Method of steepest descent (original) (raw)

About DBpedia

Metoda najszybszego spadku – algorytm numeryczny mający na celu znalezienie minimum zadanej funkcji celu. Metoda najszybszego spadku jest modyfikacją metody gradientu prostego.

Property Value
dbo:abstract In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals. The integral to be estimated is often of the form where C is a contour, and λ is large. One version of the method of steepest descent deforms the contour of integration C into a new path integration C′ so that the following conditions hold: 1. * C′ passes through one or more zeros of the derivative g′(z), 2. * the imaginary part of g(z) is constant on C′. The method of steepest descent was first published by , who used it to estimate Bessel functions and pointed out that it occurred in the unpublished note by about hypergeometric functions. The contour of steepest descent has a minimax property, see . described some other unpublished notes of Riemann, where he used this method to derive the Riemann–Siegel formula. (en) En mathématiques, la méthode du point col (aussi appelée méthode du col, méthode de la plus grande pente ou méthode de la descente rapide ; en anglais, saddle point approximation ou SPA) permet d'évaluer le comportement asymptotique d'une intégrale complexe du type : lorsque . Les fonctions et sont analytiques et est un chemin d'intégration du plan complexe. Bien que reposant sur des concepts différents, la méthode du point col est généralement considérée comme l'extension de la méthode de la phase stationnaire aux intégrales complexes. Cette méthode est notamment utilisée en combinatoire analytique et en mécanique statistique. (fr) Metoda najszybszego spadku – algorytm numeryczny mający na celu znalezienie minimum zadanej funkcji celu. Metoda najszybszego spadku jest modyfikacją metody gradientu prostego. (pl) Метод перевала — метод, использующийся для аппроксимации интегралов вида где — некоторые мероморфные функции, — некоторое большое число, а контур может быть бесконечным. Этот метод часто называется обобщением метода Лапласа. (ru)
dbo:wikiPageExternalLink https://zenodo.org/record/2397260
dbo:wikiPageID 27082137 (xsd:integer)
dbo:wikiPageLength 31290 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1107236129 (xsd:integer)
dbo:wikiPageWikiLink dbr:Catastrophe_theory dbr:Bounded_set_(topological_vector_space) dbr:Definite_bilinear_form dbr:Holomorphic_function dbr:Riemann–Siegel_formula dbr:Sylvester's_law_of_inertia dbr:Analytic_function dbr:Mathematical_induction dbr:Saddle_point dbr:One-to-one_function dbr:Pearcey_integral dbr:Eigenvalues_and_eigenvectors dbr:Morse_theory dbr:Connected_space dbr:Combinatorics dbr:Partition_of_unity dbr:Stationary_phase_approximation dbc:Asymptotic_analysis dbr:Cauchy–Riemann_equations dbr:WKB_approximation dbr:Caustic_(optics) dbr:Bessel_functions dbr:Jordan_normal_form dbr:Simply_connected_space dbr:Jacobian_matrix_and_determinant dbr:Chain_rule dbr:Laplace's_method dbr:Hessian_matrix dbc:Perturbation_theory dbr:Method_of_steepest_descent dbr:Open_cover dbr:Open_set dbr:Random_matrices dbr:Soliton dbr:Maslov_index dbr:Riemann–Hilbert_factorization dbr:Hypergeometric_functions dbr:Integrable_model dbr:Complex_sphere dbr:File:Complex_Morse_Lemma_Illustration.pdf dbr:File:Illustration_To_Derivation_Of_Asymptotic_For_Saddle_Point_Integration.pdf
dbp:first M. V. (en)
dbp:last Fedoryuk (en)
dbp:proof The following proof is a straightforward generalization of the proof of the real Morse Lemma, which can be found in. We begin by demonstrating :Auxiliary statement. Let be holomorphic in a neighborhood of the origin and . Then in some neighborhood, there exist functions such that where each is holomorphic and From the identity : we conclude that : and : Without loss of generality, we translate the origin to , such that and . Using the Auxiliary Statement, we have : Since the origin is a saddle point, : we can also apply the Auxiliary Statement to the functions and obtain Recall that an arbitrary matrix can be represented as a sum of symmetric and anti-symmetric matrices, : The contraction of any symmetric matrix B with an arbitrary matrix is i.e., the anti-symmetric component of does not contribute because : Thus, in equation can be assumed to be symmetric with respect to the interchange of the indices and . Note that : hence, because the origin is a non-degenerate saddle point. Let us show by induction that there are local coordinates , such that First, assume that there exist local coordinates , such that where is symmetric due to equation . By a linear change of the variables , we can assure that . From the chain rule, we have : Therefore: : whence, : The matrix can be recast in the Jordan normal form: , were gives the desired non-singular linear transformation and the diagonal of contains non-zero eigenvalues of . If then, due to continuity of , it must be also non-vanishing in some neighborhood of the origin. Having introduced , we write : Motivated by the last expression, we introduce new coordinates : The change of the variables is locally invertible since the corresponding Jacobian is non-zero, : Therefore, Comparing equations and , we conclude that equation is verified. Denoting the eigenvalues of by , equation can be rewritten as Therefore, From equation , it follows that . The Jordan normal form of reads , where is an upper diagonal matrix containing the eigenvalues and ; hence, . We obtain from equation : If , then interchanging two variables assures that . (en) thumb|center
dbp:title Saddle point method (en) Derivation of equation (en) Proof of complex Morse lemma (en)
dbp:wikiPageUsesTemplate dbt:= dbt:Citation dbt:Cite_arXiv dbt:For dbt:Harvtxt dbt:Math dbt:Mvar dbt:NumBlk dbt:Reflist dbt:EquationRef dbt:Math_proof dbt:Eom
dct:subject dbc:Asymptotic_analysis dbc:Perturbation_theory
rdfs:comment Metoda najszybszego spadku – algorytm numeryczny mający na celu znalezienie minimum zadanej funkcji celu. Metoda najszybszego spadku jest modyfikacją metody gradientu prostego. (pl) Метод перевала — метод, использующийся для аппроксимации интегралов вида где — некоторые мероморфные функции, — некоторое большое число, а контур может быть бесконечным. Этот метод часто называется обобщением метода Лапласа. (ru) En mathématiques, la méthode du point col (aussi appelée méthode du col, méthode de la plus grande pente ou méthode de la descente rapide ; en anglais, saddle point approximation ou SPA) permet d'évaluer le comportement asymptotique d'une intégrale complexe du type : lorsque . Les fonctions et sont analytiques et est un chemin d'intégration du plan complexe. (fr) In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point (saddle point), in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals. The integral to be estimated is often of the form (en)
rdfs:label Méthode du point col (fr) Method of steepest descent (en) Metoda najszybszego spadku (pl) Метод перевала (ru)
owl:sameAs freebase:Method of steepest descent wikidata:Method of steepest descent dbpedia-fr:Method of steepest descent dbpedia-pl:Method of steepest descent dbpedia-ru:Method of steepest descent https://global.dbpedia.org/id/uSPf
prov:wasDerivedFrom wikipedia-en:Method_of_steepest_descent?oldid=1107236129&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Method_of_steepest_descent
is dbo:wikiPageRedirects of dbr:Saddle-point_approximation dbr:Saddle-point_method dbr:Saddle_point_approximation dbr:Saddle_point_method dbr:Stationary_phase_method dbr:Steepest_descent_method dbr:Steepest_descent_methods
is dbo:wikiPageWikiLink of dbr:Bell_number dbr:List_of_complex_analysis_topics dbr:Saddle-point_approximation dbr:Saddle-point_method dbr:Saddle_point_approximation dbr:Saddle_point_method dbr:Peter_Debye dbr:Riemann–Siegel_formula dbr:Nørlund–Rice_integral dbr:Common_integrals_in_quantum_field_theory dbr:Convex_optimization dbr:Analytic_Combinatorics dbr:Morse_theory dbr:Stirling's_approximation dbr:Zlatko_Tesanovic dbr:Partition_of_unity dbr:Stationary_phase_approximation dbr:Darwin–Fowler_method dbr:WKB_approximation dbr:Briggs–Bers_criterion dbr:Gribov_ambiguity dbr:Asymptotic_expansion dbr:Asymptotic_analysis dbr:Laplace's_method dbr:Korteweg–De_Vries_equation dbr:Method_of_moments_(electromagnetics) dbr:Method_of_steepest_descent dbr:Variable_neighborhood_search dbr:Riemann–Lebesgue_lemma dbr:Natural_resonance_theory dbr:Video_super-resolution dbr:Saddlepoint_approximation_method dbr:Riemann–Hilbert_problem dbr:Stationary_phase_method dbr:Steepest_descent_method dbr:Steepest_descent_methods
is foaf:primaryTopic of wikipedia-en:Method_of_steepest_descent