Affine variety (original) (raw)
En géométrie algébrique, une variété affine est un modèle local pour les variétés algébriques, c'est-à-dire que celles-ci sont obtenues par recollement de variétés affines. Grossièrement, une variété affine est un ensemble algébrique affine X avec une structure algébrique supplémentaire qui est la donnée de l'anneau des fonctions régulières sur chaque partie ouverte de X.
Property | Value |
---|---|
dbo:abstract | In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field k is the zero-locus in the affine space kn of some finite family of polynomials of n variables with coefficients in k that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasi-affine variety. Some texts do not require a prime ideal, and call irreducible an algebraic variety defined by a prime ideal. This article refers to zero-loci of not necessarily prime ideals as affine algebraic sets. In some contexts, it is useful to distinguish the field k in which the coefficients are considered, from the algebraically closed field K (containing k) over which the zero-locus is considered (that is, the points of the affine variety are in Kn). In this case, the variety is said defined over k, and the points of the variety that belong to kn are said k-rational or rational over k. In the common case where k is the field of real numbers, a k-rational point is called a real point. When the field k is not specified, a rational point is a point that is rational over the rational numbers. For example, Fermat's Last Theorem asserts that the affine algebraic variety (it is a curve) defined by xn + yn − 1 = 0 has no rational points for any integer n greater than two. (en) En géométrie algébrique, une variété affine est un modèle local pour les variétés algébriques, c'est-à-dire que celles-ci sont obtenues par recollement de variétés affines. Grossièrement, une variété affine est un ensemble algébrique affine X avec une structure algébrique supplémentaire qui est la donnée de l'anneau des fonctions régulières sur chaque partie ouverte de X. (fr) 代数幾何学において,代数閉体 k 上のアフィン多様体(あふぃんたようたい,英: affine variety)とは,n 次元アフィン空間 kn において,k 係数の n 変数の多項式の素イデアルを生成する有限族の零点集合である.素イデアルを生成するという条件を外したときの集合は(アフィン)代数的集合と呼ばれる.アフィン多様体のザリスキ開部分多様体はと呼ばれる. X が素イデアル I によって定義されるアフィン多様体のとき,商環 は X の座標環と呼ばれる.この環はちょうど X 上のすべてのがなす集合である.言い換えると,X の構造層の大域切断の空間である.はアフィン多様体のコホモロジー的特徴づけを与える.定理により代数多様体がアフィンであることと がすべての i > 0 と X 上のすべての準連接層 F に対して成り立つことは同値である(cf. カルタンの定理 B).したがってアフィン多様体のコモロジーの研究は存在せず,直線束のコホモロジー群が中心的関心事である射影多様体とは非常に対照的である. アフィン多様体は代数多様体の局所チャートの役割を果たす,つまり,射影多様体のような一般の代数多様体はアフィン多様体を貼り合わせることで得られる.多様体に付随する線型構造も(自明に)アフィン多様体である.例えば,接空間や,のファイバーなど. アフィン多様体は,圏同値の違いを除いて,アフィンスキームすなわち環のスペクトルの特別な場合である.複素幾何学において,アフィン多様体はシュタイン多様体の類似である. (ja) In geometria algebrica, una varietà affine è il sottoinsieme di uno spazio affine -dimensionale su un campo algebricamente chiuso caratterizzato dall'annullarsi simultaneo di tutti i polinomi di un sottoinsieme di . Un aperto (secondo la topologia di Zariski) di una varietà affine è detto varietà quasi affine. (it) |
dbo:thumbnail | wiki-commons:Special:FilePath/Cubic_with_double_point.svg?width=300 |
dbo:wikiPageExternalLink | http://www.jmilne.org/math/CourseNotes/lec.html https://www.jmilne.org/math/CourseNotes/AG.pdf https://archive.org/details/undergraduatealg0000reid http://www.math.lsa.umich.edu/~wfulton/CurveBook.pdf |
dbo:wikiPageID | 320468 (xsd:integer) |
dbo:wikiPageLength | 29563 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1122223889 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Prime_ideal dbr:Principal_ideal_domain dbr:Product_topology dbr:Quasi-coherent_sheaf dbr:Saturation_(commutative_algebra) dbr:Basis_(linear_algebra) dbr:Algebraic_set dbr:Algebraically_closed_field dbr:Unit_circle dbr:Vector_space dbr:Affine_scheme dbr:Quotient_ring dbr:General_linear_group dbr:Noetherian_ring dbr:Normal_scheme dbr:Circle dbr:Glossary_of_algebraic_geometry dbr:Modular_arithmetic dbr:Morphism dbr:Equivalence_of_categories dbr:Linear_equation dbr:Zariski_tangent_space dbr:Spectrum_of_a_ring dbr:Dual_(category_theory) dbr:Sheaf_of_modules dbr:Affine_space dbr:Algebraic_curve dbr:Algebraic_geometry dbr:Algebraic_varieties dbr:Algebraic_variety dbr:Fermat's_Last_Theorem dbr:Field_(mathematics) dbr:Base_(topology) dbr:Dimension_of_an_algebraic_variety dbr:Hartogs'_extension_theorem dbr:Projective_variety dbr:Radical_of_an_ideal dbr:Regular_function dbr:Group_(mathematics) dbr:Hilbert_nullstellensatz dbr:Irreducible_component dbr:Jacobian_matrix dbr:Associativity dbc:Algebraic_geometry dbr:Polynomial dbr:Classification_of_finite_simple_groups dbr:Group_of_Lie_type dbr:Integral_closure dbr:Category_(mathematics) dbr:Rational_number dbr:Real_number dbr:Serre's_theorem_on_affineness dbr:Reduced_ring dbr:Localization_of_a_ring dbr:Zariski_topology dbr:Finite_morphism dbr:Algebraic_vector_bundle dbr:Hilbert's_nullstellensatz dbr:Affine_subspace dbr:Representations_on_coordinate_rings dbr:Springer-Verlag dbr:Cartan's_theorem_B dbr:Quasi-affine_variety dbr:Locally_ringed_space dbr:File:Cubic_with_double_point.svg dbr:File:Doubling_oriented.svg |
dbp:mathStatement | for any f in A. (en) |
dbp:name | Claim (en) |
dbp:wikiPageUsesTemplate | dbt:= dbt:Cite_book dbt:Cite_web dbt:Expand_section dbt:Main dbt:Math dbt:Mvar dbt:Reflist dbt:Short_description dbt:Sqrt dbt:Sub dbt:Vanchor dbt:Math_theorem dbt:Hartshorne_AG |
dcterms:subject | dbc:Algebraic_geometry |
rdfs:comment | En géométrie algébrique, une variété affine est un modèle local pour les variétés algébriques, c'est-à-dire que celles-ci sont obtenues par recollement de variétés affines. Grossièrement, une variété affine est un ensemble algébrique affine X avec une structure algébrique supplémentaire qui est la donnée de l'anneau des fonctions régulières sur chaque partie ouverte de X. (fr) In geometria algebrica, una varietà affine è il sottoinsieme di uno spazio affine -dimensionale su un campo algebricamente chiuso caratterizzato dall'annullarsi simultaneo di tutti i polinomi di un sottoinsieme di . Un aperto (secondo la topologia di Zariski) di una varietà affine è detto varietà quasi affine. (it) In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field k is the zero-locus in the affine space kn of some finite family of polynomials of n variables with coefficients in k that generate a prime ideal. If the condition of generating a prime ideal is removed, such a set is called an (affine) algebraic set. A Zariski open subvariety of an affine variety is called a quasi-affine variety. (en) 代数幾何学において,代数閉体 k 上のアフィン多様体(あふぃんたようたい,英: affine variety)とは,n 次元アフィン空間 kn において,k 係数の n 変数の多項式の素イデアルを生成する有限族の零点集合である.素イデアルを生成するという条件を外したときの集合は(アフィン)代数的集合と呼ばれる.アフィン多様体のザリスキ開部分多様体はと呼ばれる. X が素イデアル I によって定義されるアフィン多様体のとき,商環 は X の座標環と呼ばれる.この環はちょうど X 上のすべてのがなす集合である.言い換えると,X の構造層の大域切断の空間である.はアフィン多様体のコホモロジー的特徴づけを与える.定理により代数多様体がアフィンであることと がすべての i > 0 と X 上のすべての準連接層 F に対して成り立つことは同値である(cf. カルタンの定理 B).したがってアフィン多様体のコモロジーの研究は存在せず,直線束のコホモロジー群が中心的関心事である射影多様体とは非常に対照的である. アフィン多様体は代数多様体の局所チャートの役割を果たす,つまり,射影多様体のような一般の代数多様体はアフィン多様体を貼り合わせることで得られる.多様体に付随する線型構造も(自明に)アフィン多様体である.例えば,接空間や,のファイバーなど. (ja) |
rdfs:label | Affine variety (en) Variété algébrique affine (fr) Varietà affine (it) アフィン多様体 (ja) |
owl:sameAs | freebase:Affine variety wikidata:Affine variety dbpedia-fr:Affine variety dbpedia-he:Affine variety dbpedia-it:Affine variety dbpedia-ja:Affine variety https://global.dbpedia.org/id/3Gmbn |
prov:wasDerivedFrom | wikipedia-en:Affine_variety?oldid=1122223889&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Cubic_with_double_point.svg wiki-commons:Special:FilePath/Doubling_oriented.svg |
foaf:homepage | http://www.jmilne.org |
foaf:isPrimaryTopicOf | wikipedia-en:Affine_variety |
is dbo:academicDiscipline of | dbr:Neena_Gupta_(mathematician) |
is dbo:wikiPageRedirects of | dbr:Affine_varieties dbr:Coordinate_ring dbr:Affine_algebraic_set dbr:Affine_algebraic_variety dbr:Affine_coordinate_ring dbr:Ring_of_regular_functions |
is dbo:wikiPageWikiLink of | dbr:Multiplicity_(mathematics) dbr:Noether_normalization_lemma dbr:Monsky–Washnitzer_cohomology dbr:Algebraic_group dbr:Andreotti–Frankel_theorem dbr:Dedekind_domain dbr:Degree_of_an_algebraic_variety dbr:Determinantal_variety dbr:Kähler_differential dbr:List_of_inventions_and_discoveries_by_women dbr:Rigid_cohomology dbr:Timeline_of_category_theory_and_related_mathematics dbr:Noetherian_ring dbr:Normal_scheme dbr:Quasi-projective_variety dbr:Function_of_several_complex_variables dbr:Glossary_of_algebraic_geometry dbr:Glossary_of_classical_algebraic_geometry dbr:Morphism_of_algebraic_varieties dbr:Singularity_(mathematics) dbr:Singularity_theory dbr:Commutative_algebra dbr:Function_field_of_an_algebraic_variety dbr:Chevalley_theorem dbr:Ideal_quotient dbr:Jouanolou's_trick dbr:Krull_dimension dbr:Irreducible_ideal dbr:K-theory dbr:Local_cohomology dbr:Stein_manifold dbr:Affine_space dbr:Affine_varieties dbr:Brauner_space dbr:Diophantine_geometry dbr:Global_field dbr:Hilbert's_basis_theorem dbr:Koras–Russell_cubic_threefold dbr:Lefschetz_hyperplane_theorem dbr:Length_of_a_module dbr:Projective_variety dbr:Proper_morphism dbr:Rational_point dbr:Regular_local_ring dbr:Height_function dbr:Invariant_theory dbr:Irreducible_component dbr:Blackboard_bold dbr:Symmetric_power dbr:Codimension dbr:Cohen–Macaulay_ring dbr:Coordinate_ring dbr:Neena_Gupta_(mathematician) dbr:Serre's_theorem_on_affineness dbr:Serre–Swan_theorem dbr:Unipotent dbr:Luna's_slice_theorem dbr:Zariski_topology dbr:Finite_algebra dbr:Finite_morphism dbr:Finitely_generated_algebra dbr:Affine_algebraic_set dbr:Affine_algebraic_variety dbr:Affine_coordinate_ring dbr:Ring_of_regular_functions |
is foaf:primaryTopic of | wikipedia-en:Affine_variety |