Quotient space (topology) (original) (raw)

About DBpedia

En matemàtiques, la topologia quocient és una topologia definida sobre el conjunt quocient generat per una relació d'equivalència sobre un espai topològic.

thumbnail

Property Value
dbo:abstract En matemàtiques, la topologia quocient és una topologia definida sobre el conjunt quocient generat per una relació d'equivalència sobre un espai topològic. (ca) Die Quotiententopologie (auch Identifizierungstopologie genannt) ist ein Begriff aus dem mathematischen Teilgebiet der Topologie. Anschaulich entsteht diese Topologie, wenn man Punkte „zusammenklebt“, d. h. zwei ehemals verschiedene Punkte als ein und denselben Punkt identifiziert. Solche Punkte werden mittels Äquivalenzrelationen festgelegt. Das geschieht im Allgemeinen, um neue topologische Räume aus bestehenden abzuleiten. Zu einer Verallgemeinerung dieser Konstruktion vergleiche den Artikel Finaltopologie. (de) En matemáticas, la topología cociente consiste intuitivamente en crear una topología pegando ciertos puntos sobre otros, en un espacio dado, por medio de una relación de equivalencia bien definida. El nuevo espacio así generado recibe el nombre de espacio cociente. Ejemplos conocidos son el toro matemático o la banda de Möbius. (es) In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space. Intuitively speaking, the points of each equivalence class are identified or "glued together" for forming a new topological space. For example, identifying the points of a sphere that belong to the same diameter produces the projective plane as a quotient space. (en) En mathématiques, la topologie quotient consiste intuitivement à créer une topologie en collant certains points d'un espace donné sur d'autres, par le biais d'une relation d'équivalence bien choisie. Cela est souvent fait dans le but de construire de nouveaux espaces à partir d'anciens. On parle alors d'espace topologique quotient. (fr) ( 벡터 공간의 몫공간에 대해서는 몫 벡터 공간 문서를 참고하십시오.) 일반위상수학에서 몫공간(-空間, 영어: quotient space)은 어떤 위상 공간의 몫집합 위에 표준적으로 존재하는 위상 공간이다. (ko) 位相空間論およびそれに関連する数学の各分野において、等化空間(とうかくうかん、英: identification space)または商位相空間(しょういそうくうかん、英: quotient topological space)あるいは単に商空間 (quotient space) とは、直観的には与えられた空間のある種の点の集まりを「貼合せ」("gluing together") あるいは同一視してしまうことによって得られる新しい空間である。ただし、ここで貼合わせられるべき点の集まりというのは、何らかの同値関係によって決定される。 このような商空間構成は、与えられた位相空間から新たな空間を構成する方法の一つとして広く用いられる。 (ja) In topologia, la topologia quoziente è intuitivamente quella ottenuta da uno spazio topologico "attaccando" alcuni punti fra loro. Lo spazio topologico che si ottiene viene anche chiamato spazio quoziente. (it) In de topologie, een deelgebied van de wiskunde, is een quotiënttopologie de geïnduceerde topologie op de equivalentieklassen van een equivalentierelatie op een topologische ruimte. Er ontstaat een nieuwe topologiche ruimte van de "aan elkaar geplakte" equivalente elementen. (nl) Topologia ilorazowa – w topologii, dziale matematyki, najbogatsza topologia określona na zbiorze ilorazowym, wyznaczonym przez relację równoważności określoną na danej przestrzeni topologicznej, względem której odwzorowanie ilorazowe jest ciągłe. Szczególne przypadki topologii ilorazowych badali jako pierwsi Robert Lee Moore oraz Paweł Aleksandrow. (pl) Em topologia, um espaço topológico quociente, X, é definido como, dado uma relação de equivalência, ~, o espaço topológico \(([X], au)\), onde \([X]\) denota as classes de equivalencia de X e au={U \subset 2^[X]| \união_{[x] \in U} x é aberto em X}. O quociente de um espaço topológico X por uma relação de equivalência ~ é o conjunto X/~ das classes de equivalência munido da topologia (chamada topologia quociente) cujos abertos são os conjuntos de classes cuja reunião é um aberto de X. (pt) 在拓扑学及其相关数学领域,一个商空间(quotient space,也称为等化空间identification space)直观上说是将一个给定空间的一些点等同或“黏合在一起”;由一个等价关系确定哪些点是等同的。这是从给定空间构造新空间的常见方法。 (zh) Фактор-простір — простір класів еквівалентності топологічного простору за заданим відношенням еквівалентності. (uk)
dbo:thumbnail wiki-commons:Special:FilePath/Disk_to_Sphere_using_Quotient_Space.gif?width=300
dbo:wikiPageID 237213 (xsd:integer)
dbo:wikiPageLength 18911 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1111766991 (xsd:integer)
dbo:wikiPageWikiLink dbr:Projective_plane dbr:Convergent_net dbr:Topological_dimension dbr:Homeomorphic dbr:Unit_circle dbr:Canonical_projection_map dbr:Lift_(mathematics) dbr:Compact_space dbr:Contractible dbr:Mathematics dbr:Quotient_group dbr:Quotient_set dbr:Closed_map dbr:Connectedness dbr:Equivalence_class dbr:Locally_compact dbr:Closed_set dbc:Quotient_objects dbr:Path_connected dbr:Adjunction_space dbr:Topological_group dbr:Topology dbr:Topology_(structure) dbr:Hausdorff_space dbr:Addison-Wesley dbc:Topology dbr:Equivalence_relation dbr:Directed_set dbr:Group_action_(mathematics) dbc:Continuous_mappings dbc:General_topology dbr:Bijection dbr:Surjective_function dbr:Homeomorphism dbr:Diameter dbr:Dimension dbc:Group_actions_(mathematics) dbr:Sphere dbr:Final_topology dbr:Continuous_function_(topology) dbr:If_and_only_if dbr:Integer dbr:Net_(mathematics) dbr:Open_map dbr:Open_set dbr:Orbit_(group_theory) dbr:Real_number dbr:Separation_axioms dbr:Bouquet_of_circles dbr:Space-filling_curve dbr:Saturated_set dbr:Universal_property dbr:Necessary_condition dbr:Topological_space dbr:Subset dbr:T1_space dbr:Preimage dbr:Sufficient_condition dbr:Simply_connected dbr:Finest_topology dbr:Product_space dbr:Singleton_set dbr:Convergent_sequence dbr:Unit_disc dbr:Subspace_(topology) dbr:Surjection dbr:File:Collapsing_a_subspace.svg dbr:File:Disk_to_Sphere_using_Quotient_Space.gif dbr:File:QuotientSpace-01.svg dbr:File:Universal_Property_of_Quotient_Spaces.svg
dbp:wikiPageUsesTemplate dbt:Bourbaki_General_Topology_Part_II_Chapters_5-10 dbt:Kelley_General_Topology dbt:Annotated_link dbt:Cite_book dbt:Em dbt:For dbt:Reflist dbt:Short_description dbt:Visible_anchor dbt:Bourbaki_General_Topology_Part_I_Chapters_1-4 dbt:Dugundji_Topology dbt:Munkres_Topology dbt:Willard_General_Topology dbt:Dixmier_General_Topology
dct:subject dbc:Quotient_objects dbc:Topology dbc:Continuous_mappings dbc:General_topology dbc:Group_actions_(mathematics)
rdf:type yago:Abstraction100002137 yago:Act100030358 yago:Event100029378 yago:GroupAction101080366 yago:PsychologicalFeature100023100 yago:WikicatGroupActions yago:YagoPermanentlyLocatedEntity
rdfs:comment En matemàtiques, la topologia quocient és una topologia definida sobre el conjunt quocient generat per una relació d'equivalència sobre un espai topològic. (ca) Die Quotiententopologie (auch Identifizierungstopologie genannt) ist ein Begriff aus dem mathematischen Teilgebiet der Topologie. Anschaulich entsteht diese Topologie, wenn man Punkte „zusammenklebt“, d. h. zwei ehemals verschiedene Punkte als ein und denselben Punkt identifiziert. Solche Punkte werden mittels Äquivalenzrelationen festgelegt. Das geschieht im Allgemeinen, um neue topologische Räume aus bestehenden abzuleiten. Zu einer Verallgemeinerung dieser Konstruktion vergleiche den Artikel Finaltopologie. (de) En matemáticas, la topología cociente consiste intuitivamente en crear una topología pegando ciertos puntos sobre otros, en un espacio dado, por medio de una relación de equivalencia bien definida. El nuevo espacio así generado recibe el nombre de espacio cociente. Ejemplos conocidos son el toro matemático o la banda de Möbius. (es) En mathématiques, la topologie quotient consiste intuitivement à créer une topologie en collant certains points d'un espace donné sur d'autres, par le biais d'une relation d'équivalence bien choisie. Cela est souvent fait dans le but de construire de nouveaux espaces à partir d'anciens. On parle alors d'espace topologique quotient. (fr) ( 벡터 공간의 몫공간에 대해서는 몫 벡터 공간 문서를 참고하십시오.) 일반위상수학에서 몫공간(-空間, 영어: quotient space)은 어떤 위상 공간의 몫집합 위에 표준적으로 존재하는 위상 공간이다. (ko) 位相空間論およびそれに関連する数学の各分野において、等化空間(とうかくうかん、英: identification space)または商位相空間(しょういそうくうかん、英: quotient topological space)あるいは単に商空間 (quotient space) とは、直観的には与えられた空間のある種の点の集まりを「貼合せ」("gluing together") あるいは同一視してしまうことによって得られる新しい空間である。ただし、ここで貼合わせられるべき点の集まりというのは、何らかの同値関係によって決定される。 このような商空間構成は、与えられた位相空間から新たな空間を構成する方法の一つとして広く用いられる。 (ja) In topologia, la topologia quoziente è intuitivamente quella ottenuta da uno spazio topologico "attaccando" alcuni punti fra loro. Lo spazio topologico che si ottiene viene anche chiamato spazio quoziente. (it) In de topologie, een deelgebied van de wiskunde, is een quotiënttopologie de geïnduceerde topologie op de equivalentieklassen van een equivalentierelatie op een topologische ruimte. Er ontstaat een nieuwe topologiche ruimte van de "aan elkaar geplakte" equivalente elementen. (nl) Topologia ilorazowa – w topologii, dziale matematyki, najbogatsza topologia określona na zbiorze ilorazowym, wyznaczonym przez relację równoważności określoną na danej przestrzeni topologicznej, względem której odwzorowanie ilorazowe jest ciągłe. Szczególne przypadki topologii ilorazowych badali jako pierwsi Robert Lee Moore oraz Paweł Aleksandrow. (pl) Em topologia, um espaço topológico quociente, X, é definido como, dado uma relação de equivalência, ~, o espaço topológico \(([X], au)\), onde \([X]\) denota as classes de equivalencia de X e au={U \subset 2^[X]| \união_{[x] \in U} x é aberto em X}. O quociente de um espaço topológico X por uma relação de equivalência ~ é o conjunto X/~ das classes de equivalência munido da topologia (chamada topologia quociente) cujos abertos são os conjuntos de classes cuja reunião é um aberto de X. (pt) 在拓扑学及其相关数学领域,一个商空间(quotient space,也称为等化空间identification space)直观上说是将一个给定空间的一些点等同或“黏合在一起”;由一个等价关系确定哪些点是等同的。这是从给定空间构造新空间的常见方法。 (zh) Фактор-простір — простір класів еквівалентності топологічного простору за заданим відношенням еквівалентності. (uk) In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient topology, that is, with the finest topology that makes continuous the canonical projection map (the function that maps points to their equivalence classes). In other words, a subset of a quotient space is open if and only if its preimage under the canonical projection map is open in the original topological space. (en)
rdfs:label Topologia quocient (ca) Quotiententopologie (de) Topología cociente (es) Topologie quotient (fr) Topologia quoziente (it) 商位相空間 (ja) 몫공간 (ko) Quotiënttopologie (nl) Topologia ilorazowa (pl) Quotient space (topology) (en) Espaço topológico quociente (pt) Факторпространство (ru) 商空间 (zh) Фактор-простір (uk)
owl:sameAs freebase:Quotient space (topology) yago-res:Quotient space (topology) wikidata:Quotient space (topology) dbpedia-ca:Quotient space (topology) dbpedia-de:Quotient space (topology) dbpedia-es:Quotient space (topology) dbpedia-fa:Quotient space (topology) dbpedia-fi:Quotient space (topology) dbpedia-fr:Quotient space (topology) dbpedia-he:Quotient space (topology) dbpedia-it:Quotient space (topology) dbpedia-ja:Quotient space (topology) dbpedia-ko:Quotient space (topology) dbpedia-nl:Quotient space (topology) dbpedia-pl:Quotient space (topology) dbpedia-pt:Quotient space (topology) dbpedia-ru:Quotient space (topology) dbpedia-tr:Quotient space (topology) dbpedia-uk:Quotient space (topology) dbpedia-vi:Quotient space (topology) dbpedia-zh:Quotient space (topology) https://global.dbpedia.org/id/Bw6b
prov:wasDerivedFrom wikipedia-en:Quotient_space_(topology)?oldid=1111766991&ns=0
foaf:depiction wiki-commons:Special:FilePath/Collapsing_a_subspace.svg wiki-commons:Special:FilePath/Disk_to_Sphere_using_Quotient_Space.gif wiki-commons:Special:FilePath/QuotientSpace-01.svg wiki-commons:Special:FilePath/Universal_Property_of_Quotient_Spaces.svg
foaf:isPrimaryTopicOf wikipedia-en:Quotient_space_(topology)
is dbo:wikiPageDisambiguates of dbr:Quotient_space
is dbo:wikiPageRedirects of dbr:Identification_map dbr:Quotient_topological_space dbr:Quotient_(topology) dbr:Quotient_map dbr:Quotient_topology dbr:Gluing_(topology) dbr:Identifiation_map dbr:Identification_space dbr:Hereditarily_quotient_map
is dbo:wikiPageWikiLink of dbr:Ptak_space dbr:List_of_general_topology_topics dbr:Modulo_(mathematics) dbr:Prime_geodesic dbr:Projectivization dbr:Real-valued_function dbr:Borromean_rings dbr:Hopf_fibration dbr:HyperRogue dbr:Descent_(mathematics) dbr:Dunce_hat_(topology) dbr:Indefinite_inner_product_space dbr:James_reduced_product dbr:Kähler_quotient dbr:Solid_Klein_bottle dbr:Timeline_of_category_theory_and_related_mathematics dbr:Complete_topological_vector_space dbr:Mayer–Vietoris_sequence dbr:Chern's_conjecture_(affine_geometry) dbr:Gauge_theory_(mathematics) dbr:General_topology dbr:Geometric_group_action dbr:Natural_transformation dbr:Quasitoric_manifold dbr:Tychonoff_space dbr:Quotient dbr:Quotient_category dbr:Quotient_module dbr:Quotient_type dbr:Second-countable_space dbr:Classifying_space dbr:Alexandroff_extension dbr:Alexandrov_topology dbr:Alexiewicz_norm dbr:Ehrenfest_paradox dbr:Geometric_invariant_theory dbr:Branched_surface dbr:Möbius_strip dbr:Connected_space dbr:Connection_(principal_bundle) dbr:Corestriction dbr:Equivalence_class dbr:Arithmetic_variety dbr:Arnold's_cat_map dbr:Loop_(topology) dbr:Stone–Čech_compactification dbr:Compactification_(mathematics) dbr:Compactly_generated_space dbr:Complex_projective_space dbr:Fubini–Study_metric dbr:Harmonic_superspace dbr:Kernel_(algebra) dbr:Path_(topology) dbr:Topological_pair dbr:Surface_(topology) dbr:Suspension_(dynamical_systems) dbr:Suspension_(topology) dbr:Symmetric_product_of_an_algebraic_curve dbr:Wedge_sum dbr:Mapping_cone_(topology) dbr:Mapping_cylinder dbr:Mathematics_Made_Difficult dbr:Non-linear_sigma_model dbr:Adjunction_space dbr:Topological_vector_space dbr:Torus dbr:Weinberg–Witten_theorem dbr:Dodecadodecahedron dbr:Dogbone_space dbr:Hausdorff_space dbr:Join_(topology) dbr:K-topology dbr:Lattice_(discrete_subgroup) dbr:Linear_flow_on_the_torus dbr:Local_homeomorphism dbr:Locally_compact_space dbr:Pointed_space dbr:3-sphere dbr:3D_rotation_group dbr:Abstract_simplicial_complex dbr:3-manifold dbr:Equivalence_relation dbr:Euler_angles dbr:Fiber_bundle dbr:First_class_constraint dbr:Foliation dbr:Cellular_decomposition dbr:Dianalytic_manifold dbr:Discrete_geometry dbr:Glossary_of_topology dbr:Graphon dbr:Handle_decomposition dbr:Isomorphism dbr:Killing–Hopf_theorem dbr:Kolmogorov_space dbr:Tangential_and_normal_components dbr:T-duality dbr:Glue_(disambiguation) dbr:Projective_line dbr:Pseudometric_space dbr:Quotient_space dbr:Quotient_space_(linear_algebra) dbr:Reeb_graph dbr:Riemannian_submersion dbr:Smash_product dbr:BRST_quantization dbr:Ba_space dbr:Countably_generated_space dbr:Covering_space dbr:Hyperbolic_3-manifold dbr:Hyperbolic_space dbr:Nilmanifold dbr:Karen_Vogtmann dbr:Kernel_(set_theory) dbr:Bing_shrinking dbr:Surface_Evolver dbr:Symmetric_power dbr:Cocompact_group_action dbr:Coherent_topology dbr:Homology_sphere dbr:Homotopy dbr:Trivial_topology dbr:Identification_map dbr:Asplund_space dbr:Associated_bundle dbr:Automorphic_function dbr:Manifold dbr:Born_coordinates dbr:Bosonic_string_theory dbr:CW_complex dbr:Final_topology dbr:Induced_representation dbr:Klein_bottle dbr:Order-5_dodecahedral_honeycomb dbr:Cartan_connection dbr:Quotient_topological_space dbr:R._H._Bing dbr:Real_projective_space dbr:Sequential_space dbr:Shape_of_the_universe dbr:Kleinian_group dbr:Kleinian_model dbr:Topological_indistinguishability dbr:Topological_manifold dbr:Vacuum_manifold dbr:Real_projective_plane dbr:Rose_(topology) dbr:Section_(category_theory) dbr:Uniformization_theorem dbr:Gupta–Bleuler_formalism dbr:List_of_topology_topics dbr:Plane_at_infinity dbr:Subspace_topology dbr:Plumbing_(mathematics) dbr:First-countable_space dbr:Navier–Stokes_existence_and_smoothness dbr:Moment_map dbr:Morse_homology dbr:Natural_topology dbr:Pinched_torus dbr:Seifert–Van_Kampen_theorem dbr:Non-Hausdorff_manifold dbr:Symplectic_sum dbr:Perfect_map dbr:Topological_space dbr:Subobject dbr:Seifert–Weber_space dbr:Quotient_(disambiguation) dbr:Quotient_(topology) dbr:Quotient_map dbr:Quotient_topology dbr:Gluing_(topology) dbr:Identifiation_map dbr:Identification_space dbr:Hereditarily_quotient_map
is foaf:primaryTopic of wikipedia-en:Quotient_space_(topology)