Adoptive immunotherapy for cancer: building on success (original) (raw)
Boon, T., Coulie, P. G., Van Den Eynde, B. J. & Van Der, B. P. Human T cell responses against melanoma. Annu. Rev. Immunol.24, 175–208 (2006). ArticleCASPubMed Google Scholar
Rosenberg, S. A. Progress in human tumour immunology and immunotherapy. Nature411, 380–384 (2001). ArticleCASPubMed Google Scholar
Pardoll, D. M. & Topalian, S. L. The role of CD4+ T cell responses in antitumour immunity. Curr. Opin. Immunol.10, 588–594 (1998). ArticleCASPubMed Google Scholar
Wang, R. F., Peng, G. & Wang, H. Y. Regulatory T cells and Toll-like receptors in tumour immunity. Semin. Immunol.18, 136–42 (2006). ArticleCASPubMed Google Scholar
Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunol.6, 345–352 (2005). ArticleCAS Google Scholar
Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell co-stimulation. Annu. Rev. Immunol.14, 233–258 (1996). ArticleCASPubMed Google Scholar
Chambers, C. A. & Allison, J. P. Co-stimulation in T cell responses. Curr. Opin. Immunol.9, 396–404 (1997). ArticleCASPubMed Google Scholar
Klebanoff, C. A. et al. IL-15 enhances the in vivo antitumour activity of tumour-reactive CD8+ T cells. Proc. Natl Acad. Sci. USA101, 1969–1974 (2004). ArticleCASPubMedPubMed Central Google Scholar
Li, Y., Bleakley, M. & Yee, C. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J. Immunol.175, 2261–2269 (2005). ArticleCASPubMed Google Scholar
Rosenberg, S. A., Yang, J. C. & Restifo, N. P. Cancer immunotherapy: moving beyond current vaccines. Nature Med.10, 909–915 (2004). This paper highlights the ineffectiveness of current cancer vaccine strategies and the need to develop alternative immunotherapeutic strategies. ArticleCASPubMed Google Scholar
Waldmann, T. A. Effective cancer therapy through immunomodulation. Annu. Rev. Med.57, 65–81 (2006). ArticleCASPubMed Google Scholar
Klebanoff, C. A., Khong, H. T., Antony, P. A., Palmer, D. C. & Restifo, N. P. Sinks, suppressors and antigen presenters: how lymphodepletion enhances T cell-mediated tumour immunotherapy. Trends Immunol.26, 111–117 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schreiber, H., Wu, T. H., Nachman, J. & Kast, W. M. Immunodominance and tumour escape. Semin. Cancer Biol.12, 25–31 (2002). ArticleCASPubMed Google Scholar
Khong, H. T. & Restifo, N. P. Natural selection of tumour variants in the generation of 'tumour escape' phenotypes. Nature Immunol.3, 999–1005 (2002). ArticleCAS Google Scholar
Dudley, M. E. & Rosenberg, S. A. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nature Rev. Cancer3, 666–675 (2003). ArticleCAS Google Scholar
Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumour effect of transferred T cells. Proc. Natl Acad. Sci. USA99, 16168–16173 (2002). ArticleCASPubMedPubMed Central Google Scholar
Rosenberg, S. A. et al. Treatment of patients with metastatic melanoma with autologous tumour-infiltrating lymphocytes and interleukin 2. J. Natl Cancer Inst.86, 1159–1166 (1994). ArticleCASPubMed Google Scholar
Cheever, M. A., Greenberg, P. D. & Fefer, A. Specificity of adoptive chemoimmunotherapy of established syngeneic tumours. J. Immunol.125, 711–714 (1980). This pioneering paper reports the increased antitumour efficacy of tumour-reactive T cells in a lymphodepleted host. CASPubMed Google Scholar
North, R. J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumour depends on elimination of tumour-induced suppressor T cells. J. Exp. Med.155, 1063–1074 (1982). ArticleCASPubMed Google Scholar
Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumour lymphocytes. Science298, 850–854 (2002). This paper describes the first successful clinical trail of ACT with TILs following non-myeloablative chemotherapy for the treatment of patients with melanoma. ArticleCASPubMedPubMed Central Google Scholar
Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol.23, 2346–2357 (2005). ArticleCASPubMed Google Scholar
Walker, M. R. et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+. J. Clin. Invest112, 1437–1443 (2003). ArticleCASPubMed Google Scholar
Antony, P. A. et al. CD8+ T cell immunity against a tumour/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol.174, 2591–2601 (2005). This paper elucidates the role of CD4+CD25+ T cells in preventing an otherwise productive antitumour immune response against an established syngeneic tumour. ArticleCASPubMed Google Scholar
Woo, E. Y. et al. Regulatory CD4+CD25+T cells in tumours from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res.61, 4766–4772 (2001). CASPubMed Google Scholar
Viguier, M. et al. Foxp3 expressing CD4+CD25high regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J. Immunol.173, 1444–1453 (2004). ArticleCASPubMed Google Scholar
Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med.10, 942–949 (2004). This paper was the first to correlate the presence of TRegcells and clinical outcome in patients with cancer. ArticleCASPubMed Google Scholar
Sato, E. et al. Intraepithelial CD8+ tumour-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favourable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA102, 18538–18543 (2005). ArticleCASPubMedPubMed Central Google Scholar
Powell, D. J. Jr., Parker, L. L. & Rosenberg, S. A. Large-scale depletion of CD25+ regulatory T cells from patient leukapheresis samples. J. Immunother.28, 403–411 (2005). ArticlePubMedPubMed Central Google Scholar
Zhang, H. et al. Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells. Nature Med.11, 1238–1243 (2005). ArticleCASPubMed Google Scholar
Ahmadzadeh, M. & Rosenberg, S. A. IL-2 administration increases CD4+CD25hi Foxp3+ regulatory T cells in cancer patients. Blood107, 2409–2414 (2006). ArticleCASPubMedPubMed Central Google Scholar
Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol.23, 877–900 (2005). ArticleCASPubMed Google Scholar
Beilke, J. N., Kuhl, N. R., Van Kaer, L. & Gill, R. G. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nature Med.11, 1059–1065 (2005). ArticleCASPubMed Google Scholar
Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol.5, 641–654 (2005). ArticleCAS Google Scholar
Rodriguez, P. C. et al. Arginase I production in the tumour microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res.64, 5839–5849 (2004). ArticleCASPubMed Google Scholar
Bronte, V. et al. Boosting antitumour responses of T lymphocytes infiltrating human prostate cancers. J. Exp. Med.201, 1257–1268 (2005). ArticleCASPubMedPubMed Central Google Scholar
Seung, L. P., Rowley, D. A., Dubey, P. & Schreiber, H. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumour rejection. Proc. Natl Acad. Sci. USA92, 6254–6258 (1995). ArticleCASPubMedPubMed Central Google Scholar
Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med.192, 557–564 (2000). ArticleCASPubMedPubMed Central Google Scholar
Cho, B. K., Rao, V. P., Ge, Q., Eisen, H. N. & Chen, J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J. Exp. Med.192, 549–556 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ernst, B., Lee, D. S., Chang, J. M., Sprent, J. & Surh, C. D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity11, 173–181 (1999). ArticleCASPubMed Google Scholar
Dummer, W., Ernst, B., LeRoy, E., Lee, D. & Surh, C. Autologous regulation of naive T cell homeostasis within the T cell compartment. J. Immunol.166, 2460–2468 (2001). ArticleCASPubMed Google Scholar
Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumour-specific CD8+ T cells. J. Exp. Med.202, 907–912 (2005). This paper establishes the direct role of the endogenous homeostatic cytokines IL-7 and IL-15 in increasing CD8+T-cell effector functions in a lymphodepleted environment. ArticleCASPubMedPubMed Central Google Scholar
Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nature Immunol.1, 426–432 (2000). ArticleCAS Google Scholar
Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science288, 675–678 (2000). ArticleCASPubMed Google Scholar
Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med.195, 1523–1532 (2002). ArticleCASPubMedPubMed Central Google Scholar
Kieper, W. C. et al. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J. Exp. Med.195, 1533–1539 (2002). ArticleCASPubMedPubMed Central Google Scholar
Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl Acad. Sci. USA97, 11445–11450 (2000). ArticleCASPubMedPubMed Central Google Scholar
Overwijk, W. W. et al. Tumour regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J. Exp. Med.198, 569–580 (2003). ArticleCASPubMedPubMed Central Google Scholar
Wang, L. X. et al. Interleukin-7-dependent expansion and persistence of melanoma-specific T cells in lymphodepleted mice lead to tumour regression and editing. Cancer Res.65, 10569–10577 (2005). ArticleCASPubMedPubMed Central Google Scholar
Prlic, M., Blazar, B. R., Farrar, M. A. & Jameson, S. C. In vivo survival and homeostatic proliferation of natural killer cells. J. Exp. Med.197, 967–976 (2003). ArticleCASPubMedPubMed Central Google Scholar
Koka, R. et al. Interleukin (IL)-15Rα-deficient natural killer cells survive in normal but not IL-15R α-deficient mice. J. Exp. Med.197, 977–984 (2003). ArticleCASPubMedPubMed Central Google Scholar
Furtado, G. C., Curotto de Lafaille, M. A., Kutchukhidze, N. & Lafaille, J. J. Interleukin 2 signalling is required for CD4+regulatory T cell function. J. Exp. Med.196, 851–857 (2002). ArticleCASPubMedPubMed Central Google Scholar
Fontenot, J. D., Rasmussen, J. P., Gavin, M. A. & Rudensky, A. Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nature Immunol.6, 1142–1151 (2005). ArticleCAS Google Scholar
Antony, P. A. et al. Interleukin-2 dependent mechanisms of tolerance and immunity in vivo. J. Immunol. (in the press) References 53 and 54 highlight the role of IL-2 in maintaining the homeostasis and competitive fitness of TRegcellsin vivo.
Kohm, A. P. et al. Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J. Immunol.176, 3301–3305 (2006). ArticleCASPubMed Google Scholar
de la, R. M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol.34, 2480–2488 (2004). ArticleCAS Google Scholar
Russo, V. et al. Dendritic cells acquire the MAGE-3 human tumour antigen from apoptotic cells and induce a class I-restricted T cell response. Proc. Natl Acad. Sci. USA97, 2185–2190 (2000). ArticleCASPubMedPubMed Central Google Scholar
Brown, S., Konopa, J., Zhou, D. & Thompson, J. Expression of TNFα by CD3+ and F4/80+ cells following irradiation preconditioning and allogeneic spleen cell transplantation. Bone Marrow Transplant.33, 359–365 (2004). ArticleCASPubMed Google Scholar
Zhang, Y., Louboutin, J. P., Zhu, J., Rivera, A. J. & Emerson, S. G. Preterminal host dendritic cells in irradiated mice prime CD8+ T cell-mediated acute graft-versus-host disease. J. Clin. Invest.109, 1335–1344 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hill, G. R. et al. Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines. Blood90, 3204–3213 (1997). ArticleCASPubMed Google Scholar
Sherman, M. L., Datta, R., Hallahan, D. E., Weichselbaum, R. R. & Kufe, D. W. Regulation of tumour necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes. J. Clin. Invest.87, 1794–1797 (1991). ArticleCASPubMedPubMed Central Google Scholar
Xun, C. Q., Thompson, J. S., Jennings, C. D., Brown, S. A. & Widmer, M. B. Effect of total body irradiation, busulfan-cyclophosphamide, or cyclophosphamide conditioning on inflammatory cytokine release and development of acute and chronic graft-versus-host disease in H-2-incompatible transplanted SCID mice. Blood83, 2360–2367 (1994). ArticleCASPubMed Google Scholar
Rigby, S. M., Rouse, T. & Field, E. H. Total lymphoid irradiation nonmyeloablative preconditioning enriches for IL-4-producing CD4+-TNK cells and skews differentiation of immunocompetent donor CD4+ cells. Blood101, 2024–2032 (2003). ArticleCASPubMed Google Scholar
Gattinoni, L. et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumour efficacy of adoptively transferred CD8+ T cells. J. Clin. Invest.115, 1616–1626 (2005). This paper elucidates the gene-expression, phenotypic and functional profiles of CD8+ T cells that mediate a highly effective antitumour responsein vivo. ArticleCASPubMedPubMed Central Google Scholar
Robbins, P. F. et al. Cutting edge: Persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J. Immunol.173, 7125–7130 (2004). ArticleCASPubMed Google Scholar
Huang, J. et al. Survival, persistence, and progressive differentiation of adoptively transferred tumour-reactive T cells associated with tumour regression. J. Immunother.28, 258–267 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zhou, J. et al. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumour regression in melanoma patients receiving cell transfer therapy. J. Immunol.175, 7046–7052 (2005). ArticleCASPubMed Google Scholar
Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med.8, 379–385 (2002). This paper shows the progressive differentiation of CD8+ T cells from patients with acute and chronic viral infections. ArticleCASPubMed Google Scholar
Lanzavecchia, A. & Sallusto, F. Progressive differentiation and selection of the fittest in the immune response. Nature Rev. Immunol.2, 982–987 (2002). ArticleCAS Google Scholar
Willinger, T., Freeman, T., Hasegawa, H., McMichael, A. J. & Callan, M. F. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets. J. Immunol.175, 5895–5903 (2005). ArticleCASPubMed Google Scholar
Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science290, 92–97 (2000). ArticleCASPubMed Google Scholar
Fearon, D. T., Manders, P. & Wagner, S. D. Arrested differentiation, the self-renewing memory lymphocyte, and vaccination. Science293, 248–250 (2001). ArticleCASPubMed Google Scholar
Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nature Immunol.4, 225–234 (2003). ArticleCAS Google Scholar
Wang, L. X. et al. Adoptive immunotherapy of cancer with polyclonal, 108-fold hyperexpanded, CD4+ and CD8+ T cells. J. Transl. Med.2, 41 (2004). ArticlePubMedPubMed CentralCAS Google Scholar
Sussman, J. J., Parihar, R., Winstead, K. & Finkelman, F. D. Prolonged culture of vaccine-primed lymphocytes results in decreased antitumour killing and change in cytokine secretion. Cancer Res.64, 9124–9130 (2004). ArticleCASPubMed Google Scholar
Chen, B. J., Cui, X., Sempowski, G. D., Liu, C. & Chao, N. J. Transfer of allogeneic CD62L− memory T cells without graft-versus-host disease. Blood103, 1534–1541 (2004). ArticleCASPubMed Google Scholar
Bondanza, A. et al. Suicide gene therapy of graft-versus-host disease induced by central memory human T lymphocytes. Blood107, 1828–1836 (2006). ArticleCASPubMed Google Scholar
Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nature Immunol.4, 1191–1198 (2003). This paper prospectively identifies the sub-population of antigen-specific effector CD8+ T cells expressing IL-7Rα that will persist as a pool of memory T cells. ArticleCAS Google Scholar
Klebanoff, C. A. et al. Central memory self/tumour-reactive CD8+ T cells confer superior antitumour immunity compared with effector memory T cells. Proc. Natl Acad. Sci. USA102, 9571–9576 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dudley, M. E. et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumour antigen-specific T lymphocytes in patients with metastatic melanoma. J. Immunother.25, 243–251 (2002). ArticleCASPubMedPubMed Central Google Scholar
Huang, H., Li, F., Gordon, J. R. & Xiang, J. Synergistic enhancement of antitumour immunity with adoptively transferred tumour-specific CD4+ and CD8+ T cells and intratumoural lymphotactin transgene expression. Cancer Res.62, 2043–2051 (2002). CASPubMed Google Scholar
Kershaw, M. H. et al. Redirecting migration of T cells to chemokine secreted from tumours by genetic modification with CXCR2. Hum. Gene Ther.13, 1971–1980 (2002). ArticleCASPubMed Google Scholar
Kagamu, H., Touhalisky, J. E., Plautz, G. E., Krauss, J. C. & Shu, S. Isolation based on L-selectin expression of immune effector T cells derived from tumour-draining lymph nodes. Cancer Res.56, 4338–4342 (1996). CASPubMed Google Scholar
Speiser, D. E. et al. Self antigens expressed by solid tumours do not efficiently stimulate naive or activated T cells: implications for immunotherapy. J. Exp. Med.186, 645–653 (1997). ArticleCASPubMedPubMed Central Google Scholar
Powell D. J. Jr, Dudley, M. E., Robbins, P. F. & Rosenberg, S. A. Transition of late stage effector T cells to CD27+ CD28+ tumour-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood105, 241–250 (2005). ArticleCASPubMed Google Scholar
Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nature Rev. Immunol.3, 939–951 (2003). ArticleCAS Google Scholar
Topp, M. S. et al. Restoration of CD28 expression in CD28− CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J. Exp. Med.198, 947–955 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hendriks, J. et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nature Immunol.1, 433–440 (2000). ArticleCAS Google Scholar
Hendriks, J., Xiao, Y. & Borst, J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J. Exp. Med.198, 1369–1380 (2003). ArticleCASPubMedPubMed Central Google Scholar
Arens, R. et al. Tumour rejection induced by CD70-mediated quantitative and qualitative effects on effector CD8+ T cell formation. J. Exp. Med.199, 1595–1605 (2004). ArticleCASPubMedPubMed Central Google Scholar
Huang J. et al. Modulation by IL-2 of CD70 and CD27 expression on CD8+ T cells: importance for the therapeutic effectiveness of cell transfer immunotherapy. J. Immunol. (in the press).
Ochsenbein, A. F. et al. CD27 expression promotes long-term survival of functional effector-memory CD8+ cytotoxic T lymphocytes in HIV-infected patients. J. Exp. Med.200, 1407–1417 (2004). ArticleCASPubMedPubMed Central Google Scholar
Dubois, S., Mariner, J., Waldmann, T. A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity.17, 537–547 (2002). ArticleCASPubMed Google Scholar
Liu, K. & Rosenberg, S. A. Interleukin-2-independent proliferation of human melanoma-reactive T lymphocytes transduced with an exogenous IL-2 gene is stimulation dependent. J. Immunother.26, 190–201 (2003). ArticleCASPubMedPubMed Central Google Scholar
Hodes, R. J., Hathcock, K. S. & Weng, N. P. Telomeres in T and B cells. Nature Rev. Immunol.2, 699–706 (2002). ArticleCAS Google Scholar
Speiser, D. E. & Romero, P. Toward improved immunocompetence of adoptively transferred CD8+ T cells. J. Clin. Invest115, 1467–1469 (2005). ArticleCASPubMedPubMed Central Google Scholar
Refaeli, Y., Van Parijs, L., London, C. A., Tschopp, J. & Abbas, A. K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity.8, 615–623 (1998). ArticleCASPubMed Google Scholar
Teague, R. M. et al. Interleukin-15 rescues tolerant CD8+ T cells for use in adoptive immunotherapy of established tumours. Nature Med.12, 335–341 (2006). ArticleCASPubMed Google Scholar
Opferman, J. T. et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature426, 671–676 (2003). ArticleCASPubMed Google Scholar
Hsu, C. et al. Primary human T lymphocytes engineered with a codon-optimized IL-15 gene resist cytokine withdrawal-induced apoptosis and persist long-term in the absence of exogenous cytokine. J. Immunol.175, 7226–7234 (2005). ArticleCASPubMed Google Scholar
Liu, S., Riley, J. L., Rosenberg, S. A. & Parkhurst, M. R. Comparison of common γ-chain cytokines, interleukin-2, interleukin-7, and interleukin-15 for the in vitro generation of human tumour-reactive T lymphocytes for adoptive cell transfer therapy. J. Immunother. (in the press).
Powell, D. J. Jr. & Rosenberg, S. A. Phenotypic and functional maturation of tumour antigen-reactive CD8+ T lymphocytes in patients undergoing multiple course peptide vaccination. J. Immunother.27, 36–47 (2004). ArticleCASPubMedPubMed Central Google Scholar
Pittet, M. J. et al. High frequencies of naive Melan-A/MART-1-specific CD8+ T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J. Exp. Med.190, 705–715 (1999). ArticleCASPubMedPubMed Central Google Scholar
Zippelius, A. et al. Effector function of human tumour-specific CD8 T cells in melanoma lesions: a state of local functional tolerance. Cancer Res.64, 2865–2873 (2004). ArticleCASPubMed Google Scholar
Dutoit, V. et al. Degeneracy of antigen recognition as the molecular basis for the high frequency of naive A2/Melan-A peptide multimer+ CD8+ T cells in humans. J. Exp. Med.196, 207–216 (2002). ArticleCASPubMedPubMed Central Google Scholar
Roszkowski, J. J. et al. Simultaneous generation of CD8+ and CD4+ melanoma-reactive T cells by retroviral-mediated transfer of a single T-cell receptor. Cancer Res.65, 1570–1576 (2005). ArticleCASPubMed Google Scholar
Hughes, M. S. et al. Transfer of a TCR gene derived from a patient with a marked antitumour response conveys highly active T-cell effector functions. Hum. Gene Ther.16, 457–472 (2005). ArticleCASPubMed Google Scholar
Zhao, Y. et al. Primary human lymphocytes transduced with NY-ESO-1 antigen-specific TCR genes recognize and kill diverse human tumour cell lines. J. Immunol.174, 4415–4423 (2005). ArticleCASPubMed Google Scholar
Kuball, J. et al. Cooperation of human tumour-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2. 1-specific TCR. Immunity.22, 117–129 (2005). This paper describes an effective way to generate highly avid TCRs specific for self/tumour antigens using HLA-A2-transgenic mice. ArticleCASPubMed Google Scholar
Cohen, C. J. et al. Recognition of fresh human tumour by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. J. Immunol.175, 5799–5808 (2005). ArticleCASPubMed Google Scholar
Li, Y. et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nature Biotechnol.23, 349–354 (2005). ArticleCAS Google Scholar
Cavalieri, S. et al. Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence. Blood102, 497–505 (2003). ArticleCASPubMed Google Scholar
Schmitt, T. M. et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nature Immunol.5, 410–417 (2004). ArticleCAS Google Scholar
Clark, R. A., Yamanaka, K. I., Bai, M., Dowgiert, R. & Kupper, T. S. Human skin cells support thymus-independent T cell development. J. Clin. Invest.115, 3239–3249 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ishikawa, F. et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor γ chain (null) mice. Blood106, 1565–1573 (2005). ArticleCASPubMedPubMed Central Google Scholar
Schlissel, M. S. Regulating antigen-receptor gene assembly. Nature Rev. Immunol.3, 890–899 (2003). ArticleCAS Google Scholar
Willemsen, R. A. et al. Grafting primary human T lymphocytes with cancer-specific chimeric single chain and two chain TCR. Gene Ther.7, 1369–1377 (2000). ArticleCASPubMed Google Scholar
Pinthus, J. H. et al. Adoptive immunotherapy of prostate cancer bone lesions using redirected effector lymphocytes. J. Clin. Invest114, 1774–1781 (2004). ArticleCASPubMedPubMed Central Google Scholar
Carding, S. R. & Egan, P. J. γδ T cells: functional plasticity and heterogeneity. Nature Rev. Immunol.2, 336–345 (2002). ArticleCAS Google Scholar
Kershaw, M. H., Teng, M. W., Smyth, M. J. & Darcy, P. K. Supernatural T cells: genetic modification of T cells for cancer therapy. Nature Rev. Immunol.5, 928–940 (2005). ArticleCAS Google Scholar
Palmer, D. C. et al. Vaccine-stimulated, adoptively transferred CD8+ T cells traffic indiscriminately and ubiquitously while mediating specific tumour destruction. J. Immunol.173, 7209–7216 (2004). ArticleCASPubMed Google Scholar
Hwang, L. N., Yu, Z., Palmer, D. C. & Restifo, N. P. The in vivo expansion rate of properly stimulated transferred CD8+ T cells exceeds that of an aggressively growing mouse tumour. Cancer Res.66, 1132–1138 (2006). ArticleCASPubMedPubMed Central Google Scholar
Rapoport, A. P. et al. Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nature Med.11, 1230–1237 (2005). ArticleCASPubMed Google Scholar
Ichii, H. et al. Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nature Immunol.3, 558–563 (2002). ArticleCAS Google Scholar
Ichii, H., Sakamoto, A., Kuroda, Y. & Tokuhisa, T. Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J. Immunol.173, 883–891 (2004). ArticleCASPubMed Google Scholar
Manders, P. M. et al. Inaugural article: BCL6b mediates the enhanced magnitude of the secondary response of memory CD8+ T lymphocytes. Proc. Natl Acad. Sci. USA102, 7418–7425 (2005). ArticleCASPubMedPubMed Central Google Scholar
Willinger, T. et al. Human naive CD8 T cells downregulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J. Immunol.176, 1439–1446 (2006). ArticleCASPubMed Google Scholar
Fujita, N. et al. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell119, 75–86 (2004). This paper represents the proof of principle that lymphocyte differentiation states can be reverted by manipulation of key transcriptional factors. ArticleCASPubMed Google Scholar
Wrzesinski, C. & Restifo, N. P. Less is more: lymphodepletion followed by hematopoietic stem cell transplant augments adoptive T-cell-based anti-tumour immunotherapy. Curr. Opin. Immunol.17, 195–201 (2005). ArticleCASPubMedPubMed Central Google Scholar
Dannull, J. et al. Enhancement of vaccine-mediated antitumour immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest115, 3623–3633 (2005). ArticleCASPubMedPubMed Central Google Scholar
Attia, P., Maker, A. V., Haworth, L. R., Rogers-Freezer, L. & Rosenberg, S. A. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother.28, 582–592 (2005). ArticleCASPubMedPubMed Central Google Scholar
Attia, P. et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J. Immunother.29, 208–214 (2006). ArticleCASPubMedPubMed Central Google Scholar
Valencia, X. et al. TNF down-modulates the function of human CD4+CD25hi T regulatory cells. Blood 14 Mar 2006 (doi:1182/blood-2005-11-4567).
Atkins, M. B., Kunkel, L., Sznol, M. & Rosenberg, S. A. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J. Sci. Am.6, S11–S14 (2000). PubMed Google Scholar
Boyman, O., Kovar, M., Rubinstein, M., Surh, C. D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 15 Feb 2006 (doi:10.1126/science.1122927).
Speiser, D. E. et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest.115, 739–746 (2005). ArticleCASPubMedPubMed Central Google Scholar
Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nature Immunol. 26 Mar 2006 (doi:1038/ni1321).
Martins, G. A. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nature Immunol. 26 Mar 2006 (doi:1038/ni1320).