Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res.39, D945–D950 (2011). ArticleCASPubMed Google Scholar
Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature505, 495–501 (2014). CASPubMedPubMed Central Google Scholar
Dalla-Favera, R. et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc. Natl Acad. Sci. USA79, 7824–7827 (1982). ArticleCASPubMedPubMed Central Google Scholar
Taub, R. et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl Acad. Sci. USA79, 7837–7841 (1982). ArticleCASPubMedPubMed Central Google Scholar
Ar-Rushdi, A. et al. Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science222, 390–393 (1983). ArticleCASPubMed Google Scholar
Erikson, J., ar-Rushdi, A., Drwinga, H. L., Nowell, P. C. & Croce, C. M. Transcriptional activation of the translocated c-myc oncogene in Burkitt lymphoma. Proc. Natl Acad. Sci. USA80, 820–824 (1983). ArticleCASPubMedPubMed Central Google Scholar
Frohling, S. & Dohner, H. Chromosomal abnormalities in cancer. N. Engl. J. Med.359, 722–734 (2008). ArticleCASPubMed Google Scholar
Dekker, J., Marti-Renom, M. A. & Mirny, L. A. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet.14, 390–403 (2013). ArticleCASPubMedPubMed Central Google Scholar
Schwarzer, W. & Spitz, F. The architecture of gene expression: integrating dispersed _cis_-regulatory modules into coherent regulatory domains. Curr. Opin. Genet. Dev.27, 74–82 (2014). ArticleCASPubMed Google Scholar
Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell159, 374–387 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zabidi, M. A. et al. Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature518, 556–559 (2015). ArticleCASPubMed Google Scholar
Goto, T., Macdonald, P. & Maniatis, T. Early and late periodic patterns of even skipped expression are controlled by distinct regulatory elements that respond to different spatial cues. Cell57, 413–422 (1989). ArticleCASPubMed Google Scholar
Harding, K., Hoey, T., Warrior, R. & Levine, M. Autoregulatory and gap gene response elements of the even-skipped promoter of Drosophila. EMBO J.8, 1205–1212 (1989). ArticleCASPubMedPubMed Central Google Scholar
Sharpe, J., Nonchev, S., Gould, A., Whiting, J. & Krumlauf, R. Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J.17, 1788–1798 (1998). ArticleCASPubMedPubMed Central Google Scholar
Buecker, C. & Wysocka, J. Enhancers as information integration hubs in development: lessons from genomics. Trends Genet.28, 276–284 (2012). ArticleCASPubMedPubMed Central Google Scholar
Perry, M. W., Boettiger, A. N., Bothma, J. P. & Levine, M. Shadow enhancers foster robustness of Drosophila gastrulation. Curr. Biol.20, 1562–1567 (2010). ArticleCASPubMedPubMed Central Google Scholar
Bell, O., Tiwari, V. K., Thomä, N. H. & Schübeler, D. Determinants and dynamics of genome accessibility. Nat. Rev. Genet.12, 554–564 (2011). ArticleCASPubMed Google Scholar
Schübeler, D. Function and information content of DNA methylation. Nature517, 321–326 (2015). ArticleCASPubMed Google Scholar
Furey, T. S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat. Rev. Genet.13, 840–852 (2012). ArticleCASPubMedPubMed Central Google Scholar
Stormo, G. D. & Zhao, Y. Determining the specificity of protein–DNA interactions. Nat. Rev. Genet.11, 751–760 (2010). ArticleCASPubMed Google Scholar
Levo, M. & Segal, E. In pursuit of design principles of regulatory sequences. Nat. Rev. Genet.15, 453–468 (2014). ArticleCASPubMed Google Scholar
Laird, P. W. Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet.11, 191–203 (2010). ArticleCASPubMed Google Scholar
Belton, J. M. et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods58, 268–276 (2012). ArticleCASPubMed Google Scholar
Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature444, 499–502 (2006). ArticleCASPubMed Google Scholar
Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature451, 535–540 (2008). ArticleCASPubMed Google Scholar
Markstein, M., Markstein, P., Markstein, V. & Levine, M. S. Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc. Natl Acad. Sci. USA99, 763–768 (2002). ArticleCASPubMed Google Scholar
Hallikas, O. et al. Genome-wide prediction of mammalian enhancers based on analysis of transcription-factor binding affinity. Cell124, 47–59 (2006).This study revealed the presence of multiple enhancers regulating theMYCandMYCNoncogenes. ArticleCASPubMed Google Scholar
Song, L. et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res.21, 1757–1767 (2011). ArticleCASPubMedPubMed Central Google Scholar
Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet.15, 272–286 (2014). ArticleCASPubMed Google Scholar
Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature480, 490–495 (2011). ArticleCASPubMed Google Scholar
Hu, G. et al. H2A. Z facilitates access of active and repressive complexes to chromatin in embryonic stem cell self-renewal and differentiation. Cell Stem Cell12, 180–192 (2013). ArticleCASPubMed Google Scholar
Jin, C. et al. H3.3/H2A. Z double variant-containing nucleosomes mark 'nucleosome-free regions' of active promoters and other regulatory regions. Nat. Genet.41, 941–945 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yukawa, M. et al. Genome-wide analysis of the chromatin composition of histone H2A and H3 variants in mouse embryonic stem cells. PLoS ONE9, e92689 (2014). ArticleCASPubMedPubMed Central Google Scholar
Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature459, 108–112 (2009). ArticleCASPubMedPubMed Central Google Scholar
Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA107, 21931–21936 (2010). ArticlePubMedPubMed Central Google Scholar
Roh, T. Y., Cuddapah, S. & Zhao, K. Active chromatin domains are defined by acetylation islands revealed by genome-wide mapping. Genes Dev.19, 542–552 (2005). ArticleCASPubMedPubMed Central Google Scholar
Seumois, G. et al. Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat. Immunol.15, 777–788 (2014). ArticleCASPubMedPubMed Central Google Scholar
Verzi, M. P. et al. Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2. Dev. Cell19, 713–726 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lam, M. T., Li, W., Rosenfeld, M. G. & Glass, C. K. Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci.39, 170–182 (2014). ArticleCASPubMedPubMed Central Google Scholar
Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell153, 307–319 (2013). CASPubMedPubMed Central Google Scholar
Yan, J. et al. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell154, 801–813 (2013). ArticleCASPubMed Google Scholar
Hnisz, D. et al. Convergence of developmental and oncogenic signaling pathways at transcriptional super-enhancers. Mol. Cell58, 362–370 (2015). ArticleCASPubMedPubMed Central Google Scholar
Mansour, M. R. et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science346, 1373–1377 (2014).This study shows thede novogeneration of a super-enhancer in tumour cells through somatic mutations that introduce TF binding sites. ArticleCASPubMedPubMed Central Google Scholar
Zhou, H. Y. et al. A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev.28, 2699–2711 (2014). ArticleCASPubMedPubMed Central Google Scholar
Li, Y. et al. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS ONE9, e114485 (2014). ArticleCASPubMedPubMed Central Google Scholar
Aran, D., Sabato, S. & Hellman, A. DNA methylation of distal regulatory sites characterizes dysregulation of cancer genes. Genome Biol.14, R21 (2013). ArticleCASPubMedPubMed Central Google Scholar
Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell153, 320–334 (2013).This study indicates that super-enhancers generatedde novoin tumour cells can be selectively inhibited by the BET-bromodomain inhibitor JQ1. ArticleCASPubMedPubMed Central Google Scholar
Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell155, 934–947 (2013). ArticleCASPubMed Google Scholar
Wasserman, N. F., Aneas, I. & Nobrega, M. A. An 8q24 gene desert variant associated with prostate cancer risk confers differential in vivo activity to a MYC enhancer. Genome Res.20, 1191–1197 (2010). ArticleCASPubMedPubMed Central Google Scholar
Ahmadiyeh, N. et al. 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc. Natl Acad. Sci. USA107, 9742–9746 (2010).This study found that multiple tumour type-specific enhancers are found close to theMYConcogene. ArticlePubMedPubMed Central Google Scholar
Tuupanen, S. et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat. Genet.41, 885–890 (2009). ArticleCASPubMed Google Scholar
Pomerantz, M. M. et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat. Genet.41, 882–884 (2009).References61and62show that SNPs identified by GWAS can alter the affinity of enhancers for oncogenic TFs. ArticleCASPubMedPubMed Central Google Scholar
Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res.42, D1001–D1006 (2014). ArticleCASPubMed Google Scholar
Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA106, 9362–9367 (2009). ArticlePubMedPubMed Central Google Scholar
Manolio, T. A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med.363, 166–176 (2010). ArticleCASPubMed Google Scholar
Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking disease associations with regulatory information in the human genome. Genome Res.22, 1748–1759 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nicolae, D. L. et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet.6, e1000888 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hulur, I. et al. Enrichment of inflammatory bowel disease and colorectal cancer risk variants in colon expression quantitative trait loci. BMC Genomics16, 138 (2015). ArticlePubMedPubMed Central Google Scholar
Chen, Q.-R., Hu, Y., Yan, C., Buetow, K. & Meerzaman, D. Systematic genetic analysis identifies cis-eQTL target genes associated with glioblastoma patient survival. PLoS ONE9, e105393 (2014). ArticleCASPubMedPubMed Central Google Scholar
Albert, F. W. & Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet.16, 197–212 (2015). ArticleCASPubMed Google Scholar
Fortini, B. K. et al. Multiple functional risk variants in a SMAD7 enhancer implicate a colorectal cancer risk haplotype. PLoS ONE9, e111914 (2014). ArticleCASPubMedPubMed Central Google Scholar
Oldridge, D. A. et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature528, 418–421 (2015). ArticleCASPubMedPubMed Central Google Scholar
Huang, Q. et al. A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. Nat. Genet.46, 126–135 (2014). ArticleCASPubMed Google Scholar
He, H. et al. Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc. Natl Acad. Sci. USA112, 6128–6133 (2015). ArticleCASPubMedPubMed Central Google Scholar
Dunning, A. M. et al. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1. RMND1 and CCDC170. Nat. Genet.48, 374–386 (2016). ArticleCASPubMedPubMed Central Google Scholar
Amundadottir, L. T. et al. A common variant associated with prostate cancer in European and African populations. Nat. Genet.38, 652–658 (2006). ArticleCASPubMed Google Scholar
Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat. Genet.39, 631–637 (2007). ArticleCASPubMed Google Scholar
Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat. Genet.39, 645–649 (2007). ArticleCASPubMed Google Scholar
Ghoussaini, M. et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J. Natl Cancer Inst.100, 962–966 (2008). ArticleCASPubMedPubMed Central Google Scholar
Crowther-Swanepoel, D. et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat. Genet.42, 132–136 (2010). ArticleCASPubMedPubMed Central Google Scholar
Tomlinson, I. et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat. Genet.39, 984–988 (2007). ArticleCASPubMed Google Scholar
Zanke, B. W. et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat. Genet.39, 989–994 (2007). ArticleCASPubMed Google Scholar
Varghese, J. S. & Easton, D. F. Genome-wide association studies in common cancers–what have we learnt? Curr. Opin. Genet. Dev.20, 201–209 (2010). ArticleCASPubMed Google Scholar
Sur, I., Tuupanen, S., Whitington, T., Aaltonen, L. A. & Taipale, J. Lessons from functional analysis of genome-wide association studies. Cancer Res.73, 4180–4184 (2013). ArticleCASPubMed Google Scholar
Hsu, P.-Y. et al. Amplification of distant estrogen response elements deregulates target genes associated with tamoxifen resistance in breast cancer. Cancer Cell24, 197–212 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tuupanen, S. et al. Allelic imbalance at rs6983267 suggests selection of the risk allele in somatic colorectal tumor evolution. Cancer Res.68, 14–17 (2008).The first study to show that a chromosomal region carrying a cancer-risk allele identified by GWAS is preferentially somatically amplified in cancer cells. ArticleCASPubMed Google Scholar
Sur, I. K. et al. Mice lacking a Myc enhancer that includes human SNP rs6983267 are resistant to intestinal tumors. Science338, 1360–1363 (2012).This study showed that deletion of an enhancer element carrying a cancer-risk allele has a marked effect on tumour development. ArticleCASPubMed Google Scholar
Zhang, X. et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat. Genet.48, 176–182 (2016). ArticleCASPubMed Google Scholar
Herranz, D. et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med.20, 1130–1137 (2014). ArticleCASPubMedPubMed Central Google Scholar
Cauwelier, B. et al. Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCRβ locus rearrangements and putative new T-cell oncogenes. Leukemia20, 1238–1244 (2006). ArticleCASPubMed Google Scholar
Puente, X. S. et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature526, 519–524 (2015). ArticleCASPubMed Google Scholar
Schuster-Böckler, B. & Lehner, B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature488, 504–507 (2012). ArticleCASPubMed Google Scholar
Polak, P. et al. Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nat. Biotechnol.32, 71–75 (2014). ArticleCASPubMed Google Scholar
Horn, S. et al. TERT promoter mutations in familial and sporadic melanoma. Science339, 959–961 (2013). ArticleCASPubMed Google Scholar
Huang, F. W. et al. Highly recurrent TERT promoter mutations in human melanoma. Science339, 957–959 (2013).References105and106show how somatic mutations in the non-coding regulatory genome alter TF binding sites and cause deregulated expression ofTERTin cancer. ArticleCASPubMedPubMed Central Google Scholar
Melton, C., Reuter, J. A., Spacek, D. V. & Snyder, M. Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat. Genet.47, 710–716 (2015). ArticleCASPubMedPubMed Central Google Scholar
Weinhold, N., Jacobsen, A., Schultz, N., Sander, C. & Lee, W. Genome-wide analysis of noncoding regulatory mutations in cancer. Nat. Genet.46, 1160–1165 (2014). ArticleCASPubMedPubMed Central Google Scholar
Kinde, I. et al. TERT promoter mutations occur early in urothelial neoplasia and are biomarkers of early disease and disease recurrence in urine. Cancer Res.73, 7162–7167 (2013). ArticleCASPubMedPubMed Central Google Scholar
Nault, J. C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat. Commun.4, 2218 (2013). ArticleCASPubMed Google Scholar
Mertens, F., Johansson, B., Fioretos, T. & Mitelman, F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer15, 371–381 (2015). ArticleCASPubMed Google Scholar
Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer7, 233–245 (2007). ArticleCASPubMed Google Scholar
Pomerantz, M. M. et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat. Genet.47, 1346–1351 (2015).A hallmark study showing how aberrant expression of a lineage-specific TF alters the binding landscape of an oncogenic TF. ArticleCASPubMedPubMed Central Google Scholar
Solomon, D. A., Kim, J. S. & Waldman, T. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance. BMB Rep.47, 299–310 (2014). ArticleCASPubMedPubMed Central Google Scholar
Plass, C. et al. Mutations in regulators of the epigenome and their connections to global chromatin patterns in cancer. Nat. Rev. Genet.14, 765–780 (2013). ArticleCASPubMed Google Scholar
Bhaskara, S. et al. Hdac3 is essential for the maintenance of chromatin structure and genome stability. Cancer Cell18, 436–447 (2010). ArticleCASPubMedPubMed Central Google Scholar
Xu, H. et al. _Rad21_-cohesin haploinsufficiency impedes DNA repair and enhances gastrointestinal radiosensitivity in mice. PLoS ONE5, e12112 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lu, C. et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature483, 474–478 (2012). CASPubMedPubMed Central Google Scholar
Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell18, 553–567 (2010). ArticleCASPubMedPubMed Central Google Scholar
Herman, J. G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl Acad. Sci. USA91, 9700–9704 (1994). ArticleCASPubMedPubMed Central Google Scholar
Esteller, M. et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J. Natl Cancer Inst.92, 564–569 (2000). ArticleCASPubMed Google Scholar
Blattler, A. & Farnham, P. J. Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem.288, 34287–34294 (2013). ArticleCASPubMedPubMed Central Google Scholar
Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature529, 110–114 (2016). ArticleCASPubMed Google Scholar
Webster, D. E. et al. Enhancer-targeted genome editing selectively blocks innate resistance to oncokinase inhibition. Genome Res.24, 751–760 (2014). ArticleCASPubMedPubMed Central Google Scholar
Tak, Y. G. et al. Effects on the transcriptome upon deletion of a distal element cannot be predicted by the size of the H3K27Ac peak in human cells. Nucleic Acids Res.44, 4123–4133 (2016). ArticleCASPubMedPubMed Central Google Scholar
Diffner, E. et al. Activity of a heptad of transcription factors is associated with stem cell programs and clinical outcome in acute myeloid leukemia. Blood121, 2289–2300 (2013). ArticleCASPubMed Google Scholar
Lehmann-Werman, R. et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc. Natl Acad. Sci. USA113, E1826–E1834 (2016). ArticleCASPubMedPubMed Central Google Scholar
Sun, K. et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc. Natl Acad. Sci. USA112, E5503–E5512 (2015). ArticleCASPubMedPubMed Central Google Scholar
Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M. & Shendure, J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell164, 57–68 (2016). ArticleCASPubMedPubMed Central Google Scholar
Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell159, 1126–1139 (2014). ArticleCASPubMedPubMed Central Google Scholar
Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell146, 904–917 (2011).This report showed the efficacy of JQ1 in inhibitingMYCtranscription. ArticleCASPubMedPubMed Central Google Scholar
Richon, V. M., Sandhoff, T. W., Rifkind, R. A. & Marks, P. A. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc. Natl Acad. Sci. USA97, 10014–10019 (2000). ArticleCASPubMedPubMed Central Google Scholar
Insinga, A. et al. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat. Med.11, 71–76 (2005). ArticleCASPubMed Google Scholar
Nebbioso, A. et al. Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med.11, 77–84 (2005). ArticleCASPubMed Google Scholar
Xu, W. S., Perez, G., Ngo, L., Gui, C. Y. & Marks, P. A. Induction of polyploidy by histone deacetylase inhibitor: a pathway for antitumor effects. Cancer Res.65, 7832–7839 (2005). ArticleCASPubMed Google Scholar
Gui, C. Y., Ngo, L., Xu, W. S., Richon, V. M. & Marks, P. A. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc. Natl Acad. Sci. USA101, 1241–1246 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rathert, P. et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature525, 543–547 (2015).This paper shows that changes in enhancer usage can cause resistance to JQ1-mediated inhibition ofMYCexpression. ArticleCASPubMedPubMed Central Google Scholar
Kumar, K. et al. GLI2-dependent c-MYC upregulation mediates resistance of pancreatic cancer cells to the BET bromodomain inhibitor JQ1. Sci. Rep.5, 9489 (2015). ArticleCASPubMedPubMed Central Google Scholar
Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer13, 714–726 (2013). ArticleCASPubMed Google Scholar
Huang, M., Shen, A., Ding, J. & Geng, M. Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol. Sci.35, 41–50 (2014). ArticleCASPubMed Google Scholar
Kress, T. R., Sabo, A. & Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer15, 593–607 (2015). ArticleCASPubMed Google Scholar
Bolden, J. E. et al. Inducible in vivo silencing of Brd4 identifies potential toxicities of sustained BET protein inhibition. Cell Rep.8, 1919–1929 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lettice, L. A. et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum. Mol. Genet.12, 1725–1735 (2003). ArticleCASPubMed Google Scholar
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012).
Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet.39, 311–318 (2007). ArticleCASPubMed Google Scholar
Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature485, 376–380 (2012). ArticleCASPubMedPubMed Central Google Scholar