Parallelizable manifold (original) (raw)
In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields on the manifold, such that at every point of the tangent vectorsprovide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of .
Property | Value |
---|---|
dbo:abstract | In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields on the manifold, such that at every point of the tangent vectorsprovide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of . (en) Une variété différentielle M de classe Ck est dite parallélisablesi son fibré tangent est trivial, c'est-à-dire isomorphe, en tant que fibré vectoriel,à , où est un espace vectoriel de dimension Il revient au même de dire qu'il existe un espace vectoriel E et une forme différentielle telle que pour tout , est un isomorphisme d'espaces vectoriels ; ou encore qu'il existe champs de vecteurs linéairement indépendants en tout point de M, autrement dit un champ de repères. Un isomorphisme de fibrés vectoriels entre et s'appelle un parallèlisme. (fr) 미분위상수학에서 평행화 가능 다양체(平行化可能多樣體, 영어: parallelizable manifold)는 그 접다발이 자명한 매끄러운 다양체이다. (ko) Параллелизуемое многообразие — многообразие размерности , допускающее поле реперов , то есть линейно независимых в каждой точке векторных полей . Поле задает изоморфизм касательного расслоения на , сопоставляющий касательному вектору его координаты относительно репера и его начало. Поэтому параллелизуемое многообразие можно также определить как многообразие, имеющее касательное расслоение. (ru) 数学中,一个 n 维光滑流形 M 为可平行化流形 是指具有向量场 V1, ..., Vn, 使得在 M 中任何一点 P 的切向量 Vi, P 组成 P 点切空间的一组基。等价地说,切丛是平凡丛,所以相伴的线性标架主丛有一个 M 的整体截面。 选取 M 上这样特定的一组向量场的基称为 M 的一个平行化或绝对平行化。 (zh) |
dbo:wikiPageExternalLink | https://archive.org/details/tensoranalysison00bish https://www.maths.ed.ac.uk/~v1ranick/papers/homsph.pdf |
dbo:wikiPageID | 3108161 (xsd:integer) |
dbo:wikiPageLength | 5641 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1095482147 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Cartesian_product dbr:Quaternion dbr:Algebraic_topology dbr:Vector_field dbr:Lie_group dbr:Connection_(mathematics) dbr:Mathematics dbr:SU(2) dbr:Normal_bundle dbr:Tangent_bundle dbr:Circle dbr:Friedrich_Hirzebruch dbr:Smooth_function dbr:Closed_manifold dbr:Hairy_ball_theorem dbr:Identity_element dbr:Kervaire_invariant dbr:G-structure dbr:Tangent_space dbc:Vector_bundles dbr:Torus dbr:3-manifold dbc:Differential_topology dbc:Manifolds dbr:Frame_bundle dbr:Graph_paper dbc:Fiber_bundles dbr:John_Milnor dbr:Differentiable_manifold dbr:Manifold dbr:Sphere dbr:Michel_Kervaire dbr:Octonion dbr:Orientability dbr:Raoul_Bott dbr:Chart_(topology) dbr:Principal_bundle dbr:Parallelization_(mathematics) dbr:Tangent_vector dbr:Orthonormal_frame_bundle dbr:Rigged_manifold dbr:Basis_of_a_vector_space dbr:Framed_manifold dbr:Normed_division_algebra dbr:Trivial_bundle dbr:Π-manifold |
dbp:wikiPageUsesTemplate | dbt:Citation dbt:Redirect dbt:Reflist dbt:Manifolds |
dcterms:subject | dbc:Vector_bundles dbc:Differential_topology dbc:Manifolds dbc:Fiber_bundles |
rdf:type | yago:WikicatManifolds yago:Artifact100021939 yago:Conduit103089014 yago:Manifold103717750 yago:Object100002684 yago:Passage103895293 yago:PhysicalEntity100001930 yago:Pipe103944672 yago:YagoGeoEntity yago:YagoPermanentlyLocatedEntity yago:Tube104493505 yago:Way104564698 yago:Whole100003553 |
rdfs:comment | In mathematics, a differentiable manifold of dimension n is called parallelizable if there exist smooth vector fields on the manifold, such that at every point of the tangent vectorsprovide a basis of the tangent space at . Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of linear frames has a global section on A particular choice of such a basis of vector fields on is called a parallelization (or an absolute parallelism) of . (en) Une variété différentielle M de classe Ck est dite parallélisablesi son fibré tangent est trivial, c'est-à-dire isomorphe, en tant que fibré vectoriel,à , où est un espace vectoriel de dimension Il revient au même de dire qu'il existe un espace vectoriel E et une forme différentielle telle que pour tout , est un isomorphisme d'espaces vectoriels ; ou encore qu'il existe champs de vecteurs linéairement indépendants en tout point de M, autrement dit un champ de repères. Un isomorphisme de fibrés vectoriels entre et s'appelle un parallèlisme. (fr) 미분위상수학에서 평행화 가능 다양체(平行化可能多樣體, 영어: parallelizable manifold)는 그 접다발이 자명한 매끄러운 다양체이다. (ko) Параллелизуемое многообразие — многообразие размерности , допускающее поле реперов , то есть линейно независимых в каждой точке векторных полей . Поле задает изоморфизм касательного расслоения на , сопоставляющий касательному вектору его координаты относительно репера и его начало. Поэтому параллелизуемое многообразие можно также определить как многообразие, имеющее касательное расслоение. (ru) 数学中,一个 n 维光滑流形 M 为可平行化流形 是指具有向量场 V1, ..., Vn, 使得在 M 中任何一点 P 的切向量 Vi, P 组成 P 点切空间的一组基。等价地说,切丛是平凡丛,所以相伴的线性标架主丛有一个 M 的整体截面。 选取 M 上这样特定的一组向量场的基称为 M 的一个平行化或绝对平行化。 (zh) |
rdfs:label | Variété parallélisable (fr) 평행화 가능 다양체 (ko) Parallelizable manifold (en) Параллелизуемое многообразие (ru) 可平行化流形 (zh) |
owl:sameAs | freebase:Parallelizable manifold yago-res:Parallelizable manifold wikidata:Parallelizable manifold dbpedia-fr:Parallelizable manifold dbpedia-ko:Parallelizable manifold dbpedia-ru:Parallelizable manifold dbpedia-vi:Parallelizable manifold dbpedia-zh:Parallelizable manifold https://global.dbpedia.org/id/6SYg |
prov:wasDerivedFrom | wikipedia-en:Parallelizable_manifold?oldid=1095482147&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Parallelizable_manifold |
is dbo:wikiPageRedirects of | dbr:Parallelizable dbr:Rigged_manifold dbr:Framed_manifold dbr:Parallelizability dbr:Absolute_parallelism |
is dbo:wikiPageWikiLink of | dbr:Bernoulli_number dbr:Homotopy_groups_of_spheres dbr:Inverse_problem_for_Lagrangian_mechanics dbr:Tangent_bundle dbr:Milnor_map dbr:Kervaire_invariant dbr:Microbundle dbr:G-structure_on_a_manifold dbr:3-sphere dbr:Exotic_sphere dbr:Fractal-generating_software dbr:Frame_bundle dbr:Riemannian_connection_on_a_surface dbr:Teleparallelism dbr:Tensor_software dbr:Affine_gauge_theory dbr:Tetrad_formalism dbr:Differentiable_manifold dbr:Raoul_Bott dbr:Vector_bundle dbr:Euler_characteristic dbr:Euler_class dbr:Immersion_(mathematics) dbr:Plumbing_(mathematics) dbr:World_manifold dbr:Parallelizable dbr:Parallelization_(mathematics) dbr:Rigged_manifold dbr:Framed_manifold dbr:Parallelizability dbr:Absolute_parallelism |
is foaf:primaryTopic of | wikipedia-en:Parallelizable_manifold |