Contractible space (original) (raw)
Zusammenziehbare Räume – auch als kontrahierbare bzw. kontraktible Räume bezeichnet – werden im mathematischen Teilgebiet der Topologie betrachtet. Aus Sicht der Homotopietheorie gelten zusammenziehbare Räume als trivial. Viele in der Algebraischen Topologie definierte Invarianten verschwinden für zusammenziehbare Räume.
Property | Value |
---|---|
dbo:abstract | Zusammenziehbare Räume – auch als kontrahierbare bzw. kontraktible Räume bezeichnet – werden im mathematischen Teilgebiet der Topologie betrachtet. Aus Sicht der Homotopietheorie gelten zusammenziehbare Räume als trivial. Viele in der Algebraischen Topologie definierte Invarianten verschwinden für zusammenziehbare Räume. (de) In mathematics, a topological space X is contractible if the identity map on X is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within that space. (en) En mathématiques, un espace topologique est dit contractile s'il est homotopiquement équivalent à un point. Tous ses groupes d'homotopie sont donc triviaux, ainsi que ses groupes d'homologie de degré > 0. (fr) In matematica, uno spazio contraibile è uno spazio topologico su cui la funzione identità è omotopicamente nulla, cioè è omotopa a qualche funzione costante. Intuitivamente, uno spazio contraibile è uno spazio che può essere ridotto con continuità a un punto dello spazio stesso. (it) 위상수학에서 축약 가능 공간(縮約可能空間, 영어: contractible space)은 한 점으로 연속적으로 축소시킬 수 있는 위상 공간이다. (ko) 数学において、位相空間 X は次のようなとき可縮 (contractible) である。X 上の恒等写像が、すなわち、ある定値写像にホモトープである。直感的には、可縮空間は連続的に一点に縮められるような空間である。 可縮空間はちょうど点のホモトピー型の空間である。可縮空間のすべてのホモトピー群は自明であることが従う。それゆえ非自明なホモトピー群をもつ任意の空間は可縮ではありえない。同様に、特異ホモロジーはホモトピー不変であるから、可縮空間のはすべて自明である。 位相空間 X に対して以下は全て同値である(ここで Y は任意の位相空間である) * X は可縮(すなわち恒等写像が0にホモトープ * X は1点からなる空間にホモトピー同値 * 1点はX の変位レトラクトである。(しかしながら、強変位レトラクトではない可縮空間が存在する。) * 任意の2つの写像 f,g: Y → X はホモトープ * 任意の写像 f: Y → X は0にホモトープ 空間 X 上の錐は常に可縮である。したがって任意の空間は可縮空間に埋め込むことができる。(このことはまた可縮空間の部分空間が可縮とは限らないことも示している。) さらに、X が可縮であることと、X の錐から X へのレトラクションが存在することは同値である。 すべての可縮空間は弧状連結かつ単連結である。さらに、全ての高次ホモトピー群は消えるから、全ての可縮空間は全ての n ≥ 0 に対して n連結 である。 (ja) In de topologie, een deelgebied van de wiskunde, zegt men dat een topologische ruimte X een samentrekbare ruimte is als de identiteitsafbeelding op X een null-homotopie is, dat wil zeggen als de ruimte homotopisch is met enige constante afbeelding. Intuïtief is een samentrekbare ruimte een ruimte die continu kan worden gekrompen tot een punt. Een samentrekbare ruimte is er precies een met het homotopietype van een punt. Hieruit volgt dat alle homotopiegroepen van een samentrekbare ruimte triviaal zijn. Daarom kan geen enkele ruimte met een niet triviale homotopiegroep samentrekbaar zijn. Op gelijksoortige wijze zijn, aangezien een een homotopie-invariant is, de van een samentrekbare ruimte alle triviaal (nl) Przestrzeń ściągalna – przestrzeń topologiczna X o tej własności, że odwzorowanie identycznościowe idX na X jest homotopijne z przekształceniem stałym na X. Innymi słowy, przestrzeń topologiczna jest ściągalna gdy jest homotopijnie równoważna przestrzeni złożonej z jednego punktu. (pl) Em matemática, um espaço topológico X é contráctil se o mapa identidade sobre X é homotopicamente nulo, i.e. se é homotópico a algum mapa constante. Intuitivamente, um espaço contráctil é aquele que pode continuamente reduzir-se ("encolher") a um ponto. (pt) Стягуваний простір — топологічний простір, гомотопно еквівалентний точці. Ця умова рівнозначна тому, що тотожне відображення на є гомотопним постійному. Локально стягуваний простір — топологічний простір, кожна точка якого має базу з стягуваних околів. Еквівалентно якщо для кожної точки і довільної відкритої підмножини простору , існує відкрита множина така що і є стягуваним простором у топології індукованій від . (uk) Стягиваемое пространство — топологическое пространство, гомотопически эквивалентное точке. Это условие равносильно тому, что тождественное отображение на гомотопно постоянному. Локально стягиваемое пространство — топологическое пространство, каждая точка которого обладает стягиваемой окрестностью. (ru) |
dbo:thumbnail | wiki-commons:Special:FilePath/Contractibility_figure.png?width=300 |
dbo:wikiPageID | 1752414 (xsd:integer) |
dbo:wikiPageLength | 5691 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1034313404 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Dunce_hat_(topology) dbr:Trivial_group dbr:Mathematics dbr:Topologist's_sine_curve dbr:Collapse_(topology) dbc:Properties_of_topological_spaces dbr:N-sphere dbr:Cone_(topology) dbr:Homotopic dbr:Locally_simply_connected dbr:Stefan_Mazurkiewicz dbr:Comb_space dbr:House_with_two_rooms dbr:Path_connected dbr:Unit_sphere dbr:Hawaiian_earring dbr:Locally_connected_space dbr:Allen_Hatcher dbc:Topology dbr:Euclidean_space dbr:Deformation_retract dbc:Homotopy_theory dbr:Hilbert_space dbr:Karol_Borsuk dbr:Homotopy_group dbr:Reduced_homology dbr:Manifold dbr:CW_complex dbr:Identity_function dbr:If_and_only_if dbr:Singular_homology dbr:Locally_connected dbr:Whitehead_manifold dbr:N-connected dbr:Star_domain dbr:Topological_space dbr:Warsaw_circle dbr:Simply_connected dbr:Contractibility_of_unit_sphere_in_Hilbert_space dbr:Homotopy_type dbr:Local_base dbr:Neighborhood_(topology) dbr:File:Contractibility_figure.png |
dbp:wikiPageUsesTemplate | dbt:Annotated_link dbt:Reflist |
dcterms:subject | dbc:Properties_of_topological_spaces dbc:Topology dbc:Homotopy_theory |
gold:hypernym | dbr:I |
rdf:type | dbo:Person yago:Abstraction100002137 yago:Possession100032613 yago:Property113244109 yago:Relation100031921 yago:WikicatPropertiesOfTopologicalSpaces |
rdfs:comment | Zusammenziehbare Räume – auch als kontrahierbare bzw. kontraktible Räume bezeichnet – werden im mathematischen Teilgebiet der Topologie betrachtet. Aus Sicht der Homotopietheorie gelten zusammenziehbare Räume als trivial. Viele in der Algebraischen Topologie definierte Invarianten verschwinden für zusammenziehbare Räume. (de) In mathematics, a topological space X is contractible if the identity map on X is null-homotopic, i.e. if it is homotopic to some constant map. Intuitively, a contractible space is one that can be continuously shrunk to a point within that space. (en) En mathématiques, un espace topologique est dit contractile s'il est homotopiquement équivalent à un point. Tous ses groupes d'homotopie sont donc triviaux, ainsi que ses groupes d'homologie de degré > 0. (fr) In matematica, uno spazio contraibile è uno spazio topologico su cui la funzione identità è omotopicamente nulla, cioè è omotopa a qualche funzione costante. Intuitivamente, uno spazio contraibile è uno spazio che può essere ridotto con continuità a un punto dello spazio stesso. (it) 위상수학에서 축약 가능 공간(縮約可能空間, 영어: contractible space)은 한 점으로 연속적으로 축소시킬 수 있는 위상 공간이다. (ko) Przestrzeń ściągalna – przestrzeń topologiczna X o tej własności, że odwzorowanie identycznościowe idX na X jest homotopijne z przekształceniem stałym na X. Innymi słowy, przestrzeń topologiczna jest ściągalna gdy jest homotopijnie równoważna przestrzeni złożonej z jednego punktu. (pl) Em matemática, um espaço topológico X é contráctil se o mapa identidade sobre X é homotopicamente nulo, i.e. se é homotópico a algum mapa constante. Intuitivamente, um espaço contráctil é aquele que pode continuamente reduzir-se ("encolher") a um ponto. (pt) Стягуваний простір — топологічний простір, гомотопно еквівалентний точці. Ця умова рівнозначна тому, що тотожне відображення на є гомотопним постійному. Локально стягуваний простір — топологічний простір, кожна точка якого має базу з стягуваних околів. Еквівалентно якщо для кожної точки і довільної відкритої підмножини простору , існує відкрита множина така що і є стягуваним простором у топології індукованій від . (uk) Стягиваемое пространство — топологическое пространство, гомотопически эквивалентное точке. Это условие равносильно тому, что тождественное отображение на гомотопно постоянному. Локально стягиваемое пространство — топологическое пространство, каждая точка которого обладает стягиваемой окрестностью. (ru) 数学において、位相空間 X は次のようなとき可縮 (contractible) である。X 上の恒等写像が、すなわち、ある定値写像にホモトープである。直感的には、可縮空間は連続的に一点に縮められるような空間である。 可縮空間はちょうど点のホモトピー型の空間である。可縮空間のすべてのホモトピー群は自明であることが従う。それゆえ非自明なホモトピー群をもつ任意の空間は可縮ではありえない。同様に、特異ホモロジーはホモトピー不変であるから、可縮空間のはすべて自明である。 位相空間 X に対して以下は全て同値である(ここで Y は任意の位相空間である) * X は可縮(すなわち恒等写像が0にホモトープ * X は1点からなる空間にホモトピー同値 * 1点はX の変位レトラクトである。(しかしながら、強変位レトラクトではない可縮空間が存在する。) * 任意の2つの写像 f,g: Y → X はホモトープ * 任意の写像 f: Y → X は0にホモトープ 空間 X 上の錐は常に可縮である。したがって任意の空間は可縮空間に埋め込むことができる。(このことはまた可縮空間の部分空間が可縮とは限らないことも示している。) さらに、X が可縮であることと、X の錐から X へのレトラクションが存在することは同値である。 (ja) In de topologie, een deelgebied van de wiskunde, zegt men dat een topologische ruimte X een samentrekbare ruimte is als de identiteitsafbeelding op X een null-homotopie is, dat wil zeggen als de ruimte homotopisch is met enige constante afbeelding. Intuïtief is een samentrekbare ruimte een ruimte die continu kan worden gekrompen tot een punt. (nl) |
rdfs:label | Zusammenziehbarer Raum (de) Contractible space (en) Spazio contraibile (it) Espace contractile (fr) 可縮空間 (ja) 축약 가능 공간 (ko) Samentrekbare ruimte (nl) Przestrzeń ściągalna (pl) Стягиваемое пространство (ru) Espaço contráctil (pt) Стягуваний простір (uk) |
owl:sameAs | freebase:Contractible space wikidata:Contractible space dbpedia-de:Contractible space dbpedia-fa:Contractible space dbpedia-fr:Contractible space dbpedia-he:Contractible space dbpedia-it:Contractible space dbpedia-ja:Contractible space dbpedia-ko:Contractible space dbpedia-nl:Contractible space dbpedia-pl:Contractible space dbpedia-pt:Contractible space dbpedia-ru:Contractible space dbpedia-uk:Contractible space https://global.dbpedia.org/id/2B7TT yago-res:Contractible space |
prov:wasDerivedFrom | wikipedia-en:Contractible_space?oldid=1034313404&ns=0 |
foaf:depiction | wiki-commons:Special:FilePath/Contractibility_figure.png |
foaf:isPrimaryTopicOf | wikipedia-en:Contractible_space |
is dbo:wikiPageRedirects of | dbr:Contractible dbr:Locally_contractible dbr:Locally_contractible_space dbr:Contractible_topological_space |
is dbo:wikiPageWikiLink of | dbr:Potential_energy dbr:Mabuchi_functional dbr:Barratt–Priddy_theorem dbr:Argument_principle dbr:Homotopy_colimit_and_limit dbr:Homotopy_groups_of_spheres dbr:Hyperbolic_group dbr:Dunce_hat_(topology) dbr:Scherk–Schwarz_mechanism dbr:Whitehead's_algorithm dbr:Contractible dbr:Obstruction_theory dbr:Outer_space_(mathematics) dbr:Tangent_bundle dbr:Sierpiński_space dbr:Topological_property dbr:Collapse_(topology) dbr:Glossary_of_algebraic_topology dbr:Glossary_of_category_theory dbr:Gradient_theorem dbr:Connected_space dbr:Continuum_(topology) dbr:Locally_contractible dbr:Locally_contractible_space dbr:Closed_and_exact_differential_forms dbr:Comb_space dbr:Fundamental_group dbr:Kuiper's_theorem dbr:Mathematical_descriptions_of_the_electromagnetic_field dbr:Topological_complexity dbr:Nilpotent_space dbr:CAT(k)_space dbr:Acyclic_space dbr:Topological_group dbr:Hadamard_space dbr:Join_(topology) dbr:Locally_simply_connected_space dbr:Akbulut_cork dbr:Fiber_bundle dbr:Fixed_point_(mathematics) dbr:Fake_4-ball dbr:Glossary_of_topology dbr:Good_cover_(algebraic_topology) dbr:Simply_connected_space dbr:Postnikov_system dbr:Retraction_(topology) dbr:Gromov's_systolic_inequality_for_essential_manifolds dbr:Coxeter_complex dbr:Topological_K-theory dbr:Cohomological_dimension dbr:Efficient_envy-free_division dbr:Eilenberg–MacLane_space dbr:Teichmüller_space dbr:Disk_(mathematics) dbr:CW_complex dbr:Fibration dbr:Kähler_manifold dbr:Rose_(topology) dbr:Singular_homology dbr:Čech_cohomology dbr:Nerve_complex dbr:Exterior_calculus_identities dbr:List_of_unsolved_problems_in_mathematics dbr:Steenrod_algebra dbr:Fixed-point_property dbr:Relative_homology dbr:Small_cancellation_theory dbr:Polytope dbr:Seifert–Van_Kampen_theorem dbr:Star_domain dbr:Topological_quantum_field_theory dbr:Contractible_topological_space |
is foaf:primaryTopic of | wikipedia-en:Contractible_space |