Targeting adipose tissue in the treatment of obesity-associated diabetes (original) (raw)
Van Gaal, L. F., Mertens, I. L. & De Block, C. E. Mechanisms linking obesity with cardiovascular disease. Nature444, 875–880 (2006). CASPubMed Google Scholar
Kusminski, C. M., Shetty, S., Orci, L., Unger, R. H. & Scherer, P. E. Diabetes and apoptosis: lipotoxicity. Apoptosis14, 1484–1495 (2009). CASPubMed Google Scholar
Scherer, P. E. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes55, 1537–1545 (2006). This paper highlights the various functions of adipose tissue. CASPubMed Google Scholar
Sun, K., Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest.121, 2094–2101 (2011). A review article summarizing the key steps leading to adipose tissue dysfunction. CASPubMedPubMed Central Google Scholar
Unger, R. H. & Scherer, P. E. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol. Metab.21, 345–352 (2010). CASPubMedPubMed Central Google Scholar
Kusminski, C. M. & Scherer, P. E. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol. Metab.23, 435–443 (2012). CASPubMedPubMed Central Google Scholar
Sun, K., Tordjman, J., Clement, K. & Scherer, P. E. Fibrosis and adipose tissue dysfunction. Cell Metab.18, 470–477 (2013). CASPubMedPubMed Central Google Scholar
Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell156, 20–44 (2014). An excellent overview of the current knowledge of adipose tissue physiology. CASPubMedPubMed Central Google Scholar
Rutkowski, J. M., Stern, J. H. & Scherer, P. E. The cell biology of fat expansion. J. Cell Biol.208, 501–512 (2015). CASPubMedPubMed Central Google Scholar
Frayn, K. N., Karpe, F., Fielding, B. A., Macdonald, I. A. & Coppack, S. W. Integrative physiology of human adipose tissue. Int. J. Obes. Relat. Metab. Disord.27, 875–888 (2003). CASPubMed Google Scholar
Lee, M. J., Wu, Y. & Fried, S. K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Aspects Med.34, 1–11 (2013). CASPubMed Google Scholar
Tchkonia, T. et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab.17, 644–656 (2013). CASPubMedPubMed Central Google Scholar
Tchkonia, T. et al. Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am. J. Physiol. Endocrinol. Metab.292, E298–E307 (2007). CASPubMed Google Scholar
Cawthorn, W. P., Scheller, E. L. & MacDougald, O. A. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J. Lipid Res.53, 227–246 (2012). CASPubMedPubMed Central Google Scholar
Staszkiewicz, J., Gimble, J. M., Manuel, J. A. & Gawronska-Kozak, B. IFATS collection: stem cell antigen-1-positive ear mesenchymal stem cells display enhanced adipogenic potential. Stem Cells26, 2666–2673 (2008). CASPubMedPubMed Central Google Scholar
Rosen, E. D. & Spiegelman, B. M. PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth. J. Biol. Chem.276, 37731–37734 (2001). CASPubMed Google Scholar
Farmer, S. R. Transcriptional control of adipocyte formation. Cell Metab.4, 263–273 (2006). A concise summary of the key steps controlling adipogenesis. CASPubMedPubMed Central Google Scholar
Tontonoz, P. & Spiegelman, B. M. Fat and beyond: the diverse biology of PPARγ. Annu. Rev. Biochem.77, 289–312 (2008). CASPubMed Google Scholar
Altiok, S., Xu, M. & Spiegelman, B. M. PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev.11, 1987–1998 (1997). CASPubMedPubMed Central Google Scholar
Tontonoz, P., Hu, E. & Spiegelman, B. M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell79, 1147–1156 (1994). CASPubMed Google Scholar
Wang, Q. A. et al. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat. Cell Biol.17, 1099–1111 (2015). A recent mechanistic study addressing the transcriptional requirements at various stages of adipogenesisin vivo. CASPubMedPubMed Central Google Scholar
Vishvanath, L. et al. Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab.23, 350–359 (2015). This paper describes adipogenic precursors and their contribution to fat expansion. PubMedPubMed Central Google Scholar
Spalding, K. L. et al. Dynamics of fat cell turnover in humans. Nature453, 783–787 (2008). CASPubMed Google Scholar
Fasshauer, M. & Bluher, M. Adipokines in health and disease. Trends Pharmacol. Sci.36, 461–470 (2015). CASPubMed Google Scholar
Holland, W. L. & Summers, S. A. Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism. Endocr. Rev.29, 381–402 (2008). CASPubMedPubMed Central Google Scholar
Flier, J. S., Cook, K. S., Usher, P. & Spiegelman, B. M. Severely impaired adipsin expression in genetic and acquired obesity. Science237, 405–408 (1987). CASPubMed Google Scholar
Hotamisligil, G. S., Shargill, N. S. & Spiegelman, B. M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science259, 87–91 (1993). CASPubMed Google Scholar
Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature372, 425–432 (1994). CASPubMed Google Scholar
Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H. F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem.270, 26746–26749 (1995). The first report describing adiponectin. CASPubMed Google Scholar
Friedman, J. 20 years of leptin: leptin at 20: an overview. J. Endocrinol.223, T1–T8 (2014). CASPubMed Google Scholar
Farooqi, I. S. & O'Rahilly, S. Leptin: a pivotal regulator of human energy homeostasis. Am. J. Clin. Nutr.89, 980S–984S (2009). CASPubMed Google Scholar
Williams, K. W. & Elmquist, J. K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci.15, 1350–1355 (2012). CASPubMedPubMed Central Google Scholar
Kusminski, C. M. & Scherer, P. E. Leptin beyond the lipostat: key component of blood pressure regulation. Circ. Res.116, 1293–1295 (2015). CASPubMedPubMed Central Google Scholar
Ye, R. & Scherer, P. E. Adiponectin, driver or passenger on the road to insulin sensitivity? Mol. Metab.2, 133–141 (2013). CASPubMedPubMed Central Google Scholar
Shetty, S., Kusminski, C. M. & Scherer, P. E. Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol. Sci.30, 234–239 (2009). CASPubMed Google Scholar
Pajvani, U. B. et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem.279, 12152–12162 (2004). CASPubMed Google Scholar
Turer, A. T. & Scherer, P. E. Adiponectin: mechanistic insights and clinical implications. Diabetologia55, 2319–2326 (2012). CASPubMed Google Scholar
Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature423, 762–769 (2003). An important paper describing the cloning of adiponectin receptors. CASPubMed Google Scholar
Holland, W. L. et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med.17, 55–63 (2011). A report highlighting the connection between adiponectin and sphingolipid metabolism. CASPubMed Google Scholar
Hug, C. et al. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl Acad. Sci. USA101, 10308–10313 (2004). CASPubMedPubMed Central Google Scholar
Denzel, M. S. et al. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Invest.120, 4342–4352 (2010). CASPubMedPubMed Central Google Scholar
Matsuda, K. et al. Positive feedback regulation between adiponectin and T-cadherin impacts adiponectin levels in tissue and plasma of male mice. Endocrinology156, 934–946 (2015). CASPubMed Google Scholar
Hui, X. et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab.22, 279–290 (2015). CASPubMed Google Scholar
Hotta, K. et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler. Thromb. Vasc. Biol.20, 1595–1599 (2000). CASPubMed Google Scholar
Turer, A. T. et al. Adipose tissue mass and location affect circulating adiponectin levels. Diabetologia54, 2515–2524 (2011). CASPubMedPubMed Central Google Scholar
Combs, T. P. et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology145, 367–383 (2004). CASPubMed Google Scholar
Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med.7, 941–946 (2001). CASPubMed Google Scholar
Berg, A. H., Combs, T. P., Du, X., Brownlee, M. & Scherer, P. E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med.7, 947–953 (2001). References 48 and 49 provide the initial description of the effects of recombinant adiponectin. CASPubMed Google Scholar
Iwabu, M. et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca2+ and AMPK/SIRT1. Nature464, 1313–1319 (2010). CASPubMed Google Scholar
Okamoto, M. et al. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia51, 827–835 (2008). CASPubMed Google Scholar
Kim, C. H. et al. MKR mice are resistant to the metabolic actions of both insulin and adiponectin: discordance between insulin resistance and adiponectin responsiveness. Am. J. Physiol. Endocrinol. Metab.291, E298–E305 (2006). CASPubMed Google Scholar
Li, R., Lau, W. B. & Ma, X. L. Adiponectin resistance and vascular dysfunction in the hyperlipidemic state. Acta Pharmacol. Sin.31, 1258–1266 (2010). CASPubMedPubMed Central Google Scholar
Kim, J. Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest.117, 2621–2637 (2007). CASPubMedPubMed Central Google Scholar
Prins, J. B. & O'Rahilly, S. Regulation of adipose cell number in man. Clin. Sci. (Lond.)92, 3–11 (1997). CAS Google Scholar
Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med.19, 1338–1344 (2013). A methodological paper describing the tracing of new mature adipocytes. PubMedPubMed Central Google Scholar
Tchoukalova, Y. D. et al. Regional differences in cellular mechanisms of adipose tissue gain with overfeeding. Proc. Natl Acad. Sci. USA107, 18226–18231 (2010). CASPubMedPubMed Central Google Scholar
Ryden, M. et al. Transplanted bone marrow-derived cells contribute to human adipogenesis. Cell Metab.22, 408–417 (2015). CASPubMed Google Scholar
Lackey, D. E. & Olefsky, J. M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol.12, 15–28 (2016). CASPubMed Google Scholar
Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest.112, 1796–1808 (2003). CASPubMedPubMed Central Google Scholar
Xu, H. et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest.112, 1821–1830 (2003). CASPubMedPubMed Central Google Scholar
Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest.117, 175–184 (2007). CASPubMedPubMed Central Google Scholar
Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab.8, 301–309 (2008). CASPubMedPubMed Central Google Scholar
Cinti, S. et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res.46, 2347–2355 (2005). CASPubMed Google Scholar
Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab.20, 103–118 (2014). This paper establishes the metabolically beneficial effects of inflammation in adipose tissue. CASPubMed Google Scholar
Iyengar, P. et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest.115, 1163–1176 (2005). CASPubMedPubMed Central Google Scholar
Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol.29, 1575–1591 (2009). CASPubMed Google Scholar
Trayhurn, P. Hypoxia and adipocyte physiology: implications for adipose tissue dysfunction in obesity. Annu. Rev. Nutr.34, 207–236 (2014). CASPubMed Google Scholar
Krishnan, J. et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2–NAD+ system. Genes Dev.26, 259–270 (2012). CASPubMedPubMed Central Google Scholar
Halberg, N. et al. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol.29, 4467–4483 (2009). This paper describes the phenomenon of hypoxic conditions in adipose tissue. CASPubMedPubMed Central Google Scholar
Sun, K., Halberg, N., Khan, M., Magalang, U. J. & Scherer, P. E. Selective inhibition of hypoxia-inducible factor 1α ameliorates adipose tissue dysfunction. Mol. Cell. Biol.33, 904–917 (2013). CASPubMedPubMed Central Google Scholar
Colberg, S. R. et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care33, e147–e167 (2010). PubMedPubMed Central Google Scholar
Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med.346, 393–403 (2002). CASPubMed Google Scholar
Linden, M. A., Pincu, Y., Martin, S. A., Woods, J. A. & Baynard, T. Moderate exercise training provides modest protection against adipose tissue inflammatory gene expression in response to high-fat feeding. Physiol. Rep.2, e12071 (2014). PubMedPubMed Central Google Scholar
Reinehr, T. Lifestyle intervention in childhood obesity: changes and challenges. Nat. Rev. Endocrinol.9, 607–614 (2013). PubMed Google Scholar
Stanford, K. I. et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes64, 2002–2014 (2015). CASPubMedPubMed Central Google Scholar
Guh, D. P. et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Publ. Health9, 88 (2009). Google Scholar
American Diabetes Association. 6. Obesity management for the treatment of type 2 diabetes. Diabetes Care39 (Suppl. 1), S47–S51 (2016).
Astrup, A. et al. Safety, tolerability and sustained weight loss over 2 years with the once-daily human GLP-1 analog, liraglutide. Int. J. Obes (Lond.)36, 843–854 (2012). CAS Google Scholar
Pi-Sunyer, X. et al. A randomized, controlled trial of 3.0 mg of liraglutide in weight management. N. Engl. J. Med.373, 11–22 (2015). PubMed Google Scholar
Sumithran, P. & Proietto, J. Benefit–risk assessment of orlistat in the treatment of obesity. Drug Saf.37, 597–608 (2014). CASPubMed Google Scholar
Smith, S. R. et al. Multicenter, placebo-controlled trial of lorcaserin for weight management. N. Engl. J. Med.363, 245–256 (2010). CASPubMed Google Scholar
Verrotti, A. et al. Topiramate-induced weight loss: a review. Epilepsy Res.95, 189–199 (2011). CASPubMed Google Scholar
Greenway, F. L. et al. Effect of naltrexone plus bupropion on weight loss in overweight and obese adults (COR-I): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet376, 595–605 (2010). CASPubMed Google Scholar
Ornellas, T. & Chavez, B. Naltrexone SR/bupropion SR (contrave): a new approach to weight loss in obese adults. P T36, 255–262 (2011). PubMedPubMed Central Google Scholar
Ismail-Beigi, F. et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet376, 419–430 (2010). PubMedPubMed Central Google Scholar
Pryor, R. & Cabreiro, F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem. J.471, 307–322 (2015). CASPubMed Google Scholar
Turner, R. C., Cull, C. A., Frighi, V. & Holman, R. R. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA281, 2005–2012 (1999). CASPubMed Google Scholar
Drucker, D. J. & Nauck, M. A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet368, 1696–1705 (2006). CASPubMed Google Scholar
Amori, R. E., Lau, J. & Pittas, A. G. Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. JAMA298, 194–206 (2007). CASPubMed Google Scholar
Yki-Jarvinen, H. Thiazolidinediones. N. Engl. J. Med.351, 1106–1118 (2004). PubMed Google Scholar
Nawrocki, A. R. et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor γ agonists. J. Biol. Chem.281, 2654–2660 (2006). CASPubMed Google Scholar
Zhang, Q., Dou, J. & Lu, J. Combinational therapy with metformin and sodium-glucose cotransporter inhibitors in management of type 2 diabetes: systematic review and meta-analyses. Diabetes Res. Clin. Pract.105, 313–321 (2014). CASPubMed Google Scholar
Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med.373, 2117–2128 (2015). A recent landmark study highlighting the cardioprotective effects of an SGLT2 inhibitor. CASPubMed Google Scholar
Phillippe, H. M. & Wargo, K. A. Mitiglinide: a novel agent for the treatment of type 2 diabetes mellitus. Ann. Pharmacother.44, 1615–1623 (2010). PubMed Google Scholar
Mulvihill, E. E. & Drucker, D. J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev.35, 992–1019 (2014). CASPubMed Google Scholar
DiNicolantonio, J. J., Bhutani, J. & O'Keefe, J. H. Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart2, e000327 (2015). PubMedPubMed Central Google Scholar
DeFronzo, R. A., Davidson, J. A. & Del Prato, S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes. Metab.14, 5–14 (2012). CASPubMed Google Scholar
Finan, B. et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med.5, 209ra151 (2013). PubMed Google Scholar
Finan, B. et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med.21, 27–36 (2015). CASPubMed Google Scholar
Challa, T. D. et al. Regulation of adipocyte formation by GLP-1/GLP-1R signaling. J. Biol. Chem.287, 6421–6430 (2012). CASPubMed Google Scholar
Shao, Y., Yuan, G., Zhang, J. & Guo, X. Liraglutide reduces lipogenetic signals in visceral adipose of db/db mice with AMPK activation and Akt suppression. Drug Des. Devel. Ther.9, 1177–1184 (2015). CASPubMedPubMed Central Google Scholar
Topol, E. J. et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): a randomised, multicentre, placebo-controlled trial. Lancet376, 517–523 (2010). CASPubMed Google Scholar
Lehr, S., Hartwig, S. & Sell, H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteom. Clin. Appl.6, 91–101 (2012). CAS Google Scholar
Dahlman, I. et al. Functional annotation of the human fat cell secretome. Arch. Physiol. Biochem.118, 84–91 (2012). CASPubMed Google Scholar
Ahima, R. S., Saper, C. B., Flier, J. S. & Elmquist, J. K. Leptin regulation of neuroendocrine systems. Front. Neuroendocrinol.21, 263–307 (2000). CASPubMed Google Scholar
Myers, M. G. Jr et al. Challenges and opportunities of defining clinical leptin resistance. Cell Metab.15, 150–156 (2012). CASPubMedPubMed Central Google Scholar
Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA282, 1568–1575 (1999). CASPubMed Google Scholar
Mittendorfer, B. et al. Recombinant human leptin treatment does not improve insulin action in obese subjects with type 2 diabetes. Diabetes60, 1474–1477 (2011). CASPubMedPubMed Central Google Scholar
Hukshorn, C. J. et al. Weekly subcutaneous pegylated recombinant native human leptin (PEG-OB) administration in obese men. J. Clin. Endocrinol. Metab.85, 4003–4009 (2000). CASPubMed Google Scholar
Hoffmann, A. et al. Leptin dose-dependently decreases atherosclerosis by attenuation of hypercholesterolemia and induction of adiponectin. Biochim. Biophys. Acta1862, 113–120 (2015). PubMed Google Scholar
Dodd, G. T. et al. Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell160, 88–104 (2015). CASPubMedPubMed Central Google Scholar
Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med.341, 879–884 (1999). This study established the effects of recombinant leptin in human leptin deficiency. CASPubMed Google Scholar
Akinci, G. & Akinci, B. Metreleptin treatment in patients with non-HIV associated lipodystrophy. Recent Pat. Endocr. Metab. Immune Drug Discov.9, 74–78 (2015). CASPubMed Google Scholar
Kissileff, H. R. et al. Leptin reverses declines in satiation in weight-reduced obese humans. Am. J. Clin. Nutr.95, 309–317 (2012). CASPubMedPubMed Central Google Scholar
Rosenbaum, M. & Leibel, R. L. 20 years of leptin: role of leptin in energy homeostasis in humans. J. Endocrinol.223, T83–T96 (2014). CASPubMedPubMed Central Google Scholar
Oral, E. A. et al. Leptin-replacement therapy for lipodystrophy. N. Engl. J. Med.346, 570–578 (2002). CASPubMed Google Scholar
Ogawa, A., Harris, V., McCorkle, S. K., Unger, R. H. & Luskey, K. L. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J. Clin. Invest.85, 973–976 (1990). CASPubMedPubMed Central Google Scholar
Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA105, 7257–7262 (2008). CASPubMedPubMed Central Google Scholar
Wang, M. Y. et al. Leptin therapy in insulin-deficient type I diabetes. Proc. Natl Acad. Sci. USA107, 4813–4819 (2010). CASPubMedPubMed Central Google Scholar
Unger, R. H. & Roth, M. G. A new biology of diabetes revealed by leptin. Cell Metab.21, 15–20 (2015). CASPubMed Google Scholar
Shimabukuro, M., Zhou, Y. T., Levi, M. & Unger, R. H. Fatty acid-induced β cell apoptosis: a link between obesity and diabetes. Proc. Natl Acad. Sci. USA95, 2498–2502 (1998). CASPubMedPubMed Central Google Scholar
Shpilman, M. et al. Development and characterization of high affinity leptins and leptin antagonists. J. Biol. Chem.286, 4429–4442 (2011). CASPubMed Google Scholar
Elinav, E. et al. Pegylated leptin antagonist is a potent orexigenic agent: preparation and mechanism of activity. Endocrinology150, 3083–3091 (2009). CASPubMedPubMed Central Google Scholar
Kadowaki, T., Yamauchi, T. & Kubota, N. The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS. FEBS Lett.582, 74–80 (2008). CASPubMed Google Scholar
Holland, W. L. et al. An FGF21–adiponectin–ceramide axis controls energy expenditure and insulin action in mice. Cell Metab.17, 790–797 (2013). CASPubMedPubMed Central Google Scholar
Xia, J. Y. et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab.22, 266–278 (2015). This study describes the first inducible mouse model for testing the acute effects of ceramide depletion on insulin sensitivity. CASPubMedPubMed Central Google Scholar
Asterholm, I. W. & Scherer, P. E. Enhanced metabolic flexibility associated with elevated adiponectin levels. Am. J. Pathol.176, 1364–1376 (2010). CASPubMedPubMed Central Google Scholar
Halberg, N. et al. Systemic fate of the adipocyte-derived factor adiponectin. Diabetes58, 1961–1970 (2009). PubMedPubMed Central Google Scholar
Okada-Iwabu, M. et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature503, 493–499 (2013). CASPubMed Google Scholar
Tanabe, H. et al. Crystal structures of the human adiponectin receptors. Nature520, 312–316 (2015). A major breakthrough reporting the high resolution structure of adiponectin receptors. CASPubMedPubMed Central Google Scholar
Ealey, K. N., Kaludjerovic, J., Archer, M. C. & Ward, W. E. Adiponectin is a negative regulator of bone mineral and bone strength in growing mice. Exp. Biol. Med. (Maywood)233, 1546–1553 (2008). CAS Google Scholar
Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell159, 318–332 (2014). CASPubMedPubMed Central Google Scholar
Markan, K. R. et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes63, 4057–4063 (2014). CASPubMedPubMed Central Google Scholar
Owen, B. M., Mangelsdorf, D. J. & Kliewer, S. A. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol. Metab.26, 22–29 (2015). An excellent summary of the actions of FGF19 and FGF21. CASPubMed Google Scholar
Kliewer, S. A. & Mangelsdorf, D. J. Fibroblast growth factor 21: from pharmacology to physiology. Am. J. Clin. Nutr.91, 254S–257S (2010). CASPubMed Google Scholar
Ding, X. et al. βklotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab.16, 387–393 (2012). CASPubMedPubMed Central Google Scholar
Fisher, F. M. & Maratos-Flier, E. Understanding the physiology of FGF21. Annu. Rev. Physiol.10, 223–241 (2015). Google Scholar
Xu, J. et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models — association with liver and adipose tissue effects. Am. J. Physiol. Endocrinol. Metab.297, E1105–E1114 (2009). CASPubMed Google Scholar
Coskun, T. et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology149, 6018–6027 (2008). CASPubMed Google Scholar
Kharitonenkov, A. et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology148, 774–781 (2007). CASPubMed Google Scholar
Fisher, F. M. et al. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology147, 1073–1083.e6 (2014). CASPubMed Google Scholar
Owen, B. M. et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab.20, 670–677 (2014). CASPubMedPubMed Central Google Scholar
Adams, A. C. et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol. Metab.2, 31–37 (2012). CASPubMedPubMed Central Google Scholar
Lin, Z. et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab.17, 779–789 (2013). CASPubMed Google Scholar
Fisher, F. M. et al. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev.26, 271–281 (2012). CASPubMedPubMed Central Google Scholar
Gimeno, R. E. & Moller, D. E. FGF21-based pharmacotherapy — potential utility for metabolic disorders. Trends Endocrinol. Metab.25, 303–311 (2014). CASPubMed Google Scholar
Gaich, G. et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab.18, 333–340 (2013). CASPubMed Google Scholar
Dong, J. Q. et al. Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br. J. Clin. Pharmacol.80, 1051–1063 (2015). CASPubMedPubMed Central Google Scholar
Kharitonenkov, A. et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS ONE8, e58575 (2013). CASPubMedPubMed Central Google Scholar
Adams, A. C. et al. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS ONE8, e65763 (2013). CASPubMedPubMed Central Google Scholar
Kim, J. H. et al. Fibroblast growth factor 21 analogue LY2405319 lowers blood glucose in streptozotocin-induced insulin-deficient diabetic mice by restoring brown adipose tissue function. Diabetes Obes. Metab.17, 161–169 (2015). CASPubMed Google Scholar
Talukdar, S. et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab.23, 427–440 (2016). CASPubMed Google Scholar
Weng, Y. et al. Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice. PLoS ONE10, e0119104 (2015). PubMedPubMed Central Google Scholar
Wu, S., Levenson, A., Kharitonenkov, A. & De Luca, F. Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J. Biol. Chem.287, 26060–26067 (2012). CASPubMedPubMed Central Google Scholar
Wei, W. et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ. Proc. Natl Acad. Sci. USA109, 3143–3148 (2012). CASPubMedPubMed Central Google Scholar
Owen, B. M. et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat. Med.19, 1153–1156 (2013). CASPubMedPubMed Central Google Scholar
Bookout, A. L. et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med.19, 1147–1152 (2013). CASPubMedPubMed Central Google Scholar
Lee, P. et al. Fibroblast growth factor 21 (FGF21) and bone: is there a relationship in humans? Osteoporos. Int.24, 3053–3057 (2013). CASPubMedPubMed Central Google Scholar
Tseng, Y. H. et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature454, 1000–1004 (2008). CASPubMedPubMed Central Google Scholar
Townsend, K. L. et al. Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J.26, 2187–2196 (2012). CASPubMedPubMed Central Google Scholar
Zeng, J., Jiang, Y., Xiang, S. & Chen, B. Serum bone morphogenetic protein 7, insulin resistance, and insulin secretion in non-diabetic individuals. Diabetes Res. Clin. Pract.93, e21–e24 (2011). CASPubMed Google Scholar
Vaccaro, A. R. et al. The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft for posterolateral lumbar arthrodesis: minimum 4-year follow-up of a pilot study. Spine J.8, 457–465 (2008). PubMed Google Scholar
Gao, D. et al. Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am. J. Physiol. Endocrinol. Metab.307, E289–E304 (2014). CASPubMedPubMed Central Google Scholar
Handa, M. et al. XOMA 052, an anti-IL-1β monoclonal antibody, prevents IL-1β-mediated insulin resistance in 3T3-L1 adipocytes. Obesity (Silver Spring)21, 306–309 (2013). CAS Google Scholar
Larsen, C. M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med.356, 1517–1526 (2007). CASPubMed Google Scholar
van Asseldonk, E. J. et al. One week treatment with the IL-1 receptor antagonist anakinra leads to a sustained improvement in insulin sensitivity in insulin resistant patients with type 1 diabetes mellitus. Clin. Immunol.160, 155–162 (2015). CASPubMed Google Scholar
Rissanen, A., Howard, C. P., Botha, J., Thuren, T. & Global, I. Effect of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: results of a randomized, placebo-controlled trial. Diabetes Obes. Metab.14, 1088–1096 (2012). CASPubMed Google Scholar
Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev.84, 277–359 (2004). CASPubMed Google Scholar
Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell150, 366–376 (2012). CASPubMedPubMed Central Google Scholar
Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med.360, 1509–1517 (2009). CASPubMedPubMed Central Google Scholar
van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med.360, 1500–1508 (2009). References 180 and 181 establish the presence of brown adipose tissue in adult humans. CASPubMed Google Scholar
Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med.360, 1518–1525 (2009). CASPubMed Google Scholar
Flynn, A. et al. Contrast-enhanced ultrasound: a novel noninvasive, nonionizing method for the detection of brown adipose tissue in humans. J. Am. Soc. Echocardiogr.28, 1247–1254 (2015). PubMedPubMed Central Google Scholar
Peirce, V., Carobbio, S. & Vidal-Puig, A. The different shades of fat. Nature510, 76–83 (2014). CASPubMed Google Scholar
Stock, M. J. & Rothwell, N. J. Role of brown adipose tissue thermogenesis in overfeeding: a review. J. R. Soc. Med.76, 71–73 (1983). CASPubMedPubMed Central Google Scholar
Nedergaard, J., Bengtsson, T. & Cannon, B. Three years with adult human brown adipose tissue. Ann. NY Acad. Sci.1212, E20–E36 (2010). PubMed Google Scholar
Bartelt, A. et al. Brown adipose tissue activity controls triglyceride clearance. Nat. Med.17, 200–205 (2011). CASPubMed Google Scholar
Peirce, V. & Vidal-Puig, A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol.1, 353–360 (2013). CASPubMed Google Scholar
Geerling, J. J. et al. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes63, 880–891 (2014). CASPubMed Google Scholar
Baxter, J. D. & Webb, P. Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat. Rev. Drug Discov.8, 308–320 (2009). CASPubMed Google Scholar
Blondin, D. P. et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab.99, E438–E446 (2014). CASPubMedPubMed Central Google Scholar
Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest.123, 3404–3408 (2013). CASPubMedPubMed Central Google Scholar
Chen, K. Y. et al. Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. J. Clin. Endocrinol. Metab.98, E1218–E1223 (2013). CASPubMedPubMed Central Google Scholar
Matsushita, M. et al. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int. J. Obes. (Lond.)38, 812–817 (2014). CAS Google Scholar
Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes63, 4089–4099 (2014). CASPubMedPubMed Central Google Scholar
Orava, J. et al. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring)21, 2279–2287 (2013). CAS Google Scholar
Whittle, A., Relat-Pardo, J. & Vidal-Puig, A. Pharmacological strategies for targeting BAT thermogenesis. Trends Pharmacol. Sci.34, 347–355 (2013). CASPubMed Google Scholar
Ghorbani, M. & Himms-Hagen, J. Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. Int. J. Obes Relat. Metab. Disord.21, 465–475 (1997). CASPubMed Google Scholar
Cypess, A. M. et al. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc. Natl Acad. Sci. USA109, 10001–10005 (2012). CASPubMedPubMed Central Google Scholar
Vosselman, M. J. et al. Systemic β-adrenergic stimulation of thermogenesis is not accompanied by brown adipose tissue activity in humans. Diabetes61, 3106–3113 (2012). CASPubMedPubMed Central Google Scholar
Carey, A. L. et al. Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia56, 147–155 (2013). CASPubMed Google Scholar
Cypess, A. M. et al. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab.21, 33–38 (2015). An elegant study reporting the ability to stimulate the activity of human BAT. CASPubMedPubMed Central Google Scholar
Colman, E. Dinitrophenol and obesity: an early twentieth-century regulatory dilemma. Regul. Toxicol. Pharmacol.48, 115–117 (2007). CASPubMed Google Scholar
Perry, R. J. et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab.18, 740–748 (2013). CASPubMedPubMed Central Google Scholar
Perry, R. J., Zhang, D., Zhang, X. M., Boyer, J. L. & Shulman, G. I. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science347, 1253–1256 (2015). CASPubMedPubMed Central Google Scholar
Bostrom, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature481, 463–468 (2012). PubMedPubMed Central Google Scholar
Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab.19, 302–309 (2014). CASPubMedPubMed Central Google Scholar
Jedrychowski, M. P. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab.22, 734–740 (2015). CASPubMedPubMed Central Google Scholar
Rao, R. R. et al. Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell157, 1279–1291 (2014). CASPubMedPubMed Central Google Scholar
Cohen, P. et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell156, 304–316 (2014). CASPubMedPubMed Central Google Scholar
Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell163, 643–655 (2015). CASPubMedPubMed Central Google Scholar
Whittle, A. J. et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell149, 871–885 (2012). CASPubMedPubMed Central Google Scholar
Fang, S. et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med.21, 159–165 (2015). CASPubMedPubMed Central Google Scholar
Sun, K. et al. Dichotomous effects of VEGF-A on adipose tissue dysfunction. Proc. Natl Acad. Sci. USA109, 5874–5879 (2012). This study established the metabolically beneficial effects of expansion of the vasculature in adipose tissue. CASPubMedPubMed Central Google Scholar
Kusminski, C. M., Park, J. & Scherer, P. E. MitoNEET-mediated effects on browning of white adipose tissue. Nat. Commun.5, 3962 (2014). CASPubMed Google Scholar
Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell157, 1292–1308 (2014). CASPubMedPubMed Central Google Scholar
Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature480, 104–108 (2011). CASPubMedPubMed Central Google Scholar
Kolumam, G. et al. Sustained brown fat stimulation and insulin sensitization by a humanized bispecific antibody agonist for fibroblast growth factor receptor 1/βklotho complex. eBioMedicine2, 730–743 (2015). PubMedPubMed Central Google Scholar
Douris, N. et al. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology156, 2470–2481 (2015). CASPubMedPubMed Central Google Scholar
Veniant, M. M. et al. Pharmacologic effects of FGF21 are independent of the “browning” of white adipose tissue. Cell Metab.21, 731–738 (2015). CASPubMed Google Scholar
Samms, R. J. et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep.11, 991–999 (2015). CASPubMed Google Scholar
McDonald, M. E. et al. Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell160, 105–118 (2015). CASPubMedPubMed Central Google Scholar
Evans, R. M., Barish, G. D. & Wang, Y. X. PPARs and the complex journey to obesity. Nat. Med.10, 355–361 (2004). CASPubMed Google Scholar
Choi, J. H. et al. Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARγ by Cdk5. Nature466, 451–456 (2010). CASPubMedPubMed Central Google Scholar
Dhavan, R. & Tsai, L. H. A decade of CDK5. Nat. Rev. Mol. Cell Biol.2, 749–759 (2001). CASPubMed Google Scholar
Banks, A. S. et al. An ERK/Cdk5 axis controls the diabetogenic actions of PPARγ. Nature517, 391–395 (2015). CASPubMed Google Scholar
Flaherty, K. T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med.367, 1694–1703 (2012). CASPubMedPubMed Central Google Scholar
Nemoto, S., Fergusson, M. M. & Finkel, T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1α. J. Biol. Chem.280, 16456–16460 (2005). CASPubMed Google Scholar
Wilson, B. J., Tremblay, A. M., Deblois, G., Sylvain-Drolet, G. & Giguere, V. An acetylation switch modulates the transcriptional activity of estrogen-related receptor α. Mol. Endocrinol.24, 1349–1358 (2010). CASPubMedPubMed Central Google Scholar
Picard, F. et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature429, 771–776 (2004). CASPubMedPubMed Central Google Scholar
Mayoral, R. et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Mol. Metab.4, 378–391 (2015). CASPubMedPubMed Central Google Scholar
Qiang, L. et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell150, 620–632 (2012). CASPubMedPubMed Central Google Scholar
Dash, S., Xiao, C., Morgantini, C., Szeto, L. & Lewis, G. F. High-dose resveratrol treatment for 2 weeks inhibits intestinal and hepatic lipoprotein production in overweight/obese men. Arterioscler. Thromb. Vasc. Biol.33, 2895–2901 (2013). CASPubMed Google Scholar
Knop, F. K. et al. Thirty days of resveratrol supplementation does not affect postprandial incretin hormone responses, but suppresses postprandial glucagon in obese subjects. Diabet. Med.30, 1214–1218 (2013). CASPubMed Google Scholar
Chen, S. et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig. Liver Dis.47, 226–232 (2015). CASPubMed Google Scholar
Brasnyo, P. et al. Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br. J. Nutr.106, 383–389 (2011). CASPubMed Google Scholar
Muise, E. S. et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor γ and altered metabolic states. Mol. Pharmacol.74, 403–412 (2008). CASPubMed Google Scholar
Wang, H., Qiang, L. & Farmer, S. R. Identification of a domain within peroxisome proliferator-activated receptor γ regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol. Cell. Biol.28, 188–200 (2008). PubMed Google Scholar
Dutchak, P. A. et al. Fibroblast growth factor-21 regulates PPARγ activity and the antidiabetic actions of thiazolidinediones. Cell148, 556–567 (2012). CASPubMedPubMed Central Google Scholar
Wahli, W. & Michalik, L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab.23, 351–363 (2012). CASPubMed Google Scholar
Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature447, 1116–1120 (2007). CASPubMedPubMed Central Google Scholar
Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med.15, 930–939 (2009). CASPubMedPubMed Central Google Scholar
Cipolletta, D. et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature486, 549–553 (2012). CASPubMedPubMed Central Google Scholar
Ussher, J. R. et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes59, 2453–2464 (2010). CASPubMedPubMed Central Google Scholar
Pedersen, D. J. et al. A major role of insulin in promoting obesity-associated adipose tissue inflammation. Mol. Metab.4, 507–518 (2015). CASPubMedPubMed Central Google Scholar
Reilly, S. M. et al. An inhibitor of the protein kinases TBK1 and IKK-ε improves obesity-related metabolic dysfunctions in mice. Nat. Med.19, 313–321 (2013). CASPubMedPubMed Central Google Scholar
Makino, H., Saijo, T., Ashida, Y., Kuriki, H. & Maki, Y. Mechanism of action of an antiallergic agent, amlexanox (AA-673), in inhibiting histamine release from mast cells. Acceleration of cAMP generation and inhibition of phosphodiesterase. Int. Arch. Allergy Appl. Immunol.82, 66–71 (1987). CASPubMed Google Scholar
Reilly, S. M. et al. A subcutaneous adipose tissue–liver signalling axis controls hepatic gluconeogenesis. Nat. Commun.6, 6047 (2015). CASPubMed Google Scholar
Stanley, T. L. et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J. Clin. Endocrinol. Metab.96, E146–E150 (2011). CASPubMed Google Scholar
Dominguez, H. et al. Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res.42, 517–525 (2005). CASPubMed Google Scholar
Solomon, D. H. et al. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA305, 2525–2531 (2011). CASPubMed Google Scholar
Paquot, N., Castillo, M. J., Lefebvre, P. J. & Scheen, A. J. No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J. Clin. Endocrinol. Metab.85, 1316–1319 (2000). CASPubMed Google Scholar
Anderson, K., Wherle, L., Park, M., Nelson, K. & Nguyen, L. Salsalate, an old, inexpensive drug with potential new indications: a review of the evidence from 3 recent studies. Am. Health Drug Benefits7, 231–235 (2014). PubMedPubMed Central Google Scholar
Goldfine, A. B. et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med.159, 1–12 (2013). PubMedPubMed Central Google Scholar
Koska, J. et al. The effect of salsalate on insulin action and glucose tolerance in obese non-diabetic patients: results of a randomised double-blind placebo-controlled study. Diabetologia52, 385–393 (2009). CASPubMed Google Scholar
Goldfine, A. B. et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci.1, 36–43 (2008). CASPubMedPubMed Central Google Scholar
Barzilay, J. I. et al. The impact of salsalate treatment on serum levels of advanced glycation end products in type 2 diabetes. Diabetes Care37, 1083–1091 (2014). CASPubMedPubMed Central Google Scholar
Penesova, A. et al. Salsalate has no effect on insulin secretion but decreases insulin clearance: a randomized, placebo-controlled trial in subjects without diabetes. Diabetes Obes. Metab.17, 608–612 (2015). CASPubMed Google Scholar
Raghavan, R. P., Laight, D. W. & Cummings, M. H. Aspirin in type 2 diabetes, a randomised controlled study: effect of different doses on inflammation, oxidative stress, insulin resistance and endothelial function. Int. J. Clin. Pract.68, 271–277 (2014). CASPubMed Google Scholar
Oh, D. Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell142, 687–698 (2010). CASPubMedPubMed Central Google Scholar
Oh da, Y. et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat. Med.20, 942–947 (2014). PubMed Google Scholar
Sullivan, T. J. et al. Experimental evidence for the use of CCR2 antagonists in the treatment of type 2 diabetes. Metabolism62, 1623–1632 (2013). CASPubMed Google Scholar
Di Prospero, N. A. et al. CCR2 antagonism in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Diabetes Obes. Metab.16, 1055–1064 (2014). CASPubMed Google Scholar
de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol.3, 687–696 (2015). CASPubMed Google Scholar
Xue, C. B. et al. Discovery of INCB8761/PF-4136309, a potent, selective, and orally bioavailable CCR2 antagonist. ACS Med. Chem. Lett.2, 913–918 (2011). CASPubMedPubMed Central Google Scholar
Filgueiras, L. R., Serezani, C. H. & Jancar, S. Leukotriene B4 as a potential therapeutic target for the treatment of metabolic disorders. Front. Immunol.6, 515 (2015). PubMedPubMed Central Google Scholar
Li, P. et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat. Med.21, 239–247 (2015). CASPubMedPubMed Central Google Scholar
Liston, T. E. et al. Pharmacokinetics and pharmacodynamics of the leukotriene B4 receptor antagonist CP-105,696 in man following single oral administration. Br. J. Clin. Pharmacol.45, 115–121 (1998). CASPubMedPubMed Central Google Scholar
Favalli, E. G. et al. Serious infections during anti-TNFα treatment in rheumatoid arthritis patients. Autoimmun Rev.8, 266–273 (2009). CASPubMed Google Scholar
Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest.122, 4243–4256 (2012). CASPubMedPubMed Central Google Scholar
Sun, K. et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun.5, 3485 (2014). PubMed Google Scholar
Iwayama, T. et al. PDGFRα signaling drives adipose tissue fibrosis by targeting progenitor cell plasticity. Genes Dev.29, 1106–1119 (2015). CASPubMedPubMed Central Google Scholar
Haak, A. J. et al. Targeting the myofibroblast genetic switch: inhibitors of myocardin-related transcription factor/serum response factor-regulated gene transcription prevent fibrosis in a murine model of skin injury. J. Pharmacol. Exp. Ther.349, 480–486 (2014). PubMedPubMed Central Google Scholar
Sisson, T. H. et al. Inhibition of myocardin-related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis. Am. J. Pathol.185, 969–986 (2015). CASPubMedPubMed Central Google Scholar
Lee, S. H. et al. ROCK1 isoform-specific deletion reveals a role for diet-induced insulin resistance. Am. J. Physiol. Endocrinol. Metab.306, E332–E343 (2014). CASPubMed Google Scholar
Vila, I. K. et al. Immune cell Toll-like receptor 4 mediates the development of obesity- and endotoxemia-associated adipose tissue fibrosis. Cell Rep.7, 1116–1129 (2014). CASPubMed Google Scholar
Jia, L. et al. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance. Nat. Commun.5, 3878 (2014). CASPubMed Google Scholar
Falchook, G. S. et al. Targeting hypoxia-inducible factor-1α (HIF-1α) in combination with antiangiogenic therapy: a phase I trial of bortezomib plus bevacizumab. Oncotarget5, 10280–10292 (2014). PubMedPubMed Central Google Scholar
Welsh, S., Williams, R., Kirkpatrick, L., Paine-Murrieta, G. & Powis, G. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1α. Mol. Cancer Ther.3, 233–244 (2004). CASPubMed Google Scholar
Baker, L. C. et al. The HIF-pathway inhibitor NSC-134754 induces metabolic changes and anti-tumour activity while maintaining vascular function. Br. J. Cancer106, 1638–1647 (2012). CASPubMedPubMed Central Google Scholar
Xia, Y., Choi, H. K. & Lee, K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur. J. Med. Chem.49, 24–40 (2012). CASPubMed Google Scholar
Montgomery, M. K. & Turner, N. Mitochondrial dysfunction and insulin resistance: an update. Endocr. Connect.4, R1–R15 (2015). PubMed Google Scholar
Choo, H. J. et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia49, 784–791 (2006). CASPubMed Google Scholar
Heinonen, S. et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes64, 3135–3145 (2015). CASPubMed Google Scholar
Chattopadhyay, M. et al. Enhanced ROS production and oxidative damage in subcutaneous white adipose tissue mitochondria in obese and type 2 diabetes subjects. Mol. Cell. Biochem.399, 95–103 (2015). CASPubMed Google Scholar
Wilson-Fritch, L. et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J. Clin. Invest.114, 1281–1289 (2004). CASPubMedPubMed Central Google Scholar
Liu, J. et al. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv. Drug Deliv. Rev.61, 1343–1352 (2009). CASPubMed Google Scholar
Armstrong, J. S. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br. J. Pharmacol.151, 1154–1165 (2007). CASPubMedPubMed Central Google Scholar
Shen, W. et al. _R_-α-lipoic acid and acetyl-L-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia51, 165–174 (2008). CASPubMed Google Scholar
Kusminski, C. M. et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med.18, 1539–1549 (2012). This study reports the 'heaviest mouse ever'. Despite weighing 129.5 g, these transgenic mice retain full metabolic function. CASPubMedPubMed Central Google Scholar
Vernochet, C. et al. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell Metab.16, 765–776 (2012). CASPubMedPubMed Central Google Scholar
McLaughlin, T., Lamendola, C., Liu, A. & Abbasi, F. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J. Clin. Endocrinol. Metab.96, E1756–E1760 (2011). CASPubMedPubMed Central Google Scholar
Snijder, M. B. et al. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am. J. Clin. Nutr.77, 1192–1197 (2003). CASPubMed Google Scholar
Denis, G. V. & Obin, M. S. 'Metabolically healthy obesity': origins and implications. Mol. Aspects Med.34, 59–70 (2013). CASPubMed Google Scholar
Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol.227, 271–278 (2000). CASPubMed Google Scholar
Gurtner, G. C., Werner, S., Barrandon, Y. & Longaker, M. T. Wound repair and regeneration. Nature453, 314–321 (2008). CASPubMed Google Scholar
Cao, M. et al. Adipose-derived mesenchymal stem cells improve glucose homeostasis in high-fat diet-induced obese mice. Stem Cell Res. Ther.6, 208 (2015). PubMedPubMed Central Google Scholar
Shang, Q. et al. Delivery of adipose-derived stem cells attenuates adipose tissue inflammation and insulin resistance in obese mice through remodeling macrophage phenotypes. Stem Cells Dev.24, 2052–2064 (2015). CASPubMed Google Scholar
Zhang, Q., Liu, L. N., Yong, Q., Deng, J. C. & Cao, W. G. Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model. Stem Cell Res. Ther.6, 145 (2015). PubMedPubMed Central Google Scholar
Badimon, L., Onate, B. & Vilahur, G. Adipose-derived mesenchymal stem cells and their reparative potential in ischemic heart disease. Rev. Esp. Cardiol. (Engl. Ed)68, 599–611 (2015). Google Scholar