Regular grid (original) (raw)

About DBpedia

Ein Gitter in der Geometrie ist eine lückenlose und überlappungsfreie Partition eines Raumes durch eine Menge von Gitterzellen. Die Gitterzellen werden definiert durch eine Menge von Gitterpunkten, die untereinander durch eine Menge von Gitterlinien verbunden sind. Gitter werden in der Naturwissenschaft und Technik zur Vermessung, Modellierung und für numerische Berechnungen verwendet (siehe Gittermodell).

thumbnail

Property Value
dbo:abstract Ein Gitter in der Geometrie ist eine lückenlose und überlappungsfreie Partition eines Raumes durch eine Menge von Gitterzellen. Die Gitterzellen werden definiert durch eine Menge von Gitterpunkten, die untereinander durch eine Menge von Gitterlinien verbunden sind. Gitter werden in der Naturwissenschaft und Technik zur Vermessung, Modellierung und für numerische Berechnungen verwendet (siehe Gittermodell). (de) Un maillage est la discrétisation spatiale d'un milieu continu, ou aussi, une modélisation géométrique d’un domaine par des éléments proportionnés finis et bien définis. L'objet d'un maillage est de procéder à une simplification d'un système par un modèle représentant ce système et, éventuellement, son environnement (le milieu), dans l'optique de simulations de calculs ou de représentations graphiques. On parle également dans le langage commun de pavage. (fr) A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks). Its opposite is irregular grid. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences, structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods. Each cell in the grid can be addressed by index (i, j) in two dimensions or (i, j, k) in three dimensions, and each vertex has coordinates in 2D or in 3D for some real numbers dx, dy, and dz representing the grid spacing. (en) マップドメッシュ(mapped mesh)は、主に数値解析で使用されるメッシュ生成法の一つで、構造格子を生成する方法である。作成方法の一つとして、有限要素法の形状関数を使用して作成することができる。 (ja) Uma grade regular é uma tesselação de um Espaço euclidiano de n dimensões criado por paralelepípedos. Grades desse tipo aparecem em papéis milimetrados e podem ser usados em Método dos elementos finitos, assim como em Método dos volumes finitos e em Método das diferenças finitas. Como as derivadas de campo são expressas convenientemente como diferenças finitas, grades estruturadas aparecem muito em metodos de diferença finita. Grades desestruturadas oferecem mais flexibilidade que grades estruturadas e, por isso, são mais úteis em metodos de volume e elementos finitos. Cada célula na grade pode ser endereçada pelo índice em duas (i,j) ou três (i,j,k) dimensões, e cada vértice tem coordenadas em 2D ou em 3D para algum número real dx, dy e dz representando o espaço da grade. (pt)
dbo:thumbnail wiki-commons:Special:FilePath/Regular_grid.svg?width=300
dbo:wikiPageID 3771917 (xsd:integer)
dbo:wikiPageLength 3578 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1122838403 (xsd:integer)
dbo:wikiPageWikiLink dbr:Quadrilateral dbr:Coordinate dbr:Rhombus dbr:Cuboid dbc:Mesh_generation dbr:Integer_lattice dbr:Rhombohedron dbc:Lattice_points dbr:Congruence_(geometry) dbr:Rectangular_cuboid dbr:Logarithmic_scale dbr:Point_(geometry) dbc:Tessellation dbr:Euclidean_space dbr:Finite_difference_method dbr:Finite_element_analysis dbr:Finite_volume_method dbr:Brick dbr:Parallelepiped dbr:Graph_paper dbr:Tessellation dbr:Dimension dbr:Rectangle dbr:Unit_cube dbr:Unit_square dbr:Vertex_(geometry) dbr:Parallelogram dbr:Unstructured_grid dbr:Rectangular_parallelepiped dbr:File:Regular_grid.svg
dbp:wikiPageUsesTemplate dbt:Anchor dbt:Annotated_link dbt:Gallery dbt:More_citations_needed dbt:Reflist dbt:Short_description dbt:Elementary-geometry-stub dbt:Tessellation
dct:subject dbc:Mesh_generation dbc:Lattice_points dbc:Tessellation
rdf:type yago:Abstraction100002137 yago:Act100030358 yago:Activity100407535 yago:Algorithm105847438 yago:Communication100033020 yago:Event100029378 yago:Graph107000195 yago:Procedure101023820 yago:PsychologicalFeature100023100 yago:WikicatGeometricAlgorithms yago:WikicatGeometricGraphs yago:YagoPermanentlyLocatedEntity yago:Rule105846932 yago:VisualCommunication106873252
rdfs:comment Ein Gitter in der Geometrie ist eine lückenlose und überlappungsfreie Partition eines Raumes durch eine Menge von Gitterzellen. Die Gitterzellen werden definiert durch eine Menge von Gitterpunkten, die untereinander durch eine Menge von Gitterlinien verbunden sind. Gitter werden in der Naturwissenschaft und Technik zur Vermessung, Modellierung und für numerische Berechnungen verwendet (siehe Gittermodell). (de) Un maillage est la discrétisation spatiale d'un milieu continu, ou aussi, une modélisation géométrique d’un domaine par des éléments proportionnés finis et bien définis. L'objet d'un maillage est de procéder à une simplification d'un système par un modèle représentant ce système et, éventuellement, son environnement (le milieu), dans l'optique de simulations de calculs ou de représentations graphiques. On parle également dans le langage commun de pavage. (fr) マップドメッシュ(mapped mesh)は、主に数値解析で使用されるメッシュ生成法の一つで、構造格子を生成する方法である。作成方法の一つとして、有限要素法の形状関数を使用して作成することができる。 (ja) A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks). Its opposite is irregular grid. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences, structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods. (en) Uma grade regular é uma tesselação de um Espaço euclidiano de n dimensões criado por paralelepípedos. Grades desse tipo aparecem em papéis milimetrados e podem ser usados em Método dos elementos finitos, assim como em Método dos volumes finitos e em Método das diferenças finitas. Como as derivadas de campo são expressas convenientemente como diferenças finitas, grades estruturadas aparecem muito em metodos de diferença finita. Grades desestruturadas oferecem mais flexibilidade que grades estruturadas e, por isso, são mais úteis em metodos de volume e elementos finitos. (pt)
rdfs:label Gitter (Geometrie) (de) Maillage (fr) マップドメッシュ (ja) Regular grid (en) Grade cartesiana (pt)
owl:sameAs freebase:Regular grid dbpedia-de:Regular grid dbpedia-fr:Regular grid yago-res:Regular grid wikidata:Regular grid dbpedia-az:Regular grid dbpedia-ja:Regular grid dbpedia-pt:Regular grid https://global.dbpedia.org/id/2UqsS
prov:wasDerivedFrom wikipedia-en:Regular_grid?oldid=1122838403&ns=0
foaf:depiction wiki-commons:Special:FilePath/Cartesian_grid.svg wiki-commons:Special:FilePath/Curvilinear_grid.svg wiki-commons:Special:FilePath/Example_curvilinear_grid.svg wiki-commons:Special:FilePath/Regular_grid.svg wiki-commons:Special:FilePath/rectilinear_grid.svg wiki-commons:Special:FilePath/Tiling_3_simple.svg
foaf:isPrimaryTopicOf wikipedia-en:Regular_grid
is dbo:wikiPageDisambiguates of dbr:Grid dbr:Regular
is dbo:wikiPageRedirects of dbr:Cartesian_grid dbr:Rectilinear_grid dbr:Rectangular_grid dbr:Curvilinear_grid dbr:Structured_grid
is dbo:wikiPageWikiLink of dbr:Cartesian_coordinate_system dbr:Roderick_Slater dbr:Mesh_generation dbr:Multivariate_interpolation dbr:Blokus dbr:Any-angle_path_planning dbr:Regular_number dbr:Integer_lattice dbr:List_of_numerical_analysis_topics dbr:Eikonal_equation dbr:LITS dbr:Apollonius_of_Perga dbr:Calculus_on_finite_weighted_graphs dbr:Computational_astrophysics dbr:Kronecker_sum_of_discrete_Laplacians dbr:Parallel_computing dbr:Adaptive_mesh_refinement dbr:Townscaper dbr:Weymouth_Street dbr:Line_integral_convolution dbr:Advanced_Simulation_Library dbr:Facial_recognition_system dbr:Cartesian_grid dbr:Graph_paper dbr:Waldspirale dbr:Grid dbr:Rectilinear_grid dbr:Regular dbr:Tales_of_the_World:_Tactics_Union dbr:Bicubic_interpolation dbr:Eigenvalues_and_eigenvectors_of_the_second_derivative dbr:Trilinear_interpolation dbr:Discrete_Laplace_operator dbr:Pixel dbr:Ulam–Warburton_automaton dbr:OceanParcels dbr:Separation_of_variables dbr:Metadynamics dbr:Volume_of_fluid_method dbr:Web_Coverage_Service dbr:Tricubic_interpolation dbr:Pointing_machine dbr:Multisymplectic_integrator dbr:Voxel dbr:Polystick dbr:Winged_edge dbr:Transcriptomics_technologies dbr:Rectangular_grid dbr:Curvilinear_grid dbr:Structured_grid
is foaf:primaryTopic of wikipedia-en:Regular_grid