere wikidata:Exotic sphere dbpedia-fr:Exotic sphere dbpedia-ko:Exotic sphere dbpedia-nl:Exotic sphere dbpedia-ru:Exotic sphere dbpedia-uk:Exotic sphere https://global.dbpedia.org/id/2siMp |
prov:wasDerivedFrom | wikipedia-en:Exotic_sphere?oldid=1106870714&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Exotic_sphere |
is dbo:knownFor of | dbr:John_Milnor |
is dbo:wikiPageDisambiguates of | dbr:Exotic |
is dbo:wikiPageRedirects of | dbr:Gluck_twist dbr:Twisted_Sphere dbr:Twisted_sphere dbr:Milnor_sphere |
is dbo:wikiPageWikiLink of | dbr:Scalar_curvature dbr:Bernoulli_number dbr:Arf_invariant dbr:Homotopy_groups_of_spheres dbr:Hopf_fibration dbr:Pathological_(mathematics) dbr:J-homomorphism dbr:List_of_geometric_topology_topics dbr:List_of_manifolds dbr:List_of_people_from_New_Jersey dbr:Mathematical_beauty dbr:Generalized_Poincaré_conjecture dbr:Geometric_topology dbr:Low-dimensional_topology dbr:Smooth_structure dbr:Transport_of_structure dbr:Timeline_of_manifolds dbr:Timeline_of_mathematics dbr:Alexander's_trick dbr:N-sphere dbr:Connected_sum dbr:Milnor's_sphere dbr:Frédéric_Pham dbr:Kervaire_invariant dbr:Kervaire_manifold dbr:900_(number) dbr:William_Browder_(mathematician) dbr:7 dbr:4-manifold dbr:Exotic_R4 dbr:Exotic_sphere dbr:Brieskorn_manifold dbr:Diffeomorphism dbr:Differential_structure dbr:Differential_topology dbr:Gluck_twist dbr:Handlebody dbr:Hilbert_manifold dbr:Sphere_theorem dbr:John_Milnor dbr:Surgery_theory dbr:Eilenberg–Mazur_swindle dbr:Homotopy_group dbr:Homotopy_sphere dbr:Vector_fields_on_spheres dbr:Differentiable_manifold dbr:Borel_conjecture dbr:Piecewise_linear_manifold dbr:Poincaré_conjecture dbr:Sphere dbr:Exotic dbr:Knot_(mathematics) dbr:Michael_J._Hopkins dbr:Michel_Kervaire dbr:Cerf_theory dbr:List_of_things_named_after_John_Milnor dbr:Plumbing_(mathematics) dbr:Exceptional_object dbr:Moise's_theorem dbr:Surgery_structure_set dbr:Peter_L._Antonelli dbr:Seven-dimensional_space dbr:Sylvester's_sequence dbr:Twisted_Sphere dbr:Twisted_sphere dbr:Milnor_sphere |
is foaf:primaryTopic of | wikipedia-en:Exotic_sphere |