Targeting the translation machinery in cancer (original) (raw)
Sonenberg, N. & Hinnebusch, A. G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell136, 731–745 (2009). ArticleCASPubMedPubMed Central Google Scholar
Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev.77, 731–758 (1997). ArticleCASPubMed Google Scholar
Mathews, M., Sonenberg, N. & Hershey, J. W. B. in Translational Control in Biology and Medicine 3rd edn (eds Mathews, M. et al.) Ch. 1 (Cold Spring Harbor Laboratory Press, 2007). Google Scholar
Hershey, J. W. B., Sonenberg, N. & Mathews, M. in Protein Synthesis and Translational Control (eds Hershey, J. W. B. et al.) (Cold Spring Harbor Laboratory Press, 2012) Google Scholar
Johnson, L. F. et al. Changes in RNA in relation to growth of the fibroblast. IV. Alterations in the production and processing of mRNA and rRNA in resting and growing cells. J. Cell Biol.71, 933–938 (1976). ArticleCASPubMed Google Scholar
Colina, R. et al. Translational control of the innate immune response through IRF-7. Nature452, 323–328 (2008). ArticleCASPubMed Google Scholar
Larsson, O. et al. Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res.67, 6814–6824 (2007). ArticleCASPubMed Google Scholar
Larsson, O. et al. Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res.34, 4375–4386 (2006). ArticleCASPubMedPubMed Central Google Scholar
Polunovsky, V. A. et al. Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol. Cell. Biol.16, 6573–6581 (1996). ArticleCASPubMedPubMed Central Google Scholar
Kevil, C. G. et al. Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int. J. Cancer65, 785–790 (1996). ArticleCASPubMed Google Scholar
Walsh, D., Mathews, M. B. & Mohr, I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb. Perspect. Biol.5, a012351 (2013). ArticleCASPubMedPubMed Central Google Scholar
Topisirovic, I. & Sonenberg, N. mRNA translation and energy metabolism in cancer: the pole of the MAPK and mTORC1 pathways. Cold Spring Harb. Symp. Quant. Biol.76, 355–367 (2011). ArticleCASPubMed Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). ArticleCASPubMed Google Scholar
Cho, P. F. et al. Cap-dependent translational inhibition establishes two opposing morphogen gradients in Drosophila embryos. Curr. Biol.16, 2035–2041 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kang, H. & Schuman, E. M. A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science273, 1402–1406 (1996). ArticleCASPubMed Google Scholar
Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature473, 337–342 (2011). ArticleCASPubMed Google Scholar
Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nature Rev. Genet.13, 227–232 (2012). ArticleCASPubMed Google Scholar
Kristensen, A. R., Gsponer J. & Foster, L. J. Protein synthesis rate is the predominant regulator of protein expression during differentiation. Mol. Syst. Biol.9, 689 (2013). ArticlePubMedPubMed Central Google Scholar
Pianese, G. Beitrag zur histologie und aetiologie der carcinoma histologische und experimentelle. Beitr. Pathol. Anat. Allg. Pathol.142, 1–193 (in German) (1896). First evidence that dysregulated translation has a major role in cancer by demonstrating that cancer cells have hypertrophic and irregularly shaped nucleoli. Google Scholar
Loreni, F., Mancino, M. & Biffo, S. Translation factors and ribosomal proteins control tumor onset and progression: how? Oncogene33, 2145–2156 (2014). ArticleCASPubMed Google Scholar
Teng, T. G. Thomas & Mercer, C. A. Growth control and ribosomopathies. Curr. Opin. Genet. Dev.23, 63–71 (2013). ArticleCASPubMed Google Scholar
Ganapathi, K. A. & Shimamura, A. Ribosomal dysfunction and inherited marrow failure. Br. J. Haematol.141, 376–387 (2008). ArticleCASPubMed Google Scholar
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med.366, 883–892 (2012). ArticleCASPubMedPubMed Central Google Scholar
Silvera, D. S., Formenti, C. & Schneider, R. J. Translational control in cancer. Nature Rev. Cancer10, 254–266 (2010). ArticleCAS Google Scholar
Rosenwald, I. B. et al. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem.270, 21176–21180 (1995). ArticleCASPubMed Google Scholar
Fagan, R. J. et al. Translational control of ornithine aminotransferase. Modulation by initiation factor eIF-4E. J. Biol. Chem.266, 16518–16523 (1991). CASPubMed Google Scholar
De Benedetti, A. et al. CHO cells transformed by the translation factor elF-4E display increased c-Myc expression, but require overexpression of Max for tumorigenicity. Mol. Cell. Diff.2, 347–371 (1994). CAS Google Scholar
Cunningham, J. T. et al. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell157, 1088–1103 (2014). ArticleCASPubMedPubMed Central Google Scholar
De Benedetti, A. & Graff, J. R. eIF-4E expression and its role in malignancies and metastases. Oncogene23, 3189–3199 (2004). ArticleCASPubMed Google Scholar
Koromilas, A. E., Lazaris-Karatzas, A. & Sonenberg, N. mRNAs containing extensive secondary structure in their 5′ non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J.11, 4153–4158 (1992). ArticleCASPubMedPubMed Central Google Scholar
Svitkin, Y. V. et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA7, 382–394 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pause, A. et al. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J.13, 1205–1215 (1994). ArticleCASPubMedPubMed Central Google Scholar
Hiremath, L. S., Webb, N. R. & Rhoads, R. E. Immunological detection of the messenger RNA cap-binding protein. J. Biol. Chem.260, 7843–7849 (1985). CASPubMed Google Scholar
Duncan, R., Milburn, S. C. & Hershey, J. W. Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J. Biol. Chem.262, 380–388 (1987). CASPubMed Google Scholar
Feoktistova, K. et al. Human eIF4E promotes mRNA restructuring by stimulating eIF4A helicase activity. Proc. Natl Acad. Sci. USA110, 13339–13344 (2013). ArticleCASPubMedPubMed Central Google Scholar
Ramirez-Valle, F. et al. eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy. J. Cell Biol.181, 293–307 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hall, M. N. Talks about TORCs: recent advances in target of rapamycin signalling. On mTOR nomenclature. Biochem. Soc. Trans.41, 887–888 (2013). ArticleCASPubMed Google Scholar
Roux, P. P. & Topisirovic, I. Regulation of mRNA translation by signaling pathways. Cold Spring Harb. Perspect. Biol.4, a012252 (2012). ArticleCASPubMedPubMed Central Google Scholar
Pause, A. et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature371, 762–767 (1994). This is the first study to show that 4E-BPs act as translational repressors by impairing the formation of the eIF4F complex. ArticleCASPubMed Google Scholar
Beretta, L. et al. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J.15, 658–664 (1996). ArticleCASPubMedPubMed Central Google Scholar
Brunn, G. J. et al. Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin. Science277, 99–101 (1997). ArticleCASPubMed Google Scholar
Gingras, A. C. et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev.13, 1422–1437 (1999). This study unravels the hierarchical mechanism of 4E-BP phosphorylation by mTOR, which induces dissociation of 4E-BPs from eIF4E, thereby facilitating eIF4E–eIF4G binding and assembly of the eIF4F complex. ArticleCASPubMedPubMed Central Google Scholar
Gingras, A. C. et al. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev.12, 502–513 (1998). ArticleCASPubMedPubMed Central Google Scholar
von Manteuffel, S. R. et al. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl Acad. Sci. USA93, 4076–4080 (1996). ArticleCASPubMedPubMed Central Google Scholar
Burnett, P. E. et al. RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc. Natl Acad. Sci. USA95, 1432–1437 (1998). References 53 and 54 are two of the first studies to show that phosphorylation of 4E-BPs is regulated by mTOR kinase (also known as FRAP and RAFT1). ArticleCASPubMedPubMed Central Google Scholar
Zheng, J. et al. Phosphorylated Mnk1 and eIF4E are associated with lymph node metastasis and poor prognosis of nasopharyngeal carcinoma. PLoS ONE9, e89220 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hara, K. et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem.272, 26457–26463 (1997). ArticleCASPubMed Google Scholar
Brown, E. J. et al. Control of p70 S6 kinase by kinase activity of FRAP in vivo. Nature377, 441–446 (1995). ArticleCASPubMed Google Scholar
Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem.273, 14484–14494 (1998). ArticleCASPubMed Google Scholar
Banerjee, P. et al. Molecular structure of a major insulin/mitogen-activated 70-kDa S6 protein kinase. Proc. Natl Acad. Sci. USA87, 8550–8554 (1990). ArticleCASPubMedPubMed Central Google Scholar
Raught, B. et al. Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J.23, 1761–1769 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dorrello, N. V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science314, 467–471 (2006). ArticleCASPubMed Google Scholar
Yang, H. S. et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol. Cell. Biol.23, 26–37 (2003). ArticleCASPubMedPubMed Central Google Scholar
Raught, B. et al. Serum-stimulated, rapamycin-sensitive phosphorylation sites in the eukaryotic translation initiation factor 4GI. EMBO J.19, 434–444 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mayer, C. et al. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev.18, 423–434 (2004). ArticleCASPubMedPubMed Central Google Scholar
Meyuhas, O. & Dreazen, A. Ribosomal protein S6 kinase from TOP mRNAs to cell size. Prog. Mol. Biol. Transl. Sci.90, 109–153 (2009). ArticleCASPubMed Google Scholar
Ingolia, N. T. et al. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science324, 218–223 (2009). ArticleCASPubMedPubMed Central Google Scholar
Larsson, O., Tian, B. & Sonenberg, N. Toward a genome-wide landscape of translational control. Cold Spring Harb. Perspect. Biol.5, a012302 (2013). ArticleCASPubMedPubMed Central Google Scholar
Larsson, O. et al. Distinct perturbation of the translatome by the antidiabetic drug metformin. Proc. Natl Acad. Sci. USA109, 8977–8982 (2012). ArticleCASPubMedPubMed Central Google Scholar
Morita, M. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab.18, 698–711 (2013). ArticleCASPubMed Google Scholar
Miloslavski, R. et al. Oxygen sufficiency controls TOP mRNA translation via the TSC–Rheb–mTOR pathway in a 4E-BP-independent manner. J. Mol. Cell Biol.6, 255–266 (2014). ArticleCASPubMedPubMed Central Google Scholar
Tcherkezian, J. et al. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5′TOP mRNA translation. Genes Dev.28, 357–371 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hsu, P. P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science332, 1317–1322 (2011). ArticleCASPubMedPubMed Central Google Scholar
Aoki, K. et al. LARP1 specifically recognizes the 3′ terminus of poly(A) mRNA. FEBS Lett.587, 2173–2178 (2013). ArticleCASPubMed Google Scholar
Waskiewicz, A. J. et al. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol. Cell. Biol.19, 1871–1880 (1999). ArticleCASPubMedPubMed Central Google Scholar
Cargnello, M. & Roux, P. P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev.75, 50–83 (2011). ArticleCASPubMedPubMed Central Google Scholar
Buxade, M., Parra-Palau, J. L. & Proud, C. G. The Mnks: MAP kinase-interacting kinases (MAP kinase signal-integrating kinases). Front. Biosci.13, 5359–5373 (2008). ArticleCASPubMed Google Scholar
Waskiewicz, A. J. et al. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J.16, 1909–1920 (1997). ArticleCASPubMedPubMed Central Google Scholar
Fukunaga, R. & Hunter, T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J.16, 1921–1933 (1997). References 81 and 82 establish a role for MNKs in phosphorylating eIF4E downstream of MAPKs. ArticleCASPubMedPubMed Central Google Scholar
Scheper, G. C. et al. The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol. Cell. Biol.21, 743–754 (2001). ArticleCASPubMedPubMed Central Google Scholar
Pyronnet, S. et al. Human eukaryotic translation initiation factor 4G (eIF4G) recruits Mnk1 to phosphorylate eIF4E. EMBO J.18, 270–279 (1999). ArticleCASPubMedPubMed Central Google Scholar
Walsh, D. & Mohr, I. Coupling 40S ribosome recruitment to modification of a cap-binding initiation factor by eIF3 subunit e. Genes Dev.28, 835–840 (2014). ArticleCASPubMedPubMed Central Google Scholar
Furic, L. et al. eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc. Natl Acad. Sci. USA107, 14134–14139 (2010). This paper shows that eIF4E phosphorylation has a major role in prostate cancerogenesis and tumour progression and that targeting eIF4E phosphorylation is a promising target. ArticleCASPubMedPubMed Central Google Scholar
Joshi, S. & Platanias, L. C. MNK kinases in cytokine signaling and regulation of cytokine responses. Biomol. Concepts3, 127–139 (2012). ArticleCASPubMedPubMed Central Google Scholar
Rosenwald, I. B. et al. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2α in response to growth induction by c-myc. Proc. Natl Acad. Sci. USA90, 6175–6178 (1993). ArticleCASPubMedPubMed Central Google Scholar
Khanna-Gupta, A. et al. Up-regulation of translation eukaryotic initiation factor 4E in nucleophosmin 1 haploinsufficient cells results in changes in CCAAT enhancer-binding protein α activity: implications in myelodysplastic syndrome and acute myeloid leukemia. J. Biol. Chem.287, 32728–32737 (2012). ArticleCASPubMedPubMed Central Google Scholar
Hariri, F. et al. The eukaryotic translation initiation factor eIF4E is a direct transcriptional target of NF-κB and is aberrantly regulated in acute myeloid leukemia. Leukemia27, 2047–2055 (2013). ArticleCASPubMedPubMed Central Google Scholar
Yi, T. et al. Hypoxia-inducible factor-1α (HIF-1α) promotes cap-dependent translation of selective mRNAs through up-regulating initiation factor eIF4E1 in breast cancer cells under hypoxia conditions. J. Biol. Chem.288, 18732–18742 (2013). ArticleCASPubMedPubMed Central Google Scholar
Topisirovic, I. et al. Stability of eukaryotic translation initiation factor 4E mRNA is regulated by HuR, and this activity is dysregulated in cancer. Mol. Cell. Biol.29, 1152–1162 (2009). ArticleCASPubMed Google Scholar
Jones, R. M. et al. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol. Cell. Biol.16, 4754–4764 (1996). ArticleCASPubMedPubMed Central Google Scholar
Lin, C. J. et al. c-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res.68, 5326–5334 (2008). ArticleCASPubMed Google Scholar
van Riggelen, J., Yetil, A. & Felsher, D. W. MYC as a regulator of ribosome biogenesis and protein synthesis. Nature Rev. Cancer10, 301–309 (2010). ArticleCAS Google Scholar
Lazaris-Karatzas, A., Montine, K. S. & Sonenberg, N. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA5′ cap. Nature345, 544–547 (1990). This is the first description of a translation initiation factor (eIF4E ) with oncogenic properties. These findings spearheaded research into the role of translation initiation factors in cancer. ArticleCASPubMed Google Scholar
Rinker-Schaeffer, C. W. et al. Decreasing the level of translation initiation factor 4E with antisense RNA causes reversal of _ras_-mediated transformation and tumorigenesis of cloned rat embryo fibroblasts. Int. J. Cancer55, 841–847 (1993). ArticleCASPubMed Google Scholar
De Benedetti, A. et al. Expression of antisense RNA against initiation factor eIF-4E mRNA in HeLa cells results in lengthened cell division times, diminished translation rates, and reduced levels of both eIF-4E and the p220 component of eIF-4F. Mol. Cell. Biol.11, 5435–5445 (1991). ArticleCASPubMedPubMed Central Google Scholar
Wendel, H. G. et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature428, 332–337 (2004). ArticleCASPubMed Google Scholar
Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med.10, 484–486 (2004). This study establishes that eIF4E has oncogenic propertiesin vivo. ArticleCASPubMed Google Scholar
Haydon, M. S. et al. Progression of eIF4e gene amplification and overexpression in benign and malignant tumors of the head and neck. Cancer88, 2803–2810 (2000). ArticleCASPubMed Google Scholar
Raught, B. & Gingras, A. C. eIF4E activity is regulated at multiple levels. Int. J. Biochem. Cell Biol.31, 43–57 (1999). ArticleCASPubMed Google Scholar
Hsieh, A. C. et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. Cancer Cell17, 249–261 (2010). ArticleCASPubMedPubMed Central Google Scholar
Avdulov, S. et al. Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell5, 553–563 (2004). ArticleCASPubMed Google Scholar
Lynch, M. et al. Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J. Biol. Chem.279, 3327–3339 (2004). ArticleCASPubMed Google Scholar
Dowling, R. J. et al. mTORC1-mediated cell proliferation, but not cell growth, controlled by the 4E-BPs. Science328, 1172–1176 (2010). ArticleCASPubMedPubMed Central Google Scholar
Petroulakis, E. et al. p53-dependent translational control of senescence and transformation via 4E-BPs. Cancer Cell16, 439–446 (2009). ArticleCASPubMed Google Scholar
Martineau, Y. et al. Anti-oncogenic potential of the eIF4E-binding proteins. Oncogene32, 671–677 (2013). ArticleCASPubMed Google Scholar
Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol.12, 21–35 (2011). ArticleCAS Google Scholar
Topisirovic, I., Ruiz-Gutierrez, M. & Borden, K. L. Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res.64, 8639–8642 (2004). ArticleCASPubMed Google Scholar
Robichaud, N. et al. Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogenehttp://dx.doi.org/10.1038/onc.2014.146 (2014).
Rosenwald, I. B. et al. Upregulation of protein synthesis initiation factor eIF-4E is an early event during colon carcinogenesis. Oncogene18, 2507–2517 (1999). ArticleCASPubMed Google Scholar
Nathan, C. O. et al. Elevated expression of eIF4E and FGF-2 isoforms during vascularization of breast carcinomas. Oncogene15, 1087–1094 (1997). ArticleCASPubMed Google Scholar
Chen, C. N. et al. Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome. J. Surg. Oncol.86, 22–27 (2004). ArticleCASPubMed Google Scholar
Nathan, C. O. et al. Analysis of surgical margins with the molecular marker eIF4E: a prognostic factor in patients with head and neck cancer. J. Clin. Oncol.17, 2909–2914 (1999). This is the first description of eIF4E expression levels as a prognostic biomarker in human cancer. ArticleCASPubMed Google Scholar
Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell12, 9–22 (2007). ArticleCASPubMed Google Scholar
Sebolt-Leopold, J. S. & Herrera, R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nature Rev. Cancer4, 937–947 (2004). ArticleCAS Google Scholar
Armengol, G. et al. 4E-binding protein 1: a key molecular “funnel factor” in human cancer with clinical implications. Cancer Res.67, 7551–7555 (2007). ArticleCASPubMed Google Scholar
Graff, J. R. et al. eIF4E activation is commonly elevated in advanced human prostate cancers and significantly related to reduced patient survival. Cancer Res.69, 3866–3873 (2009). ArticleCASPubMed Google Scholar
Comtesse, N. et al. Frequent overexpression of the genes FXR1, CLAPM1 and EIF4G located on amplicon 3q26–27 in squamous cell carcinoma of the lung. Int. J. Cancer120, 2538–2544 (2007). ArticleCASPubMed Google Scholar
Silvera, D. et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nature Cell Biol.11, 903–908 (2009). ArticleCASPubMed Google Scholar
Liang, S. et al. Decreased expression of EIF4A1 after preoperative brachytherapy predicts better tumor-specific survival in cervical cancer. Int. J. Gynecol. Cancer24, 908–915 (2014). ArticlePubMed Google Scholar
Tu, L. et al. Over-expression of eukaryotic translation initiation factor 4 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Mol. Cancer9, 78 (2010). ArticleCASPubMedPubMed Central Google Scholar
Meric-Bernstam, F. et al. Aberrations in translational regulation are associated with poor prognosis in hormone receptor-positive breast cancer. Breast Cancer Res.14, R138 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y. et al. Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J. Pathol.200, 640–646 (2003). ArticleCASPubMed Google Scholar
Mudduluru, G. et al. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer110, 1697–1707 (2007). ArticleCASPubMed Google Scholar
Wang, X. et al. Expression and prognostic significance of PDCD4 in human epithelial ovarian carcinoma. Anticancer Res.28, 2991–2996 (2008). CASPubMed Google Scholar
Gao, F. et al. PDCD4 gene silencing in gliomas is associated with 5′CpG island methylation and unfavourable prognosis. J. Cell Mol. Med.13, 4257–4267 (2009). ArticleCASPubMed Google Scholar
Li, X. et al. Down-regulation of PDCD4 expression is an independent predictor of poor prognosis in human renal cell carcinoma patients. J. Cancer Res. Clin. Oncol.138, 529–535 (2012). ArticleCASPubMed Google Scholar
Ramon, Y. C. S. et al. The intra-tumor heterogeneity of cell signaling factors in breast cancer: p4E-BP1 and peIF4E are diffusely expressed and are real potential targets. Clin. Transl. Oncol.16, 937–941 (2014). ArticleCAS Google Scholar
Wolff, A. C. et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J. Clin. Oncol.25, 118–145 (2007). ArticleCASPubMed Google Scholar
Alain, T. et al. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res.72, 6468–6476 (2012). ArticleCASPubMed Google Scholar
Boussemart, L. et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature513, 105–109 (2014). ArticleCASPubMed Google Scholar
Fruman, D. A. & Rommel, C. PI3K and cancer: lessons, challenges and opportunities. Nature Rev. Drug Discov.13, 140–156 (2014). ArticleCAS Google Scholar
Malina, A., Mills, J. R. & Pelletier, J. Emerging therapeutics targeting mRNA translation. Cold Spring Harb. Perspect. Biol.4, a012377 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vezina, C., Kudelski, A. & Sehgal, S. N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. (Tokyo)28, 721–726 (1975). ArticleCAS Google Scholar
Heitman, J., Movva, N. R. & Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science253, 905–909 (1991). This study charts the discovery of TOR kinase. ArticleCASPubMed Google Scholar
Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature369, 756–758 (1994). ArticleCASPubMed Google Scholar
Hara, K. et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell110, 177–189 (2002). ArticleCASPubMed Google Scholar
Kim, D. H. et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell110, 163–175 (2002). ArticleCASPubMed Google Scholar
Oshiro, N. et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells9, 359–366 (2004). ArticleCASPubMed Google Scholar
Sarbassov, D. D. et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol.14, 1296–1302 (2004). ArticleCASPubMed Google Scholar
Yoon, S. O. & Roux, P. P. Rapamycin resistance: mTORC1 substrates hold some of the answers. Curr. Biol.23, R880–R883 (2013). ArticleCASPubMed Google Scholar
Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell22, 159–168 (2006). ArticleCASPubMed Google Scholar
Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science335, 1638–1643 (2012). ArticleCASPubMedPubMed Central Google Scholar
Benjamin, D. et al. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Rev. Drug Discov.10, 868–880 (2011). ArticleCAS Google Scholar
Harrington, L. S., Findlay, G. M. & Lamb, R. F. Restraining PI3K: mTOR signalling goes back to the membrane. Trends Biochem. Sci.30, 35–42 (2005). ArticleCASPubMed Google Scholar
Choo, A. Y. & Blenis, J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle8, 567–572 (2009). ArticleCASPubMed Google Scholar
Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science332, 1322–1326 (2011). ArticleCASPubMedPubMed Central Google Scholar
Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J. Clin. Invest.118, 3065–3074 (2008). CASPubMedPubMed Central Google Scholar
Thoreen, C. C. et al.An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem.284, 8023–8032 (2009). ArticleCASPubMedPubMed Central Google Scholar
Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol.7, e38 (2009). References 159 and 160 are the first two studies describing the new generation of active-site mTOR inhibitors. ArticleCASPubMed Google Scholar
Garcia-Martinez, J. M. et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J.421, 29–42 (2009). ArticleCASPubMed Google Scholar
Hresko, R. C. & Mueckler, M. mTOR·RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem.280, 40406–40416 (2005). ArticleCASPubMed Google Scholar
Sarbassov, D. D. et al. Phosphorylation and regulation of Akt/PKB by the rictor–mTOR complex. Science307, 1098–1101 (2005). ArticleCASPubMed Google Scholar
Choo, A. Y. et al. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl Acad. Sci. USA105, 17414–17419 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chresta, C. M. et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res.70, 288–298 (2010). ArticleCASPubMed Google Scholar
Janes, M. R. et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nature Med.16, 205–213 (2010). ArticleCASPubMed Google Scholar
Janes, M. R. et al. Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Leukemia27, 586–594 (2013). ArticleCASPubMed Google Scholar
Satheesha, S. et al. Response to mTOR inhibition: activity of eIF4E predicts sensitivity in cell lines and acquired changes in eIF4E regulation in breast cancer. Mol. Cancer10, 19 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ilic, N. et al. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc. Natl Acad. Sci. USA108, E699–E708 (2011). ArticleCASPubMedPubMed Central Google Scholar
Cope, C. L. et al. Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. J. Cell Sci.127, 788–800 (2014). ArticleCASPubMed Google Scholar
Martineau, Y. et al. Pancreatic tumours escape from translational control through 4E-BP1 loss. Oncogene33, 1367–1374 (2014). ArticleCASPubMed Google Scholar
Alain, T., Sonenberg, N. & Topisirovic, I. mTOR inhibitor efficacy is determined by the eIF4E/4E-BP ratio. Oncotarget3, 1491–1492 (2012). ArticlePubMedPubMed Central Google Scholar
Coleman, L. J. et al. Combined analysis of eIF4E and 4E-binding protein expression predicts breast cancer survival and estimates eIF4E activity. Br. J. Cancer100, 1393–1399 (2009). ArticleCASPubMedPubMed Central Google Scholar
Muranen, T. et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell21, 227–239 (2012). ArticleCASPubMedPubMed Central Google Scholar
Larsson, S. C., Orsini, N. & Wolk, A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J. Natl Cancer Inst.97, 1679–1687 (2005). ArticlePubMed Google Scholar
Larsson, S. C., Mantzoros, C. S. & Wolk, A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int. J. Cancer121, 856–862 (2007). ArticleCASPubMed Google Scholar
Pollak, M. N. Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov.2, 778–790 (2012). ArticleCASPubMed Google Scholar
Dowling, R. J. et al. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res.67, 10804–10812 (2007). ArticleCASPubMed Google Scholar
Konicek, B. W. et al. Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res.71, 1849–1857 (2011). This study shows that the orally available MNK inhibitor cercosporamide has anti-neoplastic properties. ArticleCASPubMed Google Scholar
Tschopp, C. et al. Phosphorylation of eIF-4E on Ser. 209 in response to mitogenic and inflammatory stimuli is faithfully detected by specific antibodies. Mol. Cell Biol. Res. Commun.3, 205–211 (2000). ArticleCASPubMed Google Scholar
Knauf, U., Tschopp, C. & Gram, H. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol. Cell. Biol.21, 5500–5511 (2001). ArticleCASPubMedPubMed Central Google Scholar
Diab, S. et al. MAP kinase-interacting kinases-emerging targets against cancer. Chem. Biol.21, 441–452 (2014). ArticleCASPubMed Google Scholar
Diab, S. et al. Discovery of 5-(2-(Phenylamino)pyrimidin-4-yl)thiazol-2(3_H_)-one derivatives as potent Mnk2 inhibitors: synthesis, SAR analysis and biological evaluation. ChemMedChem9, 962–972 (2014). ArticleCASPubMed Google Scholar
Xu, J. et al. Rational design of resorcylic acid lactone analogues as covalent MNK1/2 kinase inhibitors by tuning the reactivity of an enamide Michael acceptor. ChemMedChem8, 1483–1494 (2013). ArticleCASPubMed Google Scholar
Ramalingam, S. et al. First MNKs degrading agents block phosphorylation of eIF4E, induce apoptosis, inhibit cell growth, migration and invasion in triple negative and Her2-overexpressing breast cancer cell lines. Oncotarget5, 530–543 (2014). ArticlePubMedPubMed Central Google Scholar
Adesso, L. et al. Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway. Oncogene32, 2848–2857 (2013). ArticleCASPubMed Google Scholar
Astanehe, A. et al. MKNK1 is a YB-1 target gene responsible for imparting trastuzumab resistance and can be blocked by RSK inhibition. Oncogene31, 4434–4446 (2012). ArticleCASPubMed Google Scholar
Sun, S. Y. et al. Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. Cancer Res.65, 7052–7058 (2005). ArticleCASPubMed Google Scholar
Sale, M. J. & S. J. Cook, Intrinsic and acquired resistance to MEK1/2 inhibitors in cancer. Biochem. Soc. Trans.42, 776–783 (2014). ArticleCASPubMed Google Scholar
DeFatta, R. J., Nathan, C. O. & De Benedetti, A. Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line. Laryngoscope110, 928–933 (2000). ArticleCASPubMed Google Scholar
Graff, J. R. et al. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J. Clin. Invest.117, 2638–2648 (2007). This is a proof-of-principle study showing the anti-neoplastic effects of eIF4E ASOin vivo. ArticleCASPubMedPubMed Central Google Scholar
Lin, C. J. et al. Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Rep.1, 325–333 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wagner, C. R., Iyer, V. V. & McIntee, E. J. Pronucleotides: toward the in vivo delivery of antiviral and anticancer nucleotides. Med. Res. Rev.20, 417–451 (2000). ArticleCASPubMed Google Scholar
Ghosh, B. et al. Nontoxic chemical interdiction of the epithelial-to-mesenchymal transition by targeting cap-dependent translation. ACS Chem. Biol.4, 367–377 (2009). ArticleCASPubMedPubMed Central Google Scholar
Li, S. et al. Treatment of breast and lung cancer cells with a N-7 benzyl guanosine monophosphate tryptamine phosphoramidate pronucleotide (4Ei-1) results in chemosensitization to gemcitabine and induced eIF4E proteasomal degradation. Mol. Pharm.10, 523–531 (2013). ArticleCASPubMedPubMed Central Google Scholar
Jia, Y. et al. Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med. Res. Rev.32, 786–814 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, X. et al. Structure-guided design, synthesis, and evaluation of guanine-derived inhibitors of the eIF4E mRNA–cap interaction. J. Med. Chem.55, 3837–3851 (2012). ArticleCASPubMed Google Scholar
Zochowska, M. et al. Virus-like particle-mediated intracellular delivery of mRNA cap analog with in vivo activity against hepatocellular carcinoma. Nanomedicine11, 67–76 (2014). ArticleCASPubMed Google Scholar
Kentsis, A. et al. Ribavirin suppresses eIF4E-mediated oncogenic transformation by physical mimicry of the 7-methyl guanosine mRNA cap. Proc. Natl Acad. Sci. USA101, 18105–18110 (2004). ArticleCASPubMedPubMed Central Google Scholar
Westman, B. et al. The antiviral drug ribavirin does not mimic the 7-methylguanosine moiety of the mRNA cap structure in vitro. RNA11, 1505–1513 (2005). ArticleCASPubMedPubMed Central Google Scholar
Assouline, S. et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood114, 257–260 (2009). ArticleCASPubMed Google Scholar
Marcotrigiano, J. et al. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell3, 707–716 (1999). ArticleCASPubMed Google Scholar
Matsuo, H. et al. Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein. Nature Struct. Biol.4, 717–724 (1997). ArticleCASPubMed Google Scholar
Fletcher, C. M. and Wagner, G., The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci.7, 1639–1642 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yanagiya, A. et al. Requirement of RNA binding of mammalian eukaryotic translation initiation factor 4GI (eIF4GI) for efficient interaction of eIF4E with the mRNA cap. Mol. Cell. Biol.29, 1661–1669 (2009). ArticleCASPubMed Google Scholar
O'Leary, S. E. et al. Dynamic recognition of the mRNA cap by Saccharomyces cerevisiae eIF4E. Structure21, 2197–2207 (2013). ArticleCASPubMed Google Scholar
Mader, S. et al. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol.15, 4990–4997 (1995). ArticleCASPubMedPubMed Central Google Scholar
Altmann, M. et al. A novel inhibitor of cap-dependent translation initiation in yeast: p20 competes with eIF4G for binding to eIF4E. EMBO J.16, 1114–1121 (1997). ArticleCASPubMedPubMed Central Google Scholar
Moerke, N. J. et al. Small-molecule inhibition of the interaction between the translation initiation factors eIF4E and eIF4G. Cell128, 257–267 (2007). ArticleCASPubMed Google Scholar
Chen, L. et al. Tumor suppression by small molecule inhibitors of translation initiation. Oncotarget3, 869–881 (2012). PubMedPubMed Central Google Scholar
Papadopoulos, E. et al. Structure of the eukaryotic translation initiation factor eIF4E in complex with 4EGI-1 reveals an allosteric mechanism for dissociating eIF4G. Proc. Natl Acad. Sci. USA111, E3187–E3195 (2014). ArticleCASPubMedPubMed Central Google Scholar
Redondo, N. et al. Translation of viral mRNAs that do not require eIF4E is blocked by the inhibitor 4EGI-1. Virology444, 171–180 (2013). ArticleCASPubMed Google Scholar
Willimott, S. et al. Cap-translation inhibitor, 4EGI-1, restores sensitivity to ABT-737 apoptosis through cap-dependent and -independent mechanisms in chronic lymphocytic leukemia. Clin. Cancer Res.19, 3212–3223 (2013). ArticleCASPubMed Google Scholar
Ko, S. Y. et al. Inhibition of ovarian cancer growth by a tumor-targeting peptide that binds eukaryotic translation initiation factor 4E. Clin. Cancer Res.15, 4336–4347 (2009). ArticleCASPubMed Google Scholar
Bordeleau, M. E. et al. Functional characterization of IRESes by an inhibitor of the RNA helicase eIF4A. Nature Chem. Biol.2, 213–220 (2006). ArticleCAS Google Scholar
Bordeleau, M. E. et al. Stimulation of mammalian translation initiation factor eIF4A activity by a small molecule inhibitor of eukaryotic translation. Proc. Natl Acad. Sci. USA102, 10460–10465 (2005). This paper reports the discovery of pateamine, the first small-molecule targeting eIF4A. ArticleCASPubMedPubMed Central Google Scholar
Bordeleau, M. E. et al. Therapeutic suppression of translation initiation modulates chemosensitivity in a mouse lymphoma model. J. Clin. Invest.118, 2651–2660 (2008). CASPubMedPubMed Central Google Scholar
Low, W. K. et al. Inhibition of eukaryotic translation initiation by the marine natural product pateamine A. Mol. Cell20, 709–722 (2005). ArticleCASPubMed Google Scholar
Low, W. K. et al. Second-generation derivatives of the eukaryotic translation initiation inhibitor pateamine A targeting eIF4A as potential anticancer agents. Bioorg. Med. Chem.22, 116–125 (2014). ArticleCASPubMed Google Scholar
Kuznetsov, G. et al. Potent in vitro and in vivo anticancer activities of des-methyl, des-amino pateamine A, a synthetic analogue of marine natural product pateamine A. Mol. Cancer Ther.8, 1250–1260 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tsumuraya, T. et al. Effects of hippuristanol, an inhibitor of eIF4A, on adult T-cell leukemia. Biochem. Pharmacol.81, 713–722 (2011). ArticleCASPubMed Google Scholar
Cencic, R. et al. Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A. Blood Cancer J.3, e128 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sadlish, H. et al. Evidence for a functionally relevant rocaglamide binding site on the eIF4A-RNA complex. ACS Chem. Biol.8, 1519–1527 (2013). ArticleCASPubMedPubMed Central Google Scholar
Liu, T. et al. Synthetic silvestrol analogues as potent and selective protein synthesis inhibitors. J. Med. Chem.55, 8859–8878 (2012). ArticleCASPubMed Google Scholar
Rubio, C. A. et al. Transcriptome-wide characterization of the eIF4A signature highlights plasticity in translation regulation. Genome Biol.15, 476 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zindy, P. et al. Formation of the eIF4F translation-initiation complex determines sensitivity to anticancer drugs targeting the EGFR and HER2 receptors. Cancer Res.71, 4068–4073 (2011). ArticleCASPubMed Google Scholar
Gupta, S. V. et al. Resistance to the translation initiation inhibitor silvestrol is mediated by ABCB1/P-glycoprotein overexpression in acute lymphoblastic leukemia cells. AAPS J.13, 357–364 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hawkins, B. C. et al. Simplified silvestrol analogues with potent cytotoxic activity. ChemMedChem9, 1556–1566 (2014). ArticleCASPubMed Google Scholar
Hinnebusch, A. G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem.83, 779–812 (2014). ArticleCASPubMed Google Scholar
Konieczny, A. & Safer, B. Purification of the eukaryotic initiation factor 2-eukaryotic initiation factor 2B complex and characterization of its guanine nucleotide exchange activity during protein synthesis initiation. J. Biol. Chem.258, 3402–3408 (1983). CASPubMed Google Scholar
Krishnamoorthy, T. et al. Tight binding of the phosphorylated α subunit of initiation factor 2 (eIF2α) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol. Cell. Biol.21, 5018–5030 (2001). ArticleCASPubMedPubMed Central Google Scholar
Clemens, M. J. et al. Phosphorylation inhibits guanine nucleotide exchange on eukaryotic initiation factor 2. Nature296, 93–95 (1982). ArticleCASPubMed Google Scholar
Ron, D. & Harding, H. in Translational Control in Biology and Medicine Ch. 13 (eds Matthews, M. B. et al.) (Cold Spring Harbor Laboratory Press, 2007). Google Scholar
Dever, T. E. et al. Phosphorylation of initiation factor 2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell68, 585–596 (1992). ArticleCASPubMed Google Scholar
Harding, H. P. et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell6, 1099–1108 (2000). ArticleCASPubMed Google Scholar
Mueller, P. P. & Hinnebusch, A. G. Multiple upstream AUG codons mediate translational control of GCN4. Cell45, 201–207 (1986). ArticleCASPubMed Google Scholar
Vattem, K. M. & Wek, R. C. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl Acad. Sci. USA101, 11269–11274 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hinnebusch, A. G. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol. Microbiol.10, 215–223 (1993). ArticleCASPubMed Google Scholar
Koromilas, A. E. & Mounir, Z. Control of oncogenesis by eIF2α phosphorylation: implications in PTEN and PI3K–Akt signaling and tumor treatment. Future Oncol.9, 1005–1015 (2013). ArticleCASPubMed Google Scholar
Bi, M. et al. ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J.24, 3470–3481 (2005). ArticleCASPubMedPubMed Central Google Scholar
Donze, O. et al. Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J.14, 3828–3834 (1995). ArticleCASPubMedPubMed Central Google Scholar
Donze, O. et al. The protein kinase PKR: a molecular clock that sequentially activates survival and death programs. EMBO J.23, 564–571 (2004). ArticleCASPubMedPubMed Central Google Scholar
Chen, T. et al. Chemical genetics identify eIF2α kinase heme-regulated inhibitor as an anticancer target. Nature Chem. Biol.7, 610–616 (2011). ArticleCAS Google Scholar
Denoyelle, S. et al. In vitro inhibition of translation initiation by N,_N_-diarylureas — potential anti-cancer agents. Bioorg. Med. Chem. Lett.22, 402–409 (2012). ArticleCASPubMed Google Scholar
Boyce, M. et al. A selective inhibitor of eIF2α dephosphorylation protects cells from ER stress. Science307, 935–939 (2005). ArticleCASPubMed Google Scholar
Schewe, D. M. & Aguirre-Ghiso, J. A. Inhibition of eIF2α dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res.69, 1545–1552 (2009). ArticleCASPubMedPubMed Central Google Scholar
Moenner, M. et al. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res.67, 10631–10634 (2007). ArticleCASPubMed Google Scholar
Hetz, C., Chevet, E. & Harding, H. P. Targeting the unfolded protein response in disease. Nature Rev. Drug Discov.12, 703–719 (2013). ArticleCAS Google Scholar
Tsaytler, P. et al. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science332, 91–94 (2011). ArticleCASPubMed Google Scholar
Hamamura, K. et al. Attenuation of malignant phenotypes of breast cancer cells through eIF2α-mediated downregulation of Rac1 signaling. Int. J. Oncol.44, 1980–1988 (2014). ArticleCASPubMed Google Scholar
Robert, F. et al. Initiation of protein synthesis by hepatitis C virus is refractory to reduced eIF2·GTP·Met-tRNAiMet ternary complex availability. Mol. Biol. Cell17, 4632–4644 (2006). ArticleCASPubMedPubMed Central Google Scholar
Ollenschlager, G. et al. Asparaginase-induced derangements of glutamine metabolism: the pathogenetic basis for some drug-related side-effects. Eur. J. Clin. Invest.18, 512–516 (1988). ArticleCASPubMed Google Scholar
Hill, J. M. et al. L-asparaginase therapy for leukemia and other malignant neoplasms. Remission in human leukemia. JAMA202, 882–888 (1967). ArticleCASPubMed Google Scholar
Buaboonnam, J. et al. Sequential administration of methotrexate and asparaginase in relapsed or refractory pediatric acute myeloid leukemia. Pediatr. Blood Cancer60, 1161–1164 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bunpo, P. et al. GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent L-asparaginase. J. Biol. Chem.284, 32742–32749 (2009). ArticleCASPubMedPubMed Central Google Scholar
Huang, M. T. Harringtonine, an inhibitor of initiation of protein biosynthesis. Mol. Pharmacol.11, 511–519 (1975). CASPubMed Google Scholar
O'Brien, S. et al. Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase. Blood86, 3322–3326 (1995). CASPubMed Google Scholar
White, R. J. RNA polymerases I and III, growth control and cancer. Nature Rev. Mol. Cell Biol.6, 69–78 (2005). ArticleCAS Google Scholar
Drygin, D. et al. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res.71, 1418–1430 (2011). ArticleCASPubMed Google Scholar
Bywater, M. J. et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell22, 51–65 (2012). ArticleCASPubMedPubMed Central Google Scholar
Jasiulionis, M. G. et al. Inhibition of eukaryotic translation initiation factor 5A (eIF5A) hypusination impairs melanoma growth. Cell Biochem. Funct.25, 109–114 (2007). ArticleCASPubMed Google Scholar
Park, M. H. et al. Functional significance of eIF5A and its hypusine modification in eukaryotes. Amino Acids38, 491–500 (2010). ArticleCASPubMed Google Scholar
Cook, D. et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nature Rev. Drug Discov.13, 419–431 (2014). ArticleCAS Google Scholar
Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet372, 449–456 (2008). ArticleCASPubMed Google Scholar
Baselga, J. et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N. Engl. J. Med.366, 520–529 (2012). ArticleCASPubMed Google Scholar
Yardley, D. A. et al. Everolimus plus exemestane in postmenopausal patients with HR+ breast cancer: BOLERO-2 final progression-free survival analysis. Adv. Ther.30, 870–884 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med.358, 140–151 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hess, G. et al. Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. J. Clin. Oncol.27, 3822–3829 (2009). ArticleCASPubMed Google Scholar
Figlin, R. A. Mechanisms of disease: survival benefit of temsirolimus validates a role for mTOR in the management of advanced RCC. Nature Clin. Pract. Oncol.5, 601–609 (2008). ArticleCAS Google Scholar
Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med.358, 140–151 (2008). ArticleCASPubMedPubMed Central Google Scholar
Demetri, G. D. et al. Results of an international randomized phase III trial of the mammalian target of rapamycin inhibitor ridaforolimus versus placebo to control metastatic sarcomas in patients after benefit from prior chemotherapy. J. Clin. Oncol.31, 2485–2492 (2013). ArticleCASPubMed Google Scholar
Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res.67, 6745–6752 (2007). ArticleCASPubMed Google Scholar
Memmott, R. M. et al. Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev. Res. (Phila)3, 1066–1076 (2010). ArticleCAS Google Scholar
Algire, C. et al. Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endocr. Relat. Cancer15, 833–839 (2008). ArticleCASPubMed Google Scholar
Schneider, M. B. et al. Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology120, 1263–1270 (2001). ArticleCASPubMed Google Scholar
Hong, D. S. et al. A phase 1 dose escalation, pharmacokinetic, and pharmacodynamic evaluation of eIF-4E antisense oligonucleotide LY2275796 in patients with advanced cancer. Clin. Cancer Res.17, 6582–6591 (2011). ArticleCASPubMedPubMed Central Google Scholar
Lin, C. J., Malina, A. & Pelletier, J. c-Myc and eIF4F constitute a feedforward loop that regulates cell growth: implications for anticancer therapy. Cancer Res.69, 7491–7494 (2009). ArticleCASPubMed Google Scholar
White, R. J. RNA polymerases I and III, non-coding RNAs and cancer. Trends Genet.24, 622–629 (2008). ArticleCASPubMed Google Scholar
Raynaud, F. I. et al. Pharmacologic characterization of a potent inhibitor of class I phosphatidylinositide 3-kinases. Cancer Res.67, 5840–5850 (2007). ArticleCASPubMed Google Scholar
Suissa, S. & Azoulay, L. Metformin and cancer: mounting evidence against an association. Diabetes Care37, 1786–1788 (2014). ArticleCASPubMed Google Scholar
Park, M. H., Wolff, E. C., Lee, Y. B. & Folk, J. E. Antiproliferative effects of inhibitors of deoxyhypusine synthase. Inhibition of growth of Chinese hamster ovary cells by guanyl diamines. J. Biol. Chem.269, 27827–27832 (1994). CASPubMed Google Scholar