Choquet theory (original) (raw)

About DBpedia

Die Choquet-Theorie (nach Gustave Choquet) ist eine mathematische Theorie aus dem Teilgebiet der Funktionalanalysis. Sie präzisiert die Vorstellung, dass die Punkte einer kompakten, konvexen Menge eines lokalkonvexen Raumes als „Mittelung“ über die Menge der Extremalpunkte dieser Menge dargestellt werden können.

Property Value
dbo:abstract In mathematics, Choquet theory, named after Gustave Choquet, is an area of functional analysis and convex analysis concerned with measures which have support on the extreme points of a convex set C. Roughly speaking, every vector of C should appear as a weighted average of extreme points, a concept made more precise by generalizing the notion of weighted average from a convex combination to an integral taken over the set E of extreme points. Here C is a subset of a real vector space V, and the main thrust of the theory is to treat the cases where V is an infinite-dimensional (locally convex Hausdorff) topological vector space along lines similar to the finite-dimensional case. The main concerns of Gustave Choquet were in potential theory. Choquet theory has become a general paradigm, particularly for treating convex cones as determined by their extreme rays, and so for many different notions of positivity in mathematics. The two ends of a line segment determine the points in between: in vector terms the segment from v to w consists of the λv + (1 − λ)w with 0 ≤ λ ≤ 1. The classical result of Hermann Minkowski says that in Euclidean space, a bounded, closed convex set C is the convex hull of its extreme point set E, so that any c in C is a (finite) convex combination of points e of E. Here E may be a finite or an infinite set. In vector terms, by assigning non-negative weights w(e) to the e in E, almost all 0, we can represent any c in C as with In any case the w(e) give a probability measure supported on a finite subset of E. For any affine function f on C, its value at the point c is In the infinite dimensional setting, one would like to make a similar statement. (en) Die Choquet-Theorie (nach Gustave Choquet) ist eine mathematische Theorie aus dem Teilgebiet der Funktionalanalysis. Sie präzisiert die Vorstellung, dass die Punkte einer kompakten, konvexen Menge eines lokalkonvexen Raumes als „Mittelung“ über die Menge der Extremalpunkte dieser Menge dargestellt werden können. (de)
dbo:wikiPageID 3655598 (xsd:integer)
dbo:wikiPageLength 5379 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1119691129 (xsd:integer)
dbo:wikiPageWikiLink dbr:Riesz_representation_theorem dbr:Cube dbr:Infinite_set dbr:Line_segment dbr:Convex_analysis dbr:Convex_set dbr:Mathematics dbr:Measure_(mathematics) dbr:Bounded_set dbr:Convex_combination dbr:Convex_cone dbr:Convex_hull dbr:Line_(mathematics) dbr:Locally_convex_topological_vector_space dbc:Integral_representations dbr:Simplex dbr:State_(functional_analysis) dbr:Closed_set dbr:Functional_analysis dbr:Banach_space dbr:Topological_vector_space dbr:Almost_all dbc:Convex_hulls dbr:Euclidean_space dbr:Euclidean_vector dbr:Normed_space dbr:Gustave_Choquet dbr:Hermann_Minkowski dbr:Potential_theory dbc:Functional_analysis dbr:Support_(mathematics) dbr:Real_vector_space dbr:Integral dbr:Krein–Milman_theorem dbr:Probability_measure dbr:Affine_function dbr:Compact_set dbr:Extreme_points
dbp:id c/c022130 (en)
dbp:title Choquet simplex (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:Annotated_link dbt:Cite_book dbt:Reflist dbt:Analysis_in_topological_vector_spaces dbt:Convex_analysis_and_variational_analysis dbt:Functional_analysis
dcterms:subject dbc:Integral_representations dbc:Convex_hulls dbc:Functional_analysis
rdf:type yago:Abstraction100002137 yago:Cognition100023271 yago:Content105809192 yago:PsychologicalFeature100023100 yago:Representation105926676 yago:WikicatIntegralRepresentations
rdfs:comment Die Choquet-Theorie (nach Gustave Choquet) ist eine mathematische Theorie aus dem Teilgebiet der Funktionalanalysis. Sie präzisiert die Vorstellung, dass die Punkte einer kompakten, konvexen Menge eines lokalkonvexen Raumes als „Mittelung“ über die Menge der Extremalpunkte dieser Menge dargestellt werden können. (de) In mathematics, Choquet theory, named after Gustave Choquet, is an area of functional analysis and convex analysis concerned with measures which have support on the extreme points of a convex set C. Roughly speaking, every vector of C should appear as a weighted average of extreme points, a concept made more precise by generalizing the notion of weighted average from a convex combination to an integral taken over the set E of extreme points. Here C is a subset of a real vector space V, and the main thrust of the theory is to treat the cases where V is an infinite-dimensional (locally convex Hausdorff) topological vector space along lines similar to the finite-dimensional case. The main concerns of Gustave Choquet were in potential theory. Choquet theory has become a general paradigm, parti (en)
rdfs:label Choquet-Theorie (de) Choquet theory (en)
owl:sameAs freebase:Choquet theory yago-res:Choquet theory wikidata:Choquet theory dbpedia-de:Choquet theory https://global.dbpedia.org/id/9FEQ
prov:wasDerivedFrom wikipedia-en:Choquet_theory?oldid=1119691129&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Choquet_theory
is dbo:knownFor of dbr:Robert_Phelps dbr:Gustave_Choquet dbr:Karel_deLeeuw
is dbo:wikiPageDisambiguates of dbr:Choquet
is dbo:wikiPageRedirects of dbr:Choquet's_theorem dbr:Choquet-Bishop-de_Leeuw_theorem dbr:Choquet_theorem dbr:Choquet–Bishop–de_Leeuw_theorem
is dbo:wikiPageWikiLink of dbr:Robert_Phelps dbr:De_Finetti's_theorem dbr:List_of_mathematical_theories dbr:Convex_set dbr:Edward_George_Effros dbr:Convex_hull dbr:Theory dbr:Ergodicity dbr:Choquet dbr:State_(functional_analysis) dbr:Bunce–Deddens_algebra dbr:Carathéodory's_theorem_(convex_hull) dbr:List_of_convexity_topics dbr:Gustave_Choquet dbr:Helly's_theorem dbr:Karel_deLeeuw dbr:Krein–Milman_theorem dbr:Séminaire_Nicolas_Bourbaki_(1950–1959) dbr:Choquet's_theorem dbr:Choquet-Bishop-de_Leeuw_theorem dbr:Choquet_theorem dbr:Choquet–Bishop–de_Leeuw_theorem
is dbp:knownFor of dbr:Gustave_Choquet dbr:Karel_deLeeuw
is foaf:primaryTopic of wikipedia-en:Choquet_theory