Lenhard, B., Sandelin, A. & Carninci, P. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. Nature Rev. Genet.13, 233–245 (2012). ArticleCASPubMed Google Scholar
Petrykowska, H. M., Vockley, C. M. & Elnitski, L. Detection and characterization of silencers and enhancer-blockers in the greater CFTR locus. Genome Res.18, 1238–1246 (2008). ArticleCASPubMedPubMed Central Google Scholar
Vokes, S. A., Ji, H., Wong, W. H. & McMahon, A. P. A genome-scale analysis of the _cis_-regulatory circuitry underlying sonic hedgehog-mediated patterning of the mammalian limb. Genes Dev.22, 2651–2663 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ayer, S. & Benyajati, C. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines. Mol. Cell. Biol.10, 3512–3523 (1990). ArticleCASPubMedPubMed Central Google Scholar
Gaszner, M. & Felsenfeld, G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nature Rev. Genet.7, 703–713 (2006). ArticleCASPubMed Google Scholar
Ohtsuki, S., Levine, M. & Cai, H. N. Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes Dev.12, 547–556 (1998). ArticleCASPubMedPubMed Central Google Scholar
Calhoun, V. C., Stathopoulos, A. & Levine, M. Promoter-proximal tethering elements regulate enhancer-promoter specificity in the Drosophila Antennapedia complex. Proc. Natl Acad. Sci. USA99, 9243–9247 (2002). ArticleCASPubMedPubMed Central Google Scholar
Banerji, J., Rusconi, S. & Schaffner, W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell27, 299–308 (1981). ArticleCASPubMed Google Scholar
Halfon, M. S. et al. Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell103, 63–74 (2000). ArticleCASPubMed Google Scholar
Yuh, C. H., Ransick, A., Martinez, P., Britten, R. J. & Davidson, E. H. Complexity and organization of DNA-protein interactions in the 5′-regulatory region of an endoderm-specific marker gene in the sea urchin embryo. Mech. Dev.47, 165–186 (1994). ArticleCASPubMed Google Scholar
Sandmann, T. et al. A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev.21, 436–449 (2007). ArticleCASPubMedPubMed Central Google Scholar
Lettice, L. A. et al. Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev. Cell22, 459–467 (2012). ArticleCASPubMedPubMed Central Google Scholar
Stanojevic, D., Small, S. & Levine, M. Regulation of a segmentation stripe by overlapping activators and repressors in the Drosophila embryo. Science254, 1385–1387 (1991). ArticleCASPubMed Google Scholar
Ip, Y. T., Levine, M. & Small, S. J. The bicoid and dorsal morphogens use a similar strategy to make stripes in the Drosophila embryo. J. Cell Sci. Suppl.16, 33–38 (1992). CASPubMed Google Scholar
Xu, X., Yin, Z., Hudson, J. B., Ferguson, E. L. & Frasch, M. Smad proteins act in combination with synergistic and antagonistic regulators to target Dpp responses to the Drosophila mesoderm. Genes Dev.12, 2354–2370 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lee, H. H. & Frasch, M. Nuclear integration of positive Dpp signals, antagonistic Wg inputs and mesodermal competence factors during Drosophila visceral mesoderm induction. Development132, 1429–1442 (2005). ArticleCASPubMed Google Scholar
Guss, K. A., Nelson, C. E., Hudson, A., Kraus, M. E. & Carroll, S. B. Control of a genetic regulatory network by a selector gene. Science292, 1164–1167 (2001). ArticleCASPubMed Google Scholar
Trompouki, E. et al. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell147, 577–589 (2011). ArticleCASPubMedPubMed Central Google Scholar
Sandmann, T. et al. A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Dev. Cell10, 797–807 (2006). ArticleCASPubMed Google Scholar
Jakobsen, J. S. et al. Temporal ChIP-on-chip reveals Biniou as a universal regulator of the visceral muscle transcriptional network. Genes Dev.21, 2448–2460 (2007). ArticleCASPubMedPubMed Central Google Scholar
Cao, Y. et al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev. Cell18, 662–674 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lin, Y. C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nature Immunol.11, 635–643 (2010). ArticleCAS Google Scholar
Pilon, A. M. et al. Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation. Blood118, e139–e148 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gaudet, J. & Mango, S. E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4. Science295, 821–825 (2002). ArticleCASPubMed Google Scholar
Wilczynski, B. & Furlong, E. E. Dynamic CRM occupancy reflects a temporal map of developmental progression. Mol. Syst. Biol.6, 383 (2010). ArticlePubMedPubMed Central Google Scholar
Yanez-Cuna, J. O., Dinh, H. Q., Kvon, E. Z., Shlyueva, D. & Stark, A. Uncovering _cis_-regulatory sequence requirements for context specific transcription factor binding. Genome Res. 25 Apr 2012 (doi:10.1101/gr.132811.111). ArticleCASPubMedPubMed Central Google Scholar
Zeitlinger, J. et al. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell113, 395–404 (2003). ArticleCASPubMed Google Scholar
Biggar, S. R. & Crabtree, G. R. Cell signaling can direct either binary or graded transcriptional responses. EMBO J.20, 3167–3176 (2001). ArticleCASPubMedPubMed Central Google Scholar
Giorgetti, L. et al. Noncooperative interactions between transcription factors and clustered DNA binding sites enable graded transcriptional responses to environmental inputs. Mol. Cell37, 418–428 (2010). ArticleCASPubMed Google Scholar
Johnson, A. D., Meyer, B. J. & Ptashne, M. Interactions between DNA-bound repressors govern regulation by the lambda phage repressor. Proc. Natl Acad. Sci. USA76, 5061–5065 (1979). ArticleCASPubMedPubMed Central Google Scholar
Lebrecht, D. et al. Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila. Proc. Natl Acad. Sci. USA102, 13176–13181 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zinzen, R. P., Senger, K., Levine, M. & Papatsenko, D. Computational models for neurogenic gene expression in the Drosophila embryo. Curr. Biol.16, 1358–1365 (2006). ArticleCASPubMed Google Scholar
Szymanski, P. & Levine, M. Multiple modes of dorsal-bHLH transcriptional synergy in the Drosophila embryo. EMBO J.14, 2229–2238 (1995). ArticleCASPubMedPubMed Central Google Scholar
Chopra, V. S. & Levine, M. Combinatorial patterning mechanisms in the Drosophila embryo. Brief. Funct. Genomic. Proteomic.8, 243–249 (2009). ArticlePubMed Google Scholar
Lin, Y. S., Carey, M., Ptashne, M. & Green, M. R. How different eukaryotic transcriptional activators can cooperate promiscuously. Nature345, 359–361 (1990). ArticleCASPubMed Google Scholar
Merika, M., Williams, A. J., Chen, G., Collins, T. & Thanos, D. Recruitment of CBP/p300 by the IFNβ enhanceosome is required for synergistic activation of transcription. Mol. Cell1, 277–287 (1998). ArticleCASPubMed Google Scholar
Voss, T. C. et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell146, 544–554 (2011). ArticleCASPubMedPubMed Central Google Scholar
Falvo, J. V., Thanos, D. & Maniatis, T. Reversal of intrinsic DNA bends in the IFNβ gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell83, 1101–1111 (1995). ArticleCASPubMed Google Scholar
Siggers, T., Duyzend, M. H., Reddy, J., Khan, S. & Bulyk, M. L. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex. Mol. Syst. Biol.7, 555 (2011). This is an interesting study demonstrating that the binding of a cofactor that does not contain a DNA-binding domain can alter the sequence specificity of a transcription factor complex. ArticleCASPubMedPubMed Central Google Scholar
Noyes, M. B. et al. Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell133, 1277–1289 (2008). ArticleCASPubMedPubMed Central Google Scholar
Carr, A. & Biggin, M. D. A comparison of in vivo and in vitro DNA-binding specificities suggests a new model for homeoprotein DNA binding in Drosophila embryos. EMBO J.18, 1598–1608 (1999). ArticleCASPubMedPubMed Central Google Scholar
Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between hox proteins. Cell147, 1270–1282 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liu, X., Lee, C. K., Granek, J. A., Clarke, N. D. & Lieb, J. D. Whole-genome comparison of Leu3 binding in vitro and in vivo reveals the importance of nucleosome occupancy in target site selection. Genome Res.16, 1517–1528 (2006). ArticleCASPubMedPubMed Central Google Scholar
Li, X.-y. et al. The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biol.12, R34 (2011). The authors found that TF occupancy correlates better with DNA accessibility (estimated by DNaseI hypersensitivity) than with predicted sequence affinity, suggesting that this simple property could explain the clustering of TF binding. ArticleCASPubMedPubMed Central Google Scholar
John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nature Genet.43, 264–268 (2011). ArticleCASPubMed Google Scholar
Buck, M. J. & Lieb, J. D. A chromatin-mediated mechanism for specification of conditional transcription factor targets. Nature Genet.38, 1446–1451 (2006). ArticleCASPubMed Google Scholar
Carr, A. & Biggin, M. D. Accessibility of transcriptionally inactive genes is specifically reduced at homeoprotein-DNA binding sites in Drosophila. Nucleic Acids Res.28, 2839–2846 (2000). ArticleCASPubMedPubMed Central Google Scholar
John, S. et al. Interaction of the glucocorticoid receptor with the chromatin landscape. Mol. Cell29, 611–624 (2008). ArticleCASPubMed Google Scholar
Vicent, G. P. et al. Two chromatin remodeling activities cooperate during activation of hormone responsive promoters. PLoS Genet.5, e1000567 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yarragudi, A., Miyake, T., Li, R. & Morse, R. H. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae. Mol. Cell. Biol.24, 9152–9164 (2004). ArticleCASPubMedPubMed Central Google Scholar
Workman, J. L. & Kingston, R. E. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science258, 1780–1784 (1992). ArticleCASPubMed Google Scholar
Morse, R. H. Nucleosome disruption by transcription factor binding in yeast. Science262, 1563–1566 (1993). ArticleCASPubMed Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell129, 823–837 (2007). ArticleCASPubMed Google Scholar
Kolasinska-Zwierz, P. et al. Differential chromatin marking of introns and expressed exons by H3K36me3. Nature Genet.41, 376–381 (2009). ArticleCASPubMed Google Scholar
Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature459, 108–112 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ong, C. T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nature Rev. Genet.12, 283–293 (2011). ArticleCASPubMed Google Scholar
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA107, 21931–21936 (2010). ArticleCASPubMedPubMed Central Google Scholar
Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature470, 279–283 (2011). References 71 and 72 identified a strong correlation between the presence of H3K27ac oncis-regulatory elements and the activity of the neighbouring gene, providing the first indication that this mark, rather than H3K4me1, is a good indicator of active regulatory elements. ArticleCASPubMed Google Scholar
Bonn, S. et al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nature Genet.44, 148–156 (2012). ArticleCASPubMed Google Scholar
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime _cis_-regulatory elements required for macrophage and B cell identities. Mol. Cell38, 576–589 (2010). ArticleCASPubMedPubMed Central Google Scholar
McManus, S. et al. The transcription factor Pax5 regulates its target genes by recruiting chromatin-modifying proteins in committed B cells. EMBO J.30, 2388–2404 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity32, 317–328 (2010). ArticleCASPubMed Google Scholar
Mercer, E. M. et al. Multilineage priming of enhancer repertoires precedes commitment to the B and myeloid cell lineages in hematopoietic progenitors. Immunity35, 413–425 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zinzen, R. P., Girardot, C., Gagneur, J., Braun, M. & Furlong, E. E. Combinatorial binding predicts spatio-temporal _cis_-regulatory activity. Nature462, 65–70 (2009). ArticleCASPubMed Google Scholar
Brody, T. et al. Use of a Drosophila genome-wide conserved sequence database to identify functionally related _cis_-regulatory enhancers. Dev. Dyn.241, 169–189 (2012). ArticleCASPubMed Google Scholar
Kaplan, T. et al. Quantitative models of the mechanisms that control genome-wide patterns of transcription factor binding during early Drosophila development. PLoS Genet.7, e1001290 (2011). ArticleCASPubMedPubMed Central Google Scholar
Senger, K. et al. Immunity regulatory DNAs share common organizational features in Drosophila. Mol. Cell13, 19–32 (2004). ArticleCASPubMed Google Scholar
Swanson, C. I., Evans, N. C. & Barolo, S. Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Dev. Cell18, 359–370 (2010). By carrying out an extensive mutagenesis analysis, this elegant study found that the sequence of aD. melanogasterenhancer is highly constrained, with the presence and relative positioning of almost all sequence motifs being essential for some aspect of the enhancer's activity. Interestingly, in otherDrosophilaspecies, the homologous enhancer adopted different 'solutions' to give the same activity. ArticleCASPubMedPubMed Central Google Scholar
Thanos, D. & Maniatis, T. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell83, 1091–1100 (1995). ArticleCASPubMed Google Scholar
Kulkarni, M. M. & Arnosti, D. N. Information display by transcriptional enhancers. Development130, 6569–6575 (2003). ArticleCASPubMed Google Scholar
Arnosti, D. N. & Kulkarni, M. M. Transcriptional enhancers: intelligent enhanceosomes or flexible billboards? J. Cell. Biochem.94, 890–898 (2005). ArticleCAS Google Scholar
Brown, C. D., Johnson, D. S. & Sidow, A. Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science317, 1557–1560 (2007). ArticleCASPubMed Google Scholar
Liberman, L. M. & Stathopoulos, A. Design flexibility in _cis_-regulatory control of gene expression: synthetic and comparative evidence. Dev. Biol.327, 578–589 (2009). ArticleCASPubMed Google Scholar
Junion, G. et al. A transcription factor collective defines cardiac cell fate and reflects lineage history. Cell148, 473–486 (2012). ArticleCASPubMed Google Scholar
Gao, F., Foat, B. C. & Bussemaker, H. J. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics5, 31 (2004). ArticlePubMedPubMed Central Google Scholar
Ucar, D., Beyer, A., Parthasarathy, S. & Workman, C. T. Predicting functionality of protein-DNA interactions by integrating diverse evidence. Bioinformatics25, i137–i144 (2009). ArticleCASPubMedPubMed Central Google Scholar
Krejci, A., Bernard, F., Housden, B. E., Collins, S. & Bray, S. J. Direct response to Notch activation: signaling crosstalk and incoherent logic. Sci. Signal.2, ra1 (2009). ArticleCASPubMed Google Scholar
Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev.25, 2227–2241 (2011). ArticleCASPubMedPubMed Central Google Scholar
Biswas, A. K. & Johnson, D. G. Transcriptional and nontranscriptional functions of E2F1 in response to DNA damage. Cancer Res.72, 13–17 (2012). ArticleCASPubMed Google Scholar
Lickwar, C. R., Mueller, F., Hanlon, S. E., McNally, J. G. & Lieb, J. D. Genome-wide protein-DNA binding dynamics suggest a molecular clutch for transcription factor function. Nature484, 251–255 (2012). The authors tagged a transcription factor with two different tags and carried out a competitive ChIP assay to measure how long it took for the newly transcribed tagged TF to outcompete its alternatively tagged counterpart for chromatin binding. The resulting information provides a nice way to measure TF residence time on each site throughout the genome, which seems to be a better indicator of functional binding events than static occupancy data. ArticleCASPubMedPubMed Central Google Scholar
Tagoh, H. et al. Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible. EMBO J.23, 4275–4285 (2004). ArticleCASPubMedPubMed Central Google Scholar
Krysinska, H. et al. A two-step, PU.1-dependent mechanism for developmentally regulated chromatin remodeling and transcription of the c-fms gene. Mol. Cell. Biol.27, 878–887 (2007). ArticleCASPubMed Google Scholar
Almer, A., Rudolph, H., Hinnen, A. & Horz, W. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J.5, 2689–2696 (1986). ArticleCASPubMedPubMed Central Google Scholar
Biddie, S. C. et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell43, 145–155 (2011). ArticleCASPubMedPubMed Central Google Scholar
de la Serna, I. L. et al. MyoD targets chromatin remodeling complexes to the myogenin locus prior to forming a stable DNA-bound complex. Mol. Cell. Biol.25, 3997–4009 (2005). ArticleCASPubMedPubMed Central Google Scholar
Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell132, 958–970 (2008). This study shows that FOXA1 occupancy correlates with the prior presence of H3K4me2 at specific enhancer elements. This histone modification directs FOXA1 to induce further chromatin remodelling and TF occupancy specifically at those enhancers. This suggests that even what is perceived as a pioneer factor requires a prior chromatin context. ArticleCASPubMedPubMed Central Google Scholar
Siersbæk, R. et al. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J.30, 1459–1472 (2011). ArticleCASPubMedPubMed Central Google Scholar
Liber, D. et al. Epigenetic priming of a pre-B cell-specific enhancer through binding of Sox2 and Foxd3 at the ESC stage. Cell Stem Cell7, 114–126 (2010). ArticleCASPubMed Google Scholar
Xu, J. et al. Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. Genes Dev.23, 2824–2838 (2009). ArticleCASPubMedPubMed Central Google Scholar
Hoogenkamp, M. et al. Early chromatin unfolding by RUNX1: a molecular explanation for differential requirements during specification versus maintenance of the hematopoietic gene expression program. Blood114, 299–309 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liang, H. L. et al. The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature456, 400–403 (2008). ArticleCASPubMedPubMed Central Google Scholar
Harrison, M. M., Li, X.-y., Kaplan, T., Botchan, M. R. & Eisen, M. B. Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet.7, e1002266 (2011). References 109 and 110 indicate that Zelda is a major global regulator of the MZT inD. melanogaster. Zelda binds to thousands of regulatory elements prior to the MZT and prior to the occupancy of other known factors and is required for the zygotic gene activation of a large number of genes. ArticleCASPubMedPubMed Central Google Scholar
Struffi, P. et al. Combinatorial activation and concentration-dependent repression of the Drosophila even skipped stripe 3 + 7 enhancer. Development138, 4291–4299 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bell, O., Tiwari, V. K., Thoma, N. H. & Schubeler, D. Determinants and dynamics of genome accessibility. Nature Rev. Genet.12, 554–564 (2011). ArticleCASPubMed Google Scholar
Xu, J. et al. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. Proc. Natl Acad. Sci. USA104, 12377–12382 (2007). ArticleCASPubMedPubMed Central Google Scholar
Serandour, A. A. et al. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res.21, 555–565 (2011). ArticleCASPubMedPubMed Central Google Scholar
Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature480, 490–495 (2011). CASPubMed Google Scholar
Pevny, L. & Placzek, M. SOX genes and neural progenitor identity. Curr. Opin. Neurobiol.15, 7–13 (2005). ArticleCASPubMed Google Scholar
Olson, E. N. & Klein, W. H. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev.8, 1–8 (1994). ArticleCASPubMed Google Scholar
Cui, K. et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. Cell Stem Cell4, 80–93 (2009). ArticleCASPubMedPubMed Central Google Scholar
Watts, J. A. et al. Study of FoxA pioneer factor at silent genes reveals Rfx-repressed enhancer at Cdx2 and a potential indicator of esophageal adenocarcinoma development. PLoS Genet.7, e1002277 (2011). ArticleCASPubMedPubMed Central Google Scholar
Zeitlinger, J. et al. Whole-genome ChIP-chip analysis of Dorsal, Twist, and Snail suggests integration of diverse patterning processes in the Drosophila embryo. Genes Dev.21, 385–390 (2007). ArticleCASPubMedPubMed Central Google Scholar
Barolo, S. Shadow enhancers: frequently asked questions about distributed _cis_-regulatory information and enhancer redundancy. Bioessays34, 135–141 (2012). ArticleCASPubMed Google Scholar
Perry, M. W., Boettiger, A. N., Bothma, J. P. & Levine, M. Shadow enhancers foster robustness of Drosophila gastrulation. Curr. Biol.20, 1562–1567 (2010). Developmental genes often have multiple enhancers that seem to have overlapping activities and functions under normal developmental conditions. References 124 and 125 showed that the removal of one (or both) of the enhancers leads to developmental defects when the environmental conditions are more extreme, indicating that 'shadow' enhancers provide robustness to gene expression in the midst of fluctuating environmental temperatures. ArticleCASPubMedPubMed Central Google Scholar
Perry, M. W., Boettiger, A. N. & Levine, M. Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. Proc. Natl Acad. Sci. USA108, 13570–13575 (2011). ArticleCASPubMedPubMed Central Google Scholar
Yao, L.-C. et al. Multiple modular promoter elements drive graded brinker expression in response to the Dpp morphogen gradient. Development135, 2183–2192 (2008). ArticleCASPubMed Google Scholar
Prazak, L., Fujioka, M. & Gergen, J. P. Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors. Dev. Biol.344, 1048–1059 (2010). ArticleCASPubMedPubMed Central Google Scholar
Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell113, 405–417 (2003). ArticleCASPubMed Google Scholar
Gonzalez, F., Duboule, D. & Spitz, F. Transgenic analysis of Hoxd gene regulation during digit development. Dev Biol.306, 847–859 (2007). ArticleCASPubMed Google Scholar
Montavon, T. et al. A regulatory archipelago controls Hox genes transcription in digits. Cell147, 1132–1145 (2011). Genetic and transgenic analyses showed that mouseHoxDgenes are controlled by many remote regulatory elements that are separated by large distances. Chromatin conformation capture experiments revealed that these elements come together in cells where they contribute toHoxDgene expression, providing a three-dimensional view of the complex folding of regulatory landscapes during embryonic development. ArticleCASPubMed Google Scholar
Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science332, 472–474 (2011). ArticleCASPubMed Google Scholar
Amano, T. et al. Chromosomal dynamics at the Shh locus: limb bud-specific differential regulation of competence and active transcription. Dev. Cell16, 47–57 (2008). ArticleCASPubMed Google Scholar
Jeong, Y., El-Jaick, K., Roessler, E., Muenke, M. & Epstein, D. J. A functional screen for sonic hedgehog regulatory elements across a 1 Mb interval identifies long-range ventral forebrain enhancers. Development133, 761–772 (2006). ArticleCASPubMed Google Scholar
Leddin, M. et al. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood117, 2827–2838 (2011). ArticleCASPubMedPubMed Central Google Scholar
Jack, J. & DeLotto, Y. Structure and regulation of a complex locus: the cut gene of Drosophila. Genetics139, 1689–1700 (1995). CASPubMedPubMed Central Google Scholar
Wunderle, V. M., Critcher, R., Hastie, N., Goodfellow, P. N. & Schedl, A. Deletion of long-range regulatory elements upstream of SOX9 causes campomelic dysplasia. Proc. Natl Acad. Sci. USA95, 10649–10654 (1998). ArticleCASPubMedPubMed Central Google Scholar
Sagai, T., Hosoya, M., Mizushina, Y., Tamura, M. & Shiroishi, T. Elimination of a long-range _cis_-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development132, 797–803 (2005). ArticleCASPubMed Google Scholar
Splinter, E. & de Laat, W. The complex transcription regulatory landscape of our genome: control in three dimensions. EMBO J.30, 4345–4355 (2011). ArticleCASPubMedPubMed Central Google Scholar
Butler, J. E. & Kadonaga, J. T. Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes Dev.15, 2515–2519 (2001). ArticleCASPubMedPubMed Central Google Scholar
Zuniga, A. et al. Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev.18, 1553–1564 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cajiao, I., Zhang, A., Yoo, E. J., Cooke, N. E. & Liebhaber, S. A. Bystander gene activation by a locus control region. EMBO J.23, 3854–3863 (2004). ArticleCASPubMedPubMed Central Google Scholar
Lower, K. M. et al. Adventitious changes in long-range gene expression caused by polymorphic structural variation and promoter competition. Proc. Natl Acad. Sci. USA106, 21771–21776 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ruf, S. et al. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nature Genet.43, 379–386 (2011). ArticleCASPubMed Google Scholar
Klopocki, E. et al. A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J. Med. Genet.45, 370–375 (2008). ArticleCASPubMed Google Scholar
Kurth, I. et al. Duplications of noncoding elements 5′ of SOX9 are associated with brachydactyly-anonychia. Nature Genet.41, 862–863 (2009). ArticleCASPubMed Google Scholar
Dathe, K. et al. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am. J. Hum. Genet.84, 483–492 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cande, J., Goltsev, Y. & Levine, M. S. Conservation of enhancer location in divergent insects. Proc. Natl Acad. Sci. USA106, 14414–14419 (2009). ArticleCASPubMedPubMed Central Google Scholar
Mongin, E., Dewar, K. & Blanchette, M. Long-range regulation is a major driving force in maintaining genome integrity. BMC Evol. Biol.9, 203 (2009). ArticleCASPubMedPubMed Central Google Scholar
Engstrom, P. G., Ho Sui, S. J., Drivenes, O., Becker, T. S. & Lenhard, B. Genomic regulatory blocks underlie extensive microsynteny conservation in insects. Genome Res.17, 1898–1908 (2007). ArticleCASPubMedPubMed Central Google Scholar
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature485, 376–380 (2012). ArticleCASPubMedPubMed Central Google Scholar
Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science326, 289–293 (2009). ArticleCASPubMedPubMed Central Google Scholar
Ludwig, M. Z., Manu, Kittler, R., White, K. P. & Kreitman, M. Consequences of eukaryotic enhancer architecture for gene expression dynamics, development, and fitness. PLoS Genet.7, e1002364 (2011). ArticleCASPubMedPubMed Central Google Scholar
Janssens, H. et al. Quantitative and predictive model of transcriptional control of the Drosophila melanogaster even skipped gene. Nature Genet.38, 1159–1165 (2006). ArticleCASPubMed Google Scholar
Klingler, M., Soong, J., Butler, B. & Gergen, J. P. Disperse versus compact elements for the regulation of runt stripes in Drosophila. Dev. Biol.177, 73–84 (1996). ArticleCASPubMed Google Scholar
MacArthur, S. et al. Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol.10, R80 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y. H. et al. A systematic analysis of Tinman function reveals Eya and JAK-STAT signaling as essential regulators of muscle development. Dev. Cell16, 280–291 (2009). ArticleCASPubMed Google Scholar
Zheng, J. et al. Epistatic relationships reveal the functional organization of yeast transcription factors. Mol. Syst. Biol.6, 420 (2010). ArticleCASPubMedPubMed Central Google Scholar