Modelling breast cancer: one size does not fit all (original) (raw)
American Cancer Society. Cancer facts and figures 2007. (American Cancer Society, 2007).
Ferlay, J. et al. Estimates of the cancer incidence and mortality in Europe in 2006. Ann. Oncol.18, 581–592 (2007). ArticleCASPubMed Google Scholar
Ravdin, P. M. et al. The decrease in breast-cancer incidence in 2003 in the United States. N. Engl. J. Med.356, 1670–1674 (2007). ArticleCASPubMed Google Scholar
Lacroix, M. & Leclercq, G. Relevance of breast cancer cell lines as models for breast tumours: an update. Breast Cancer Res. Treat.83, 249–289 (2004). ArticleCASPubMed Google Scholar
Hahn, W. C. & Weinberg, R. A. Rules for making human tumor cells. N. Engl. J. Med.347, 1593–1603 (2002). ArticleCASPubMed Google Scholar
Rangarajan, A., Hong, S. J., Gifford, A. & Weinberg, R. A. Species- and cell type-specific requirements for cellular transformation. Cancer Cell6, 171–183 (2004). ArticleCASPubMed Google Scholar
Rangarajan, A. & Weinberg, R. A. Comparative biology of mouse versus human cells: modelling human cancer in mice. Nature Rev. Cancer3, 952–959 (2003). ArticleCAS Google Scholar
Nandi, S., Guzman, R. C. & Yang, J. Hormones and mammary carcinogenesis in mice, rats, and humans: a unifying hypothesis. Proc. Natl Acad. Sci. USA92, 3650–3657 (1995). ArticleCASPubMedPubMed Central Google Scholar
Burdall, S. E., Hanby, A. M., Lansdown, M. R. & Speirs, V. Breast cancer cell lines: friend or foe? Breast Cancer Res.5, 89–95 (2003). ArticlePubMedPubMed Central Google Scholar
Perou, C. M. et al. Molecular portraits of human breast tumours. Nature406, 747–752 (2000). This seminal molecular profiling study of human breast cancers identified five distinct subtypes of ductal carcinoma. ArticleCASPubMed Google Scholar
Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nature Genet.24, 227–235 (2000). ArticleCASPubMed Google Scholar
Charafe-Jauffret, E. et al. Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene25, 2273–2284 (2006). ArticleCASPubMed Google Scholar
Neve, R. M. et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell10, 515–527 (2006). This comprehensive study, which compares the molecular profiles and genomic alterations of 51 breast cancer cell lines and human breast tumours, highlights the similarities and differences between cell lines and primary tumours and suggests that when subtype cell lines are used as a system they provide powerful models for investigating breast cancer. ArticleCASPubMedPubMed Central Google Scholar
Weigelt, B., Bosma, A. J., Hart, A. A., Rodenhuis, S. & van 't Veer, L. J. Marker genes for circulating tumour cells predict survival in metastasized breast cancer patients. Br. J. Cancer88, 1091–1094 (2003). ArticleCASPubMedPubMed Central Google Scholar
Dontu, G. et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev.17, 1253–1270 (2003). ArticleCASPubMedPubMed Central Google Scholar
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA100, 3983–3988 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ponti, D. et al. Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res.65, 5506–5511 (2005). ArticleCASPubMed Google Scholar
Polyak, K. Molecular alterations in ductal carcinoma in situ of the breast. Curr. Opin. Oncol.14, 92–96 (2002). ArticleCASPubMed Google Scholar
Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature414, 105–111 (2001). ArticleCASPubMed Google Scholar
Wicha, M. S., Liu, S. & Dontu, G. Cancer stem cells: an old idea — a paradigm shift. Cancer Res.66, 1883–1890; discussion 1895–1886 (2006). ArticleCASPubMed Google Scholar
Dalerba, P., Cho, R. W. & Clarke, M. F. Cancer stem cells: models and concepts. Annu. Rev. Med.58, 267–284 (2007). ArticleCASPubMed Google Scholar
Kuperwasser, C. et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl Acad. Sci. USA101, 4966–4971 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dontu, G. & Wicha, M. S. Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J. Mammary Gland Biol. Neoplasia10, 75–86 (2005). ArticlePubMed Google Scholar
Phillips, T. M., McBride, W. H. & Pajonk, F. The response of CD24−/low/CD44+ breast cancer-initiating cells to radiation. J. Natl Cancer Inst.98, 1777–1785 (2006). ArticlePubMed Google Scholar
Chen, M. S. et al. Wnt/β-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. J. Cell Sci.120, 468–477 (2007). ArticleCASPubMed Google Scholar
Woodward, W. A. et al. WNT/β-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc. Natl Acad. Sci. USA104, 618–623 (2007). ArticleCASPubMedPubMed Central Google Scholar
Sheridan, C. et al. CD44+/CD24− breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res.8, R59 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Shipitsin, M. et al. Molecular definition of breast tumor heterogeneity. Cancer Cell11, 259–273 (2007). ArticleCASPubMed Google Scholar
Abraham, B. K. et al. Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin. Cancer Res.11, 1154–1159 (2005). CASPubMed Google Scholar
Liu, R. et al. The prognostic role of a gene signature from tumorigenic breast-cancer cells. N. Engl. J. Med.356, 217–226 (2007). ArticleCASPubMed Google Scholar
Armstrong, L. et al. Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells22, 1142–1151 (2004). ArticlePubMed Google Scholar
Fillmore, C. & Kuperwasser, C. Human breast cancer stem cell markers CD44 and CD24: enriching for cells with functional properties in mice or in man? Breast Cancer Res.9, 303 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Ross, D. T. & Perou, C. M. A comparison of gene expression signatures from breast tumors and breast tissue derived cell lines. Dis. Markers17, 99–109 (2001). ArticleCASPubMed Google Scholar
Kenny, P. A. et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol.1, 84–96 (2007). This study compares gene expression, genomic alterations and morphologies of 27 breast cancer cell lines cultured in 2D versus 3D conditions, which indicates that 3D cultures more precisely mimic thein vivoenvironment. ArticleCASPubMedPubMed Central Google Scholar
Li, C. et al. Cell type and culture condition-dependent alternative splicing in human breast cancer cells revealed by splicing-sensitive microarrays. Cancer Res.66, 1990–1999 (2006). ArticleCASPubMed Google Scholar
Shaw, K. R., Wrobel, C. N. & Brugge, J. S. Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J. Mammary Gland Biol. Neoplasia9, 297–310 (2004). ArticlePubMed Google Scholar
Debnath, J. & Brugge, J. S. Modelling glandular epithelial cancers in three-dimensional cultures. Nature Rev. Cancer5, 675–688 (2005). ArticleCAS Google Scholar
Paszek, M. J. & Weaver, V. M. The tension mounts: mechanics meets morphogenesis and malignancy. J. Mammary Gland Biol. Neoplasia9, 325–342 (2004). ArticlePubMed Google Scholar
Lee, G. Y., Kenny, P. A., Lee, E. H. & Bissell, M. J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nature Methods4, 359–365 (2007). ArticleCASPubMedPubMed Central Google Scholar
Paszek, M. J. et al. Tensional homeostasis and the malignant phenotype. Cancer Cell8, 241–254 (2005). ArticleCASPubMed Google Scholar
Chan, S. K., Hill, M. E. & Gullick, W. J. The role of the epidermal growth factor receptor in breast cancer. J. Mammary Gland Biol. Neoplasia11, 3–11 (2006). ArticlePubMed Google Scholar
van Golen, K. L. Inflammatory breast cancer: relationship between growth factor signaling and motility in aggressive cancers. Breast Cancer Res.5, 174–179 (2003). ArticlePubMedPubMed Central Google Scholar
Dillon, R. L., White, D. E. & Muller, W. J. The phosphatidyl inositol 3-kinase signaling network: implications for human breast cancer. Oncogene26, 1338–1345 (2007). ArticleCASPubMed Google Scholar
Joyce, J. A. Therapeutic targeting of the tumor microenvironment. Cancer Cell7, 513–520 (2005). ArticleCASPubMed Google Scholar
Albini, A. & Sporn, M. B. The tumour microenvironment as a target for chemoprevention. Nature Rev. Cancer7, 139–147 (2007). ArticleCAS Google Scholar
Fukino, K., Shen, L., Patocs, A., Mutter, G. L. & Eng, C. Genomic instability within tumor stroma and clinicopathological characteristics of sporadic primary invasive breast carcinoma. JAMA297, 2103–2111 (2007). ArticleCASPubMed Google Scholar
Pukrop, T. et al. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc. Natl Acad. Sci. USA103, 5454–5459 (2006). ArticleCASPubMedPubMed Central Google Scholar
Hagemann, T. et al. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-α dependent up-regulation of matrix metalloproteases. Carcinogenesis25, 1543–1549 (2004). ArticleCASPubMed Google Scholar
Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res.65, 5278–5283 (2005). ArticleCASPubMed Google Scholar
Tsutsui, S. et al. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol. Rep.14, 425–431 (2005). CASPubMed Google Scholar
Leek, R. D., Landers, R. J., Harris, A. L. & Lewis, C. E. Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br. J. Cancer79, 991–995 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lin, E. Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res.66, 11238–11246 (2006). ArticleCASPubMed Google Scholar
Heppner, G. H., Miller, F. R. & Shekhar, P. M. Nontransgenic models of breast cancer. Breast Cancer Res.2, 331–334 (2000). ArticleCASPubMed Google Scholar
Balkwill, F., Charles, K. A. & Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell7, 211–217 (2005). ArticleCASPubMed Google Scholar
Schwertfeger, K. L., Rosen, J. M. & Cohen, D. A. Mammary gland macrophages: pleiotropic functions in mammary development. J. Mammary Gland Biol. Neoplasia11, 229–238 (2006). ArticlePubMed Google Scholar
Hovey, R. C., McFadden, T. B. & Akers, R. M. Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J. Mammary Gland Biol. Neoplasia4, 53–68 (1999). ArticleCASPubMed Google Scholar
Weigelt, B., Peterse, J. L. & van 't Veer, L. J. Breast cancer metastasis: markers and models. Nature Rev. Cancer5, 591–602 (2005). ArticleCAS Google Scholar
Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature436, 518–524 (2005). A breast cancer cell line xenograft metastasis model was used to identify a metastasis gene signature that could identify patients who would develop metastatic disease. ArticleCASPubMedPubMed Central Google Scholar
Kluger, H. M. et al. Using a xenograft model of human breast cancer metastasis to find genes associated with clinically aggressive disease. Cancer Res.65, 5578–5587 (2005). ArticleCASPubMed Google Scholar
Montel, V., Huang, T. Y., Mose, E., Pestonjamasp, K. & Tarin, D. Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model. Am. J. Pathol.166, 1565–1579 (2005). ArticleCASPubMedPubMed Central Google Scholar
Liu, S. et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res.66, 6063–6071 (2006). ArticleCASPubMedPubMed Central Google Scholar
Prendergast, G. C. & Jaffee, E. M. Cancer immunologists and cancer biologists: why we didn't talk then but need to now. Cancer Res.67, 3500–3504 (2007). ArticleCASPubMed Google Scholar
Voskoglou-Nomikos, T., Pater, J. L. & Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res.9, 4227–4239 (2003). PubMed Google Scholar
Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nature Rev. Cancer6, 813–823 (2006). ArticleCAS Google Scholar
Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer84, 1424–1431 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sharpless, N. E. & Depinho, R. A. The mighty mouse: genetically engineered mouse models in cancer drug development. Nature Rev. Drug Discov.5, 741–754 (2006). ArticleCAS Google Scholar
Proia, D. A. & Kuperwasser, C. Reconstruction of human mammary tissues in a mouse model. Nature Protoc.1, 206–214 (2006). ArticleCAS Google Scholar
Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell121, 335–348 (2005). ArticleCASPubMed Google Scholar
MacDonald, I. C. & Chambers, A. F. Breast cancer metastasis progression as revealed by intravital videomicroscopy. Expert Rev. Anticancer Ther.6, 1271–1279 (2006). ArticlePubMed Google Scholar
Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res.67, 2649–2656 (2007). ArticleCASPubMed Google Scholar
Varticovski, L. et al. Accelerated preclinical testing using transplanted tumors from genetically engineered mouse breast cancer models. Clin. Cancer Res.13, 2168–2177 (2007). ArticleCASPubMed Google Scholar
Guy, C. T., Cardiff, R. D. & Muller, W. J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol.12, 954–961 (1992). ArticleCASPubMedPubMed Central Google Scholar
Guy, C. T. et al. Expression of the Neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA89, 10578–10582 (1992). ArticleCASPubMedPubMed Central Google Scholar
Muller, W. J., Sinn, E., Pattengale, P. K., Wallace, R. & Leder, P. Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-Neu oncogene. Cell54, 105–115 (1988). ArticleCASPubMed Google Scholar
Sinn, E. et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell49, 465–475 (1987). ArticleCASPubMed Google Scholar
Gunther, E. J. et al. A novel doxycycline-inducible system for the transgenic analysis of mammary gland biology. FASEB J.16, 283–292 (2002). ArticleCASPubMed Google Scholar
Wagner, K. U. et al. Spatial and temporal expression of the Cre gene under the control of the MMTV-LTR in different lines of transgenic mice. Transgenic Res.10, 545–553 (2001). ArticleCASPubMed Google Scholar
Jonkers, J. et al. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genet.29, 418–425 (2001). ArticleCASPubMed Google Scholar
Lin, S. C. et al. Somatic mutation of p53 leads to estrogen receptor α-positive and -negative mouse mammary tumors with high frequency of metastasis. Cancer Res.64, 3525–3532 (2004). ArticleCASPubMed Google Scholar
Utomo, A. R., Nikitin, A. Y. & Lee, W. H. Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nature Biotech.17, 1091–1096 (1999). ArticleCAS Google Scholar
Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl Acad. Sci. USA98, 9209–9214 (2001). ArticleCASPubMedPubMed Central Google Scholar
Soyal, S. M. et al. Cre-mediated recombination in cell lineages that express the progesterone receptor. Genesis41, 58–66 (2005). ArticleCASPubMed Google Scholar
Mukherjee, A. et al. Targeting iCre expression to murine progesterone receptor cell-lineages using bacterial artificial chromosome transgenesis. Genesis44, 601–610 (2006). ArticleCASPubMed Google Scholar
Du, Z. et al. Introduction of oncogenes into mammary glands in vivo with an avian retroviral vector initiates and promotes carcinogenesis in mouse models. Proc. Natl Acad. Sci. USA103, 17396–17401 (2006). ArticleCASPubMedPubMed Central Google Scholar
Cardiff, R. D. et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene19, 968–988 (2000). This is a seminal report on the comparative pathology and biology of mammary tumours from GEM and human breast cancers. ArticleCASPubMed Google Scholar
Russo, J. & Russo, I. H. Atlas and histologic classification of tumors of the rat mammary gland. J. Mammary Gland Biol. Neoplasia5, 187–200 (2000). ArticleCASPubMed Google Scholar
Gunther, E. J. et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev.17, 488–501 (2003). ArticleCASPubMedPubMed Central Google Scholar
Desai, K. V. et al. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc. Natl Acad. Sci. USA99, 6967–6972 (2002). This molecular profiling study compares six widely used genetically engineered mouse models of breast cancer with each other and with normal mammary glands to identify oncogene-specific and nonspecific pathways that contribute to tumour development and progression. ArticleCASPubMedPubMed Central Google Scholar
Moody, S. E. et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell2, 451–461 (2002). ArticleCASPubMed Google Scholar
Boxer, R. B., Jang, J. W., Sintasath, L. & Chodosh, L. A. Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell6, 577–586 (2004). ArticleCASPubMed Google Scholar
Derksen, P. W. et al. Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell10, 437–449 (2006). ArticleCASPubMed Google Scholar
Andrechek, E. R. et al. Amplification of the Neu/ErbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl Acad. Sci. USA97, 3444–3449 (2000). ArticleCASPubMedPubMed Central Google Scholar
Slamon, D. J. et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/Neu oncogene. Science235, 177–182 (1987). ArticleCASPubMed Google Scholar
Elledge, R. M. & Allred, D. C. Prognostic and predictive value of p53 and p21 in breast cancer. Breast Cancer Res. Treat.52, 79–98 (1998). ArticleCASPubMed Google Scholar
Hu, Y. et al. From mice to humans: identification of commonly deregulated genes in mammary cancer via comparative SAGE studies. Cancer Res.64, 7748–7755 (2004). ArticleCASPubMedPubMed Central Google Scholar
Bouchard, L., Lamarre, L., Tremblay, P. J. & Jolicoeur, P. Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-Neu oncogene. Cell57, 931–936 (1989). ArticleCASPubMed Google Scholar
Ursini-Siegel, J., Schade, B., Cardiff, R. D. & Muller, W. J. Insights from transgenic mouse models of ERBB2-induced breast cancer. Nature Rev. Cancer7, 389–397 (2007). ArticleCAS Google Scholar
Siegel, P. M., Dankort, D. L., Hardy, W. R. & Muller, W. J. Novel activating mutations in the Neu proto-oncogene involved in induction of mammary tumors. Mol. Cell. Biol.14, 7068–7077 (1994). ArticleCASPubMedPubMed Central Google Scholar
Montagna, C., Andrechek, E. R., Padilla-Nash, H., Muller, W. J. & Ried, T. Centrosome abnormalities, recurring deletions of chromosome 4, and genomic amplification of HER2/Neu define mouse mammary gland adenocarcinomas induced by mutant HER2/Neu. Oncogene21, 890–898 (2002). ArticleCASPubMed Google Scholar
Hodgson, J. G. et al. Copy number aberrations in mouse breast tumors reveal loci and genes important in tumorigenic receptor tyrosine kinase signaling. Cancer Res.65, 9695–9704 (2005). ArticleCASPubMed Google Scholar
Andrechek, E. R. et al. Gene expression profiling of _Neu_-induced mammary tumors from transgenic mice reveals genetic and morphological similarities to _ErbB2_-expressing human breast cancers. Cancer Res.63, 4920–4926 (2003). CASPubMed Google Scholar
Slamon, D. J. et al. Studies of the HER-2/Neu proto-oncogene in human breast and ovarian cancer. Science244, 707–712 (1989). ArticleCASPubMed Google Scholar
Herschkowitz, J. I. et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol.8, R76 (2007). This molecular profiling study compares 13 widely used genetically engineered mouse models of breast cancer with human breast cancers to provide a framework for comparing GEM and human breast cancer. ArticlePubMedPubMed CentralCAS Google Scholar
Li, Y. et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl Acad. Sci. USA100, 15853–15858 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gestl, S. A., Leonard, T. L., Biddle, J. L., Debies, M. T. & Gunther, E. J. Dormant Wnt-initiated mammary cancer can participate in reconstituting functional mammary glands. Mol. Cell. Biol.27, 195–207 (2007). ArticleCASPubMed Google Scholar
Welm, A. L. et al. The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proc. Natl Acad. Sci. USA104, 7570–7575 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kuperwasser, C. et al. A mouse model of human breast cancer metastasis to human bone. Cancer Res.65, 6130–6138 (2005). ArticleCASPubMed Google Scholar
Westbrook, T. F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell121, 837–848 (2005). ArticleCASPubMed Google Scholar
Dobie, K. W. et al. Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc. Natl Acad. Sci. USA93, 6659–6664 (1996). ArticleCASPubMedPubMed Central Google Scholar
Choi, Y. W., Henrard, D., Lee, I. & Ross, S. R. The mouse mammary tumor virus long terminal repeat directs expression in epithelial and lymphoid cells of different tissues in transgenic mice. J. Virol.61, 3013–3019 (1987). CASPubMedPubMed Central Google Scholar
Henrard, D. & Ross, S. R. Endogenous mouse mammary tumor virus is expressed in several organs in addition to the lactating mammary gland. J. Virol.62, 3046–3049 (1988). CASPubMedPubMed Central Google Scholar
Wen, J., Kawamata, Y., Tojo, H., Tanaka, S. & Tachi, C. Expression of whey acidic protein (WAP) genes in tissues other than the mammary gland in normal and transgenic mice expressing mWAP/hGH fusion gene. Mol. Reprod. Dev.41, 399–406 (1995). ArticleCASPubMed Google Scholar
Cardiff, R. D. Validity of mouse mammary tumour models for human breast cancer: comparative pathology. Microsc. Res. Tech.52, 224–230 (2001). ArticleCASPubMed Google Scholar
Wagner, K. U. Models of breast cancer: quo vadis, animal modeling? Breast Cancer Res.6, 31–38 (2004). ArticleCASPubMed Google Scholar
Davis, M. A. & Reynolds, A. B. Blocked acinar development, E-cadherin reduction, and intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Dev. Cell10, 21–31 (2006). ArticleCASPubMed Google Scholar
Huggins, C., Grand, L. C. & Brillantes, F. P. Mammary cancer induced by a single feeding of polymucular hydrocarbons, and its suppression. Nature189, 204–207 (1961). ArticleCASPubMed Google Scholar
Russo, I. H. & Russo, J. Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz[a]anthracene. J. Natl Cancer Inst.61, 1439–1449 (1978). CASPubMed Google Scholar
Thompson, H. J., Adlakha, H. & Singh, M. Effect of carcinogen dose and age at administration on induction of mammary carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis13, 1535–1539 (1992). ArticleCASPubMed Google Scholar
Thompson, H. J. & Meeker, L. D. Induction of mammary gland carcinomas by the subcutaneous injection of 1-methyl-1-nitrosourea. Cancer Res.43, 1628–1629 (1983). CASPubMed Google Scholar
Russo, J. et al. Molecular basis of pregnancy-induced breast cancer protection. Eur. J. Cancer Prev.15, 306–342 (2006). ArticleCASPubMed Google Scholar
Russo, J. et al. The genomic signature of breast cancer prevention. Recent Results Cancer Res.174, 131–150 (2007). ArticleCASPubMed Google Scholar
Blakely, C. M. et al. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res.66, 6421–6431 (2006). ArticleCASPubMed Google Scholar
Russo, J. et al. Comparative study of human and rat mammary tumorigenesis. Lab. Invest.62, 244–278 (1990). CASPubMed Google Scholar
Zan, Y. et al. Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nature Biotech.21, 645–651 (2003). ArticleCAS Google Scholar
Nguyen, D. X. & Massague, J. Genetic determinants of cancer metastasis. Nature Rev. Genet.8, 341–352 (2007). ArticleCASPubMed Google Scholar
Tan, B. T., Park, C. Y., Ailles, L. E. & Weissman, I. L. The cancer stem cell hypothesis: a work in progress. Lab. Invest.86, 1203–1207 (2006). ArticleCASPubMed Google Scholar
Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl Acad. Sci. USA98, 10869–10874 (2001). ArticleCASPubMedPubMed Central Google Scholar
Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA100, 8418–8423 (2003). ArticleCASPubMedPubMed Central Google Scholar
Zhao, H. et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol. Biol. Cell15, 2523–2536 (2004). ArticleCASPubMedPubMed Central Google Scholar
Carey, L. A. et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin. Cancer Res.13, 2329–2334 (2007). ArticleCASPubMed Google Scholar
Al-Hajj, M., Becker, M. W., Wicha, M., Weissman, I. & Clarke, M. F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev.14, 43–47 (2004). ArticleCASPubMed Google Scholar
Bissell, M. J., Radisky, D. C., Rizki, A., Weaver, V. M. & Petersen, O. W. The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation70, 537–546 (2002). ArticlePubMedPubMed Central Google Scholar
Bissell, M. J. & Labarge, M. A. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? Cancer Cell7, 17–23 (2005). CASPubMedPubMed Central Google Scholar
Bissell, M. J., Rizki, A. & Mian, I. S. Tissue architecture: the ultimate regulator of breast epithelial function. Curr. Opin. Cell Biol.15, 753–762 (2003). ArticleCASPubMedPubMed Central Google Scholar
Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods30, 256–268 (2003). ArticleCASPubMed Google Scholar
MacDonald, I. C., Groom, A. C. & Chambers, A. F. Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays24, 885–893 (2002). ArticleCASPubMed Google Scholar
Wyckoff, J. B., Jones, J. G., Condeelis, J. S. & Segall, J. E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res.60, 2504–2511 (2000). CASPubMed Google Scholar
Chambers, A. F., Naumov, G. N., Vantyghem, S. A. & Tuck, A. B. Molecular biology of breast cancer metastasis. Clinical implications of experimental studies on metastatic inefficiency. Breast Cancer Res.2, 400–407 (2000). ArticleCASPubMedPubMed Central Google Scholar