dbo:abstract |
Měřitelný kardinál je matematický pojem z oblasti teorie množin (kardinální aritmetiky). Patří mezi velké kardinály. (cs) In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α}, α ∈ κ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large. It turns out that uncountable cardinals endowed with a two-valued measure are large cardinals whose existence cannot be proved from ZFC. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930. (en) En mathématiques, un cardinal mesurable est un cardinal sur lequel existe une mesure définie pour tout sous-ensemble. Cette propriété fait qu'un tel cardinal est un grand cardinal. (fr) 집합론에서 가측 기수(可測基數, 영어: measurable cardinal)는 기본 매장으로 정의될 수 있는 기수이다. 큰 기수의 하나이다. (ko) Liczba mierzalna – nieprzeliczalna liczba kardynalna na której istnieje -zupełny niegłówny ultrafiltr. Liczba rzeczywiście mierzalna to nieprzeliczalna liczba kardynalna na której istnieje -addytywna miara, która znika na punktach i która mierzy wszystkie podzbiory Liczby mierzalne są punktem wyjściowym dla części hierarchii dużych liczb kardynalnych związanej z zanurzeniami elementarnymi V w model wewnętrzny M. (pl) Em matemática, especialmente em teoria dos conjuntos, um cardinal não enumerável é denominado mensurável se existe uma medida -aditiva, valorada em (ou seja, bivalente) e náo trivial sobre o conjunto potência . Cardinal mensurável é considerada uma propriedade de grande cardinal. (pt) 數學上,可測基數是一類大基數。為了定義此概念,考慮基數 κ 上僅取兩值(0 或 1)的測度。如此的測度可看成將 κ 的所有子集分成兩類:大和小,使得 κ 本身為大,但 ∅ 和所有單元素集合 皆為小,且小集的補集為大,反之亦然。同時還要求少於 κ 個大集的交集仍為大。 具有以上二值測度的不可數基數是大基數,ZFC 無法證明其存在。 可測基數的概念最早由斯塔尼斯拉夫·烏拉姆於 1930 年提出。 (zh) |
dbo:wikiPageExternalLink |
https://eudml.org/doc/212126 https://eudml.org/doc/212335 https://eudml.org/doc/212487 https://semanticscholar.org/paper/8d3d986c97fa971246dffd101c411d4e071c4155 http://faculty.sites.uci.edu/pjmaddy/bibliography/ |
dbo:wikiPageID |
248102 (xsd:integer) |
dbo:wikiPageLength |
14409 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1070898487 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Power_set dbr:Proper_class dbr:Model_theory dbr:Scott's_trick dbr:Intersection dbr:List_of_large_cardinal_properties dbr:Strong_cardinal dbr:Countable_set dbr:Mathematics dbr:Measure_(mathematics) dbr:Normal_measure dbr:Elementary_embedding dbr:Continuum_hypothesis dbr:Critical_point_(set_theory) dbr:Equiconsistency dbr:Sigma_additivity dbr:Stanislaw_Ulam dbr:Club_set dbr:Zermelo–Fraenkel_set_theory dbr:Fundamenta_Mathematicae dbr:Successor_cardinal dbr:Large_cardinal dbr:Lebesgue_measure dbr:Dana_Scott dbr:Outer_measure dbr:Cardinal_number dbc:Measures_(set_theory) dbr:Ultrafilter dbr:Atom_(measure_theory) dbc:Determinacy dbr:ZFC dbr:Mitchell_order dbr:Axiom_of_determinacy dbc:Large_cardinals dbr:Huge_cardinal dbr:Inaccessible_cardinal dbr:Ineffable_cardinal dbr:Injective_function dbr:Ordinal_number dbr:Singleton_(mathematics) dbr:Ramsey_cardinal dbr:Ultraproduct dbr:Probability_measure dbr:Subset dbr:Uncountable dbr:Universe_(set_theory) dbr:Transitive_class dbr:Set_complement dbr:Springer_Verlag dbr:Jerome_Keisler dbr:Carathéodory-measurable_set dbr:Weakly_Mahlo |
dbp:authorlink |
Stanislaw Ulam (en) Stefan Banach (en) |
dbp:first |
Stefan (en) Stanislaw (en) |
dbp:last |
Banach (en) Ulam (en) |
dbp:wikiPageUsesTemplate |
dbt:Citation dbt:Harvtxt dbt:Math dbt:Mvar dbt:NumBlk dbt:Reflist dbt:Short_description dbt:Tmath dbt:EquationRef dbt:EquationNote dbt:Mset dbt:Harvs |
dbp:year |
1930 (xsd:integer) |
dcterms:subject |
dbc:Measures_(set_theory) dbc:Determinacy dbc:Large_cardinals |
gold:hypernym |
dbr:Kind |
rdf:type |
yago:WikicatLargeCardinals yago:Bishop109857200 yago:Cardinal109894143 yago:CausalAgent100007347 yago:Clergyman109927451 yago:Leader109623038 yago:LivingThing100004258 yago:Object100002684 yago:Organism100004475 yago:Person100007846 yago:PhysicalEntity100001930 yago:Priest110470779 yago:YagoLegalActor yago:YagoLegalActorGeo yago:SpiritualLeader109505153 yago:Whole100003553 |
rdfs:comment |
Měřitelný kardinál je matematický pojem z oblasti teorie množin (kardinální aritmetiky). Patří mezi velké kardinály. (cs) En mathématiques, un cardinal mesurable est un cardinal sur lequel existe une mesure définie pour tout sous-ensemble. Cette propriété fait qu'un tel cardinal est un grand cardinal. (fr) 집합론에서 가측 기수(可測基數, 영어: measurable cardinal)는 기본 매장으로 정의될 수 있는 기수이다. 큰 기수의 하나이다. (ko) Liczba mierzalna – nieprzeliczalna liczba kardynalna na której istnieje -zupełny niegłówny ultrafiltr. Liczba rzeczywiście mierzalna to nieprzeliczalna liczba kardynalna na której istnieje -addytywna miara, która znika na punktach i która mierzy wszystkie podzbiory Liczby mierzalne są punktem wyjściowym dla części hierarchii dużych liczb kardynalnych związanej z zanurzeniami elementarnymi V w model wewnętrzny M. (pl) Em matemática, especialmente em teoria dos conjuntos, um cardinal não enumerável é denominado mensurável se existe uma medida -aditiva, valorada em (ou seja, bivalente) e náo trivial sobre o conjunto potência . Cardinal mensurável é considerada uma propriedade de grande cardinal. (pt) 數學上,可測基數是一類大基數。為了定義此概念,考慮基數 κ 上僅取兩值(0 或 1)的測度。如此的測度可看成將 κ 的所有子集分成兩類:大和小,使得 κ 本身為大,但 ∅ 和所有單元素集合 皆為小,且小集的補集為大,反之亦然。同時還要求少於 κ 個大集的交集仍為大。 具有以上二值測度的不可數基數是大基數,ZFC 無法證明其存在。 可測基數的概念最早由斯塔尼斯拉夫·烏拉姆於 1930 年提出。 (zh) In mathematics, a measurable cardinal is a certain kind of large cardinal number. In order to define the concept, one introduces a two-valued measure on a cardinal κ, or more generally on any set. For a cardinal κ, it can be described as a subdivision of all of its subsets into large and small sets such that κ itself is large, ∅ and all singletons {α}, α ∈ κ are small, complements of small sets are large and vice versa. The intersection of fewer than κ large sets is again large. The concept of a measurable cardinal was introduced by Stanislaw Ulam in 1930. (en) |
rdfs:label |
Měřitelný kardinál (cs) Cardinal mesurable (fr) 가측 기수 (ko) Measurable cardinal (en) Liczba mierzalna (pl) Cardinal mensurável (pt) 可測基數 (zh) |
owl:sameAs |
freebase:Measurable cardinal yago-res:Measurable cardinal wikidata:Measurable cardinal dbpedia-cs:Measurable cardinal dbpedia-fr:Measurable cardinal dbpedia-he:Measurable cardinal dbpedia-hu:Measurable cardinal dbpedia-ko:Measurable cardinal dbpedia-pl:Measurable cardinal dbpedia-pt:Measurable cardinal dbpedia-zh:Measurable cardinal https://global.dbpedia.org/id/54f8s |
prov:wasDerivedFrom |
wikipedia-en:Measurable_cardinal?oldid=1070898487&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Measurable_cardinal |
is dbo:wikiPageRedirects of |
dbr:Real-valued_measurable dbr:Real-valued_measurable_cardinal |
is dbo:wikiPageWikiLink of |
dbr:Robert_M._Solovay dbr:List_of_forcing_notions dbr:New_Foundations dbr:Lévy_hierarchy dbr:Löwenheim_number dbr:Ulam_matrix dbr:András_Hajnal dbr:Ultrafilter_(set_theory) dbr:Donald_A._Martin dbr:Inner_model dbr:List_of_large_cardinal_properties dbr:List_of_mathematical_logic_topics dbr:List_of_set_theory_topics dbr:Thomas_Jech dbr:Strong_cardinal dbr:Constructible_universe dbr:Measure_(mathematics) dbr:Menachem_Magidor dbr:Normal_measure dbr:Glossary_of_set_theory dbr:Core_model dbr:Critical_point_(set_theory) dbr:Martin_measure dbr:Stanislaw_Ulam dbr:Completely_uniformizable_space dbr:Zero_sharp dbr:Fundamental_group dbr:Jónsson_cardinal dbr:Large_cardinal dbr:RVM dbr:Regular_measure dbr:Jack_Silver dbr:Covering_lemma dbr:Absoluteness dbr:Kenneth_Kunen dbr:Higher-order_logic dbr:Homogeneously_Suslin_set dbr:Woodin_cardinal dbr:Zero_dagger dbr:Mitchell_order dbr:Axiom_of_constructibility dbr:Axiom_of_determinacy dbr:Borel_determinacy_theorem dbr:Frederick_Rowbottom dbr:Grothendieck_universe dbr:Huge_cardinal dbr:Set_theory dbr:Ramsey_cardinal dbr:Implementation_of_mathematics_in_set_theory dbr:List_of_statements_independent_of_ZFC dbr:Moti_Gitik dbr:Ultraproduct dbr:Strongly_compact_cardinal dbr:The_Higher_Infinite dbr:Real-valued_measurable dbr:Real-valued_measurable_cardinal |
is foaf:primaryTopic of |
wikipedia-en:Measurable_cardinal |