The IL-23–IL-17 immune axis: from mechanisms to therapeutic testing (original) (raw)
Cua, D. J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421, 744–748 (2003). This study shows that IL-23 controls a key checkpoint for the induction of autoimmune inflammation. ArticleCASPubMed Google Scholar
Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity13, 715–725 (2000). ArticleCASPubMed Google Scholar
Kastelein, R. A., Hunter, C. A. & Cua, D. J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol.25, 221–242 (2007). ArticleCASPubMed Google Scholar
Langrish, C. L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med.201, 233–240 (2005). This is the first study to suggest that IL-17-producing cells are crucial mediators of autoimmunity, and it led to the proposal of the TH17 hypothesis. ArticleCASPubMedPubMed Central Google Scholar
Murphy, C. A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med.198, 1951–1957 (2003). ArticleCASPubMedPubMed Central Google Scholar
Harrington, L. E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunol.6, 1123–1132 (2005). This study coined the term 'TH17' cells to describe a unique lineage that is STAT3 dependent, rather than STAT4- and STAT6-independent. ArticleCAS Google Scholar
Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunol.6, 1133–1141 (2005). This is one of the first papers suggesting the existence of IL-17-producing inflammatory T cells. ArticleCAS Google Scholar
Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136, 2348–2357 (1986). This is the landmark paper proposing the TH1–TH2 hypothesis. CASPubMed Google Scholar
Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol.7, 145–173 (1989). ArticleCASPubMed Google Scholar
Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol.168, 5699–5708 (2002). ArticleCASPubMed Google Scholar
Weaver, C. T., Hatton, R. D., Mangan, P. R. & Harrington, L. E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol.25, 821–852 (2007). ArticleCASPubMed Google Scholar
Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell126, 1121–1133 (2006). This study describes the discovery of a novel transcriptional regulator that controlsIl17aexpression and provides the definitive proof that TH17 cells belong to a new lineage of CD4+ THcells. ArticleCASPubMed Google Scholar
Cua, D. J. & Tato, C. M. Innate IL-17-producing cells: the sentinels of the immune system. Nature Rev. Immunol.10, 479–489 (2010). ArticleCAS Google Scholar
Annunziato, F., Cosmi, L., Liotta, F., Maggi, E. & Romagnani, S. Type 17 T helper cells—origins, features and possible roles in rheumatic disease. Nature Rev. Rheumatol.5, 325–331 (2009). ArticleCAS Google Scholar
Zuniga, L. A., Jain, R., Haines, C. & Cua, D. J. Th17 cell development: from the cradle to the grave. Immunol. Rev.252, 78–88 (2013). ArticleCASPubMed Google Scholar
Kim, J. S. et al. Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nature Immunol.14, 611–618 (2013). ArticleCAS Google Scholar
Marks, B. R. et al. Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nature Immunol.10, 1125–1132 (2009). ArticleCAS Google Scholar
Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature445, 648–651 (2007). ArticleCASPubMed Google Scholar
El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nature Immunol.12, 568–575 (2011). ArticleCAS Google Scholar
Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunol.12, 560–567 (2011). ArticleCAS Google Scholar
McGeachy, M. J. et al. TGF-β and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology. Nature Immunol.8, 1390–1397 (2007). ArticleCAS Google Scholar
Hirota, K. et al. Plasticity of Th17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nature Immunol.14, 372–379 (2013). ArticleCAS Google Scholar
Chackerian, A. A. et al. Neutralization or absence of the interleukin-23 pathway does not compromise immunity to mycobacterial infection. Infect. Immun.74, 6092–6099 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y. et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest.116, 1317–1326 (2006). ArticleCASPubMedPubMed Central Google Scholar
Lieberman, L. A. et al. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12. J. Immunol.173, 1887–1893 (2004). ArticleCASPubMed Google Scholar
Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441, 235–238 (2006). ArticleCASPubMed Google Scholar
Mangan, P. R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature441, 231–234 (2006). ArticleCASPubMed Google Scholar
Veldhoen, M., Hocking, R. J., Atkins, C. J., Locksley, R. M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity24, 179–189 (2006). References 27–29 show the importance of TGFβ plus IL-6 in the lineage specification of TH17 cells. ArticleCASPubMed Google Scholar
Yang, X. O. et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J. Biol. Chem.282, 9358–9363 (2007). ArticleCASPubMed Google Scholar
Durant, L. et al. Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity32, 605–615 (2010). ArticleCASPubMedPubMed Central Google Scholar
Samoilova, E. B., Horton, J. L., Hilliard, B., Liu, T. S. & Chen, Y. IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J. Immunol.161, 6480–6486 (1998). CASPubMed Google Scholar
Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature448, 480–483 (2007). ArticleCASPubMed Google Scholar
Spolski, R. & Leonard, W. J. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr. Opin. Immunol.20, 295–301 (2008). ArticleCASPubMedPubMed Central Google Scholar
Sutton, C., Brereton, C., Keogh, B., Mills, K. H. & Lavelle, E. C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med.203, 1685–1691 (2006). ArticleCASPubMedPubMed Central Google Scholar
Gulen, M. F. et al. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity32, 54–66 (2010). This paper shows that IL-1 is a key factor that provides a key competitive advantage forin vivoTH17 cell expansion and survival during inflammatory conditions by inducing catabolic energy pathways. ArticleCASPubMedPubMed Central Google Scholar
Veldhoen, M., Hocking, R. J., Flavell, R. A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nature Immunol.7, 1151–1156 (2006). ArticleCAS Google Scholar
Li, M. O., Wan, Y. Y. & Flavell, R. A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity26, 579–591 (2007). ArticleCASPubMed Google Scholar
Das, J. et al. Transforming growth factor β is dispensable for the molecular orchestration of Th17 cell differentiation. J. Exp. Med.206, 2407–2416 (2009). ArticleCASPubMedPubMed Central Google Scholar
Volpe, E. et al. A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses. Nature Immunol.9, 650–657 (2008). ArticleCAS Google Scholar
Manel, N., Unutmaz, D. & Littman, D. R. The differentiation of human TH-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunol.9, 641–649 (2008). ArticleCAS Google Scholar
Acosta-Rodriguez, E. V., Napolitani, G., Lanzavecchia, A. & Sallusto, F. Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells. Nature Immunol.8, 942–949 (2007). ArticleCAS Google Scholar
Wilson, N. J. et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nature Immunol.8, 950–957 (2007). ArticleCAS Google Scholar
Chen, Z., Tato, C. M., Muul, L., Laurence, A. & O'Shea, J. J. Distinct regulation of interleukin-17 in human T helper lymphocytes. Arthritis Rheum.56, 2936–2946 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jager, A., Dardalhon, V., Sobel, R. A., Bettelli, E. & Kuchroo, V. K. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J. Immunol.183, 7169–7177 (2009). ArticleCASPubMed Google Scholar
McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nature Immunol.10, 314–324 (2009). This paper describes the crucial roles of IL-23 for thein vivoexpansion and function of TH17 cells during inflammation. ArticleCAS Google Scholar
Haines, C. J. et al. Autoimmune memory T helper 17 cell function and expansion are dependent on interleukin-23. Cell Rep.3, 1378–1388 (2013). ArticleCASPubMed Google Scholar
Kebir, H. et al. Preferential recruitment of interferon-γ-expressing TH17 cells in multiple sclerosis. Ann. Neurol.66, 390–402 (2009). ArticleCASPubMed Google Scholar
Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nature Immunol.12, 255–263 (2011). This elegant study used anIl17afate-mapping strategy to demonstrate the existence of “ex-TH17” cells driving autoimmune pathology. ArticleCAS Google Scholar
Lee, Y. et al. Induction and molecular signature of pathogenic TH17 cells. Nature Immunol.13, 991–999 (2012). ArticleCAS Google Scholar
Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–1463 (2006). ArticleCASPubMedPubMed Central Google Scholar
Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet.4, e1000041 (2008). ArticleCASPubMedPubMed Central Google Scholar
Reveille, J. D. et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nature Genet.42, 123–127 (2010). ArticleCASPubMed Google Scholar
Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nature Med.8, 500–508 (2002). ArticleCASPubMed Google Scholar
Burton, P. R. et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nature Genet.39, 1329–1337 (2007). ArticleCASPubMed Google Scholar
Diveu, C. et al. IL-27 blocks RORc expression to inhibit lineage commitment of Th17 cells. J. Immunol.182, 5748–5756 (2009). This study shows that IL-27 is an inhibitor of the TH17 immune pathway and explores the mechanisms underlying IL-27-mediated regulation of inflammation. ArticleCASPubMed Google Scholar
Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity26, 371–381 (2007). ArticleCASPubMed Google Scholar
El-behi, M. et al. Differential effect of IL-27 on developing versus committed Th17 cells. J. Immunol.183, 4957–4967 (2009). ArticleCASPubMed Google Scholar
Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature453, 106–109 (2008). ArticleCASPubMed Google Scholar
Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature453, 65–71 (2008). ArticleCASPubMed Google Scholar
Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nature Immunol.11, 854–861 (2010). ArticleCAS Google Scholar
Milner, J. D. et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature452, 773–776 (2008). ArticleCASPubMedPubMed Central Google Scholar
Minegishi, Y. et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature448, 1058–1062 (2007). ArticleCASPubMed Google Scholar
Ise, W. et al. The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells. Nature Immunol.12, 536–543 (2011). ArticleCAS Google Scholar
Lohoff, M. et al. Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc. Natl Acad. Sci. USA99, 11808–11812 (2002). ArticleCASPubMedPubMed Central Google Scholar
Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nature Immunol.8, 958–966 (2007). ArticleCAS Google Scholar
Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell151, 289–303 (2012). This study argues against the hypothesis that RORγt is the only factor that regulates the specification of the TH17 lineage. ArticleCASPubMedPubMed Central Google Scholar
Oestreich, K. J. & Weinmann, A. S. Master regulators or lineage-specifying? Changing views on CD4+ T cell transcription factors. Nature Rev. Immunol.12, 799–804 (2012). ArticleCAS Google Scholar
Samstein, R. M. et al. Foxp3 exploits a pre-existent enhancer landscape for regulatory T cell lineage specification. Cell151, 153–166 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, Z. et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity39, 272–285 (2013). ArticleCASPubMed Google Scholar
van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity39, 259–271 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wei, G. et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity30, 155–167 (2009). ArticleCASPubMedPubMed Central Google Scholar
Morrison, P. J. et al. Th17-cell plasticity in Helicobacter hepaticus-induced intestinal inflammation. Mucosal Immunol.6, 1143–1156 (2013). ArticleCASPubMed Google Scholar
Iwakura, Y., Ishigame, H., Saijo, S. & Nakae, S. Functional specialization of interleukin-17 family members. Immunity34, 149–162 (2011). ArticleCASPubMed Google Scholar
Yao, Z. et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity3, 811–821 (1995). ArticleCASPubMed Google Scholar
Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity30, 108–119 (2009). ArticleCASPubMed Google Scholar
Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubuser, A. & Eisenhaber, F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci.28, 226–229 (2003). ArticleCASPubMed Google Scholar
Rickel, E. A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol.181, 4299–4310 (2008). ArticleCASPubMed Google Scholar
Bordon, Y. Cytokines: IL-17C joins the family firm. Nature Rev. Immunol.11, 805 (2011). CAS Google Scholar
Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nature Immunol.8, 247–256 (2007). ArticleCAS Google Scholar
Chang, S. H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem.281, 35603–35607 (2006). ArticleCASPubMed Google Scholar
Li, X. Act1 modulates autoimmunity through its dual functions in CD40L/BAFF and IL-17 signaling. Cytokine41, 105–113 (2008). ArticleCASPubMed Google Scholar
Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med.191, 1233–1239 (2000). ArticleCASPubMedPubMed Central Google Scholar
Sun, D. et al. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nature Immunol.12, 853–860 (2011). ArticleCAS Google Scholar
Herjan, T. et al. HuR is required for IL-17-induced Act1-mediated CXCL1 and CXCL5 mRNA stabilization. J. Immunol.191, 640–649 (2013). ArticleCASPubMed Google Scholar
Bulek, K. et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nature Immunol.12, 844–852 (2011). ArticleCAS Google Scholar
Qu, F. et al. TRAF6-dependent Act1 phosphorylation by the IκB kinase-related kinases suppresses interleukin-17-induced NF-κB activation. Mol. Cell. Biol.32, 3925–3937 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, C. et al. The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90. Nature Immunol.14, 72–81 (2013). ArticleCAS Google Scholar
Sonder, S. U. et al. IL-17-induced NF-κB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J. Biol. Chem.286, 12881–12890 (2011). ArticleCASPubMedPubMed Central Google Scholar
Huffmeier, U. et al. Common variants at TRAF3IP2 are associated with susceptibility to psoriatic arthritis and psoriasis. Nature Genet.42, 996–999 (2010). ArticleCASPubMed Google Scholar
Shen, F., Ruddy, M. J., Plamondon, P. & Gaffen, S. L. Cytokines link osteoblasts and inflammation: microarray analysis of interleukin-17- and TNF-α-induced genes in bone cells. J. Leukoc. Biol.77, 388–399 (2005). ArticleCASPubMed Google Scholar
Acosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nature Immunol.8, 639–646 (2007). ArticleCAS Google Scholar
Yang, D. et al. β-Defensins: Linking innate immunity and adaptive immunity through dendritic and T cell CCR6. Science286, 525–528 (1999). ArticleCASPubMed Google Scholar
Goetz, D. H. et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell10, 1033–1043 (2002). ArticleCASPubMed Google Scholar
Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-a is mediated by CCAAT/enhancer binding protein family members. J. Biol. Chem.279, 2559–2567 (2004). ArticleCASPubMed Google Scholar
Shen, F., Hu, Z., Goswami, J. & Gaffen, S. L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem.281, 24138–24148 (2006). ArticleCASPubMed Google Scholar
Patel, D. N. et al. Interleukin-17 stimulates C-reactive protein expression in hepatocytes and smooth muscle cells via p38 MAPK and ERK1/2-dependent NF-κB and C/EBPβ activation. J. Biol. Chem.282, 27229–27238 (2007). ArticleCASPubMed Google Scholar
Shen, F. et al. IL-17 receptor signaling inhibits C/EBPβ by sequential phosphorylation of the regulatory 2 domain. Sci. Signal.2, ra8 (2009). ArticlePubMedPubMed Central Google Scholar
Zrioual, S. et al. Genome-wide comparison between IL-17A- and IL-17F-induced effects in human rheumatoid arthritis synoviocytes. J. Immunol.182, 3112–3120 (2009). ArticleCASPubMed Google Scholar
Shen, F. & Gaffen, S. L. Structure–function relationships in the IL-17 receptor: Implications for signal transduction and therapy. Cytokine41, 92–104 (2008). ArticleCASPubMedPubMed Central Google Scholar
Karlsen, J. R., Borregaard, N. & Cowland, J. B. Induction of neutrophil gelatinase-associated lipocalin expression by co-stimulation with interleukin-17 and tumor necrosis factor-α is controlled by IκB-ζ but neither by C/EBP-β nor C/EBP-δ. J. Biol. Chem.285, 14088–14100 (2010). ArticleCASPubMedPubMed Central Google Scholar
Zhong, B. et al. Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25. Nature Immunol.13, 1110–1117 (2012). ArticleCAS Google Scholar
Garg, A. V., Ahmed, M., Vallejo, A. N., Ma, A. & Gaffen, S. L. The deubiquitinase A20 mediates feedback inhibition of interleukin-17 receptor signaling. Sci. Signal.6, ra44 (2013). References 118 and 119 show that IL-17R signalling is restrained by multiple deubiquitylating enzymes that target TRAF6. ArticleCASPubMedPubMed Central Google Scholar
Ma, A. & Malynn, B. A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nature Rev. Immunol.12, 774–785 (2012). ArticleCAS Google Scholar
Zhu, S. et al. Modulation of experimental autoimmune encephalomyelitis through TRAF3-mediated suppression of interleukin 17 receptor signaling. J. Exp. Med.207, 2647–2662 (2010). ArticleCASPubMedPubMed Central Google Scholar
Maitra, A. et al. Distinct functional motifs within the IL-17 receptor regulate signal transduction and target gene expression. Proc. Natl Acad. Sci, USA104, 7506–7511 (2007). ArticleCASPubMedPubMed Central Google Scholar
Iha, H. et al. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J.27, 629–641 (2008). ArticleCASPubMedPubMed Central Google Scholar
Shembade, N. et al. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nature Immunol.9, 254–262 (2008). ArticleCAS Google Scholar
Ho, A. W. et al. The anaphase-promoting complex protein 5 (AnapC5) associates with A20 and inhibits IL-17-mediated signal transduction. PLoS ONE8, e70168 (2013). ArticleCASPubMedPubMed Central Google Scholar
Shi, P. et al. Persistent stimulation with interleukin-17 desensitizes cells through SCFβ-TrCP-mediated degradation of Act1. Sci. Signal.4, ra73 (2011). ArticleCASPubMed Google Scholar
Xie, P. TRAF molecules in cell signaling and in human diseases. J. Mol. Signal8, 1–31 (2013). ArticleCAS Google Scholar
Zepp, J. A. et al. Cutting edge: TNF receptor-associated factor 4 restricts IL-17-mediated pathology and signaling processes. J. Immunol.189, 33–37 (2012). ArticleCASPubMed Google Scholar
O'Connell, R. M. et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity33, 607–619 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yao, R. et al. MicroRNA-155 modulates Treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS ONE7, e46082 (2012). ArticleCASPubMedPubMed Central Google Scholar
Murugaiyan, G., Beynon, V., Mittal, A., Joller, N. & Weiner, H. L. Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J. Immunol.187, 2213–2221 (2011). ArticleCASPubMed Google Scholar
Zhu, S. et al. The microRNA miR-23b suppresses IL-17-associated autoimmune inflammation by targeting TAB2, TAB3 and IKK-α. Nature Med.18, 1077–1086 (2012). This is the first identification of an miRNA feedback loop in the IL-17R signalling pathway. ArticleCASPubMed Google Scholar
Milner, J. D. & Holland, S. M. The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nature Rev. Immunol.13, 635–648 (2013). ArticleCAS Google Scholar
Glocker, E. O. et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N. Engl. J. Med.361, 1727–1735 (2009). ArticleCASPubMedPubMed Central Google Scholar
Liu, L. et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J. Exp. Med.208, 1635–1648 (2011). ArticleCASPubMedPubMed Central Google Scholar
van de Veerdonk, F. L. et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N. Engl. J. Med.365, 54–61 (2011). ArticleCASPubMed Google Scholar
Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med.207, 291–297 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J. Exp. Med.207, 299–308 (2010). ArticleCASPubMedPubMed Central Google Scholar
Boisson, B. et al. A biallelic ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity39, 676–686 (2013). References 143 and 144 directly link mucosalC. albicansinfections with the IL-17R-mediated signalling axis. ArticleCASPubMed Google Scholar
Stark, M. A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity22, 285–294 (2005). ArticleCASPubMed Google Scholar
Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4−CD8− entheseal resident T cells. Nature Med.18, 1069–1076 (2012). ArticleCASPubMed Google Scholar
Chan, J. R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med.203, 2577–2587 (2006). ArticleCASPubMedPubMed Central Google Scholar
Tonel, G. et al. Cutting edge: A critical functional role for IL-23 in psoriasis. J. Immunol.185, 5688–5691 (2010). ArticleCASPubMed Google Scholar
Perera, G. K., Di Meglio, P. & Nestle, F. O. Psoriasis. Annu. Rev. Pathol.7, 385–422 (2012). ArticleCASPubMed Google Scholar
Villanova, F. et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J. Invest. Dermatol.134, 984–991 (2014). ArticleCASPubMed Google Scholar
Guttman-Yassky, E. et al. Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J. Immunol.181, 7420–7427 (2008). ArticleCASPubMed Google Scholar
Rudwaleit, M. et al. The Assessment of SpondyloArthritis International Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general. Ann. Rheum. Dis.70, 25–31 (2011). ArticleCASPubMed Google Scholar
van Echteld, I. et al. Identification of the most common problems by patients with ankylosing spondylitis using the international classification of functioning, disability and health. J. Rheumatol33, 2475–2483 (2006). PubMed Google Scholar
Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. II. Histological aspects. J. Rheumatol22, 2273–2278 (1995). CASPubMed Google Scholar
Cotterill, L. et al. Replication and meta-analysis of 13,000 cases defines the risk for interleukin-23 receptor and autophagy-related 16-like 1 variants in Crohn's disease. Can. J. Gastroenterol.24, 297–302 (2010). ArticlePubMedPubMed Central Google Scholar
Lesage, S. et al. CARD15/NOD2 mutational analysis and genotype-phenotype correlation in 612 patients with inflammatory bowel disease. Am. J. Hum. Genet.70, 845–857 (2002). ArticleCASPubMedPubMed Central Google Scholar
Dige, A. et al. Increased levels of circulating Th17 cells in quiescent versus active Crohn's disease. J. Crohns Colitis7, 248–255 (2013). ArticlePubMed Google Scholar
Leonardi, C. et al. Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis. N. Engl. J. Med.366, 1190–1199 (2012). ArticleCASPubMed Google Scholar
Rich, P. et al. Secukinumab induction and maintenance therapy in moderate-to-severe plaque psoriasis: a randomized, double-blind, placebo-controlled, phase II regimen-finding study. Br. J. Dermatol.168, 402–411 (2013). ArticleCASPubMed Google Scholar
Papp, K. A. et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N. Engl. J. Med.366, 1181–1189 (2012). References 160–162 report clinical trials that reveal the remarkable efficacy of IL-17- or IL-17RA-specific antibody therapy for the treatment of psoriasis. ArticleCASPubMed Google Scholar
Papp, K. A. et al. Dose-dependent improvement in chronic plaque psoriasis following treatment with anti-IL-23p19 humanized monoclonal antibody (MK-3222). Late-breaking Research Symposium. 71st Annual Meeting of the American Academy of Dermatology (2013).
Chiricozzi, A. & Krueger, J. G. IL-17 targeted therapies for psoriasis. Expert Opin. Investig. Drugs22, 993–1005 (2013). ArticleCASPubMed Google Scholar
Sandborn, W. J. et al. Ustekinumab induction and maintenance therapy in refractory Crohn's disease. N. Engl. J. Med.367, 1519–1528 (2012). ArticleCASPubMed Google Scholar
Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut61, 1693–1700 (2012). ArticleCASPubMed Google Scholar
Targan, S. R. et al. A randomized, double-blind, placebo-controlled study to evaluate the safety, tolerability, and efficacy of AMG 827 in subjects with moderate to severe Crohn's disease. 143, e26 (2012).
Ogawa, A., Andoh, A., Araki, Y., Bamba, T. & Fujiyama, Y. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol.110, 55–62 (2004). ArticleCASPubMed Google Scholar
Patel, D. D., Lee, D. M., Kolbinger, F. & Antoni, C. Effect of IL-17A blockade with secukinumab in autoimmune diseases. Ann. Rheum. Dis.72, Suppl. 2, iii116–iii123 (2013). ArticleCAS Google Scholar
Garber, K. Anti-IL-17 mAbs herald new options in psoriasis. Nature Biotech.30, 475–477 (2012). ArticleCAS Google Scholar
Nakamura, R. et al. Tyk2-signaling plays an important role in host defense against Escherichia coli through IL-23-induced IL-17 production by γδ T cells. J. Immunol.181, 2071–2075 (2008). ArticleCASPubMed Google Scholar
Ishizaki, M. et al. Tyk2 is a therapeutic target for psoriasis-like skin inflammation. Int. Immunol.26, 257–267 (2013). ArticleCASPubMed Google Scholar
Huh, J. R. et al. Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity. Nature472, 486–490 (2011). ArticleCASPubMedPubMed Central Google Scholar
Xiao, S. et al. Small-molecule RORγt antagonists inhibit T helper 17 Cell transcriptional network by divergent mechanisms. Immunity40, 477–489 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lee, J. S. & Cua, D. J. The emerging landscape of RORγt biology. Immunity40, 451–452 (2014). ArticleCASPubMed Google Scholar
Stritesky, G. L., Jameson, S. C. & Hogquist, K. A. Selection of self-reactive T cells in the thymus. Annu. Rev. Immunol.30, 95–114 (2012). ArticleCASPubMed Google Scholar
Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol.23, 877–900 (2005). ArticleCASPubMed Google Scholar
Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nature Rev. Immunol.13, 145–149 (2013). ArticleCAS Google Scholar
Plantinga, T. S. et al. Early stop polymorphism in human DECTIN-1 is associated with increased Candida colonization in hematopoietic stem cell transplant recipients. Clin. Infect. Dis.49, 724–732 (2009). ArticleCASPubMed Google Scholar
Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity25, 745–755 (2006). ArticleCASPubMed Google Scholar
Prando, C. et al. Inherited IL-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds. Medicine92, 109–122 (2013). ArticleCASPubMedPubMed Central Google Scholar
de Beaucoudrey, L. et al. Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine89, 381–402 (2010). ArticleCASPubMed Google Scholar
Ouederni, M. et al. Clinical features of Candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin. Infect. Dis.58, 204–213 (2014). ArticleCASPubMed Google Scholar