Host factors influencing susceptibility to HIV infection and AIDS progression (original) (raw)

References

  1. Buchbinder SP, Katz MH, Hessol NA, O'Malley PM, Holmberg SD: Long-term HIV-1 infection without immunologic progression. AIDS. 1994, 8 (8): 1123-1128. 10.1097/00002030-199408000-00014.
    CAS PubMed Google Scholar
  2. Anastassopoulou CG, Kostrikis LG: The impact of human allelic variation on HIV-1 disease. Curr HIV Res. 2003, 1 (2): 185-203. 10.2174/1570162033485311.
    CAS PubMed Google Scholar
  3. Telenti A, Ioannidis JP: Susceptibility to HIV infection--disentangling host genetics and host behavior. J Infect Dis. 2006, 193 (1): 4-6. 10.1086/498535.
    PubMed Google Scholar
  4. Cunningham AL, Li S, Juarez J, Lynch G, Alali M, Naif H: The level of HIV infection of macrophages is determined by interaction of viral and host cell genotypes. J Leukoc Biol. 2000, 68 (3): 311-317.
    CAS PubMed Google Scholar
  5. Blaak H, Ran LJ, Rientsma R, Schuitemaker H: Susceptibility of in vitro stimulated PBMC to infection with NSI HIV-1 is associated with levels of CCR5 expression and beta-chemokine production. Virology. 2000, 267 (2): 237-246. 10.1006/viro.1999.0111.
    CAS PubMed Google Scholar
  6. Ciuffi A, Bleiber G, Munoz M, Martinez R, Loeuillet C, Rehr M, Fischer M, Gunthard HF, Oxenius A, Meylan P, Bonhoeffer S, Trono D, Telenti A: Entry and transcription as key determinants of differences in CD4 T-cell permissiveness to human immunodeficiency virus type 1 infection. J Virol. 2004, 78 (19): 10747-10754. 10.1128/JVI.78.19.10747-10754.2004.
    PubMed Central CAS PubMed Google Scholar
  7. Naif HM, Li S, Alali M, Chang J, Mayne C, Sullivan J, Cunningham AL: Definition of the stage of host cell genetic restriction of replication of human immunodeficiency virus type 1 in monocytes and monocyte-derived macrophages by using twins. J Virol. 1999, 73 (6): 4866-4881.
    PubMed Central CAS PubMed Google Scholar
  8. Chang J, Naif HM, Li S, Sullivan JS, Randle CM, Cunningham AL: Twin studies demonstrate a host cell genetic effect on productive human immunodeficiency virus infection of human monocytes and macrophages in vitro. J Virol. 1996, 70 (11): 7792-7803.
    PubMed Central CAS PubMed Google Scholar
  9. Du Z, Lang SM, Sasseville VG, Lackner AA, Ilyinskii PO, Daniel MD, Jung JU, Desrosiers RC: Identification of a nef allele that causes lymphocyte activation and acute disease in macaque monkeys. Cell. 1995, 82 (4): 665-674. 10.1016/0092-8674(95)90038-1.
    CAS PubMed Google Scholar
  10. Petrucci A, Dorrucci M, Alliegro MB, Pezzotti P, Rezza G, Sinicco A, Lazzarin A, Angarano G: How many HIV-infected individuals may be defined as long-term nonprogressors? A report from the Italian Seroconversion Study. Italian Seroconversion Study Group (ISS). J Acquir Immune Defic Syndr Hum Retrovirol. 1997, 14 (3): 243-248.
    CAS PubMed Google Scholar
  11. Shacklett BL: Understanding the "lucky few": the conundrum of HIV-exposed, seronegative individuals. Curr HIV/AIDS Rep. 2006, 3 (1): 26-31. 10.1007/s11904-006-0005-2.
    PubMed Google Scholar
  12. Bleiber G, May M, Martinez R, Meylan P, Ott J, Beckmann JS, Telenti A: Use of a combined ex vivo/in vivo population approach for screening of human genes involved in the human immunodeficiency virus type 1 life cycle for variants influencing disease progression. J Virol. 2005, 79 (20): 12674-12680. 10.1128/JVI.79.20.12674-12680.2005.
    PubMed Central CAS PubMed Google Scholar
  13. Carrington M, O'Brien SJ: The influence of HLA genotype on AIDS. Annu Rev Med. 2003, 54: 535-551. 10.1146/annurev.med.54.101601.152346.
    CAS PubMed Google Scholar
  14. Kaslow RA, Dorak T, Tang JJ: Influence of host genetic variation on susceptibility to HIV type 1 infection. J Infect Dis. 2005, 191 Suppl 1: S68-77. 10.1086/425269.
    PubMed Google Scholar
  15. O'Brien SJ, Nelson GW: Human genes that limit AIDS. Nat Genet. 2004, 36 (6): 565-574. 10.1038/ng1369.
    PubMed Google Scholar
  16. Pierson TC, Doms RW: HIV-1 entry and its inhibition. Curr Top Microbiol Immunol. 2003, 281: 1-27.
    CAS PubMed Google Scholar
  17. Arenzana-Seisdedos F, Parmentier M: Genetics of resistance to HIV infection: Role of co-receptors and co-receptor ligands. Semin Immunol. 2006, 18 (6): 387-403. 10.1016/j.smim.2006.07.007.
    CAS PubMed Google Scholar
  18. Feng Y, Broder CC, Kennedy PE, Berger EA: HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor [see comments]. Science. 1996, 272: 872-877. 10.1126/science.272.5263.872.
    CAS PubMed Google Scholar
  19. Alkhatib G, Combadiere C, Broder CC, Feng Y, Kennedy PE, Murphy PM, Berger EA: CC CKR5: a rantes, MIP-1alpha, MIP-1beta receptor as fusion cofactor for macrophage tropic HIV-1. Science. 1996, 272 (5270): 1955-1958. 10.1126/science.272.5270.1955.
    CAS PubMed Google Scholar
  20. Choe H, Farzan M, sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gierard N, Gerard C, Sodroski J: The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell. 1996, 85 (7): 1135-1148. 10.1016/S0092-8674(00)81313-6.
    CAS PubMed Google Scholar
  21. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton R, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR: Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996, 381 (6584): 661-666. 10.1038/381661a0.
    CAS PubMed Google Scholar
  22. Doranz BJ, Rucker J, Yi Y, Smyth RJ, Samson M, Peiper SC, Parmentier M, Collman RG, Doms RW: A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell. 1996, 85 (7): 1149-1158. 10.1016/S0092-8674(00)81314-8.
    CAS PubMed Google Scholar
  23. Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA: HIV-1 entry into CD4-positive cells is mediated by the chemokine receptor CC-CKR-5. Nature. 1996, 381 (6584): 667-673. 10.1038/381667a0.
    CAS PubMed Google Scholar
  24. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR: Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996, 86 (3): 367-377. 10.1016/S0092-8674(00)80110-5.
    CAS PubMed Google Scholar
  25. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O'Brien SJ: Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. 1996, 273 (5283): 1856-1862. 10.1126/science.273.5283.1856.
    CAS PubMed Google Scholar
  26. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M: Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature. 1996, 382 (6593): 722-725. 10.1038/382722a0.
    CAS PubMed Google Scholar
  27. Benkirane M, Jin DY, Chun RF, Koup RA, Jeang KT: Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J Biol Chem. 1997, 272 (49): 30603-30606. 10.1074/jbc.272.49.30603.
    CAS PubMed Google Scholar
  28. Lederman MM, Penn-Nicholson A, Cho M, Mosier D: Biology of CCR5 and its role in HIV infection and treatment. Jama. 2006, 296 (7): 815-826. 10.1001/jama.296.7.815.
    CAS PubMed Google Scholar
  29. Stephens JC, Reich DE, Goldstein DB, Shin HD, Smith MW, Carrington M, Winkler C, Huttley GA, Allikmets R, Schriml L, Gerrard B, Malasky M, Ramos MD, Morlot S, Tzetis M, Oddoux C, di Giovine FS, Nasioulas G, Chandler D, Aseev M, Hanson M, Kalaydjieva L, Glavac D, Gasparini P, Kanavakis E, Claustres M, Kambouris M, Ostrer H, Duff G, Baranov V, Sibul H, Metspalu A, Goldman D, Martin N, Duffy D, Schmidtke J, Estivill X, O'Brien SJ, Dean M: Dating the origin of the CCR5-Delta32 AIDS-resistance allele by the coalescence of haplotypes. Am J Hum Genet. 1998, 62 (6): 1507-1515. 10.1086/301867.
    PubMed Central CAS PubMed Google Scholar
  30. Salkowitz JR, Purvis SF, Meyerson H, Zimmerman P, O'Brien TR, Aledort L, Eyster ME, Hilgartner M, Kessler C, Konkle BA, White GC, Goedert JJ, Lederman MM: Characterization of high-risk HIV-1 seronegative hemophiliacs. Clin Immunol. 2001, 98 (2): 200-211. 10.1006/clim.2000.4969.
    CAS PubMed Google Scholar
  31. Naif HM, Cunningham AL, Alali M, Li S, Nasr N, Buhler MM, Schols D, de Clercq E, Stewart G: A human immunodeficiency virus type 1 isolate from an infected person homozygous for CCR5Delta32 exhibits dual tropism by infecting macrophages and MT2 cells via CXCR4. J Virol. 2002, 76 (7): 3114-3124. 10.1128/JVI.76.7.3114-3124.2002.
    PubMed Central CAS PubMed Google Scholar
  32. Gorry PR, Zhang C, Wu S, Kunstman K, Trachtenberg E, Phair J, Wolinsky S, Gabuzda D: Persistence of dual-tropic HIV-1 in an individual homozygous for the CCR5 Delta 32 allele. Lancet. 2002, 359 (9320): 1832-1834. 10.1016/S0140-6736(02)08681-6.
    CAS PubMed Google Scholar
  33. Michael NL, Nelson JA, KewalRamani VN, Chang G, O'Brien SJ, Mascola JR, Volsky B, Louder M, White GC, Littman DR, Swanstrom R, O'Brien TR: Exclusive and persistent use of the entry coreceptor CXCR4 by human immunodeficiency virus type 1 from a subject homozygous for CCR5 delta32. J Virol. 1998, 72 (7): 6040-6047.
    PubMed Central CAS PubMed Google Scholar
  34. Balotta C, Bagnarelli P, Violin M, Ridolfo AL, Zhou D, Berlusconi A, Corvasce S, Corbellino M, Clementi M, Clerici M, Moroni M, Galli M: Homozygous delta 32 deletion of the CCR-5 chemokine receptor gene in an HIV-1-infected patient. AIDS. 1997, 11 (10): F67-71. 10.1097/00002030-199710000-00001.
    CAS PubMed Google Scholar
  35. Kuipers H, Workman C, Dyer W, Geczy A, Sullivan J, Oelrichs R: An HIV-1-infected individual homozygous for the CCR-5 delta32 allele and the SDF-1 3'A. allele. AIDS. 1999, 13 (3): 433-434. 10.1097/00002030-199902250-00025.
    CAS PubMed Google Scholar
  36. O'Brien TR, Winkler C, Dean M, Nelson JA, Carrington M, Michael NL, White GC: HIV-1 infection in a man homozygous for CCR5 delta 32. Lancet. 1997, 349 (9060): 1219-10.1016/S0140-6736(97)24017-1.
    PubMed Google Scholar
  37. Theodorou I, Meyer L, Magierowska M, Katlama C, Rouzioux C: HIV-1 infection in an individual homozygous for CCR5 delta 32. Seroco Study Group. Lancet. 1997, 349 (9060): 1219-1220. 10.1016/S0140-6736(05)62411-7.
    CAS PubMed Google Scholar
  38. Cohen OJ, Paolucci S, Bende SM, Daucher M, Moriuchi H, Moriuchi M, Cicala C, Davey RT, Baird B, Fauci AS: CXCR4 and CCR5 genetic polymorphisms in long-term nonprogressive human immunodeficiency virus infection: lack of association with mutations other than CCR5-Delta32. J Virol. 1998, 72 (7): 6215-6217.
    PubMed Central CAS PubMed Google Scholar
  39. Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, Kang S, Ceradini D, Jin Z, Yazdanbakhsh K, Kunstman K, Erickson D, Dragon E, Landau NR, Phair J, Ho DD, Koup RA: The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med. 1996, 2 (11): 1240-1243. 10.1038/nm1196-1240.
    CAS PubMed Google Scholar
  40. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, O'Brien TR, Jacobson LP, Kaslow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, O'Brien SJ: Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC), ALIVE Study. Science. 1997, 277 (5328): 959-965. 10.1126/science.277.5328.959.
    CAS PubMed Google Scholar
  41. Stewart GJ, Ashton LJ, Biti RA, Ffrench RA, Bennetts BH, Newcombe NR, Benson EM, Carr A, Cooper DA, Kaldor JM: Increased frequency of CCR-5 delta 32 heterozygotes among long-term non-progressors with HIV-1 infection. The Australian Long-Term Non-Progressor Study Group. AIDS. 1997, 11 (15): 1833-1838. 10.1097/00002030-199715000-00007.
    CAS PubMed Google Scholar
  42. Eskild A, Jonassen TO, Heger B, Samuelsen SO, Grinde B: The estimated impact of the CCR-5 delta32 gene deletion on HIV disease progression varies with study design. Oslo HIV Cohort Study Group. AIDS. 1998, 12 (17): 2271-2274. 10.1097/00002030-199817000-00007.
    CAS PubMed Google Scholar
  43. Schinkel J, Langendam MW, Coutinho RA, Krol A, Brouwer M, Schuitemaker H: No evidence for an effect of the CCR5 delta32/+ and CCR2b 64I/+ mutations on human immunodeficiency virus (HIV)-1 disease progression among HIV-1-infected injecting drug users. J Infect Dis. 1999, 179 (4): 825-831. 10.1086/314658.
    CAS PubMed Google Scholar
  44. Wilkinson DA, Operskalski EA, Busch MP, Mosley JW, Koup RA: A 32-bp deletion within the CCR5 locus protects against transmission of parenterally acquired human immunodeficiency virus but does not affect progression to AIDS-defining illness. J Infect Dis. 1998, 178 (4): 1163-1166.
    CAS PubMed Google Scholar
  45. Morawetz RA, Rizzardi GP, Glauser D, Rutschmann O, Hirschel B, Perrin L, Opravil M, Flepp M, von Overbeck J, Glauser MP, Ghezzi S, Vicenzi E, Poli G, Lazzarin A, Pantaleo G: Genetic polymorphism of CCR5 gene and HIV disease: the heterozygous (CCR5/delta ccr5) genotype is neither essential nor sufficient for protection against disease progression. Swiss HIV Cohort. Eur J Immunol. 1997, 27 (12): 3223-3227. 10.1002/eji.1830271220.
    CAS PubMed Google Scholar
  46. Reynes J, Portales P, Segondy M, Baillat V, Andre P, Avinens O, Picot MC, Clot J, Eliaou JF, Corbeau P: CD4 T cell surface CCR5 density as a host factor in HIV-1 disease progression. AIDS. 2001, 15 (13): 1627-1634. 10.1097/00002030-200109070-00004.
    CAS PubMed Google Scholar
  47. Reynes J, Portales P, Segondy M, Baillat V, Andre P, Reant B, Avinens O, Couderc G, Benkirane M, Clot J, Eliaou JF, Corbeau P: CD4 T cell surface CCR5 density as a determining factor of virus load in persons infected with human immunodeficiency virus type 1. J Inf Dis. 2000, 181: 927-932. 10.1086/315315.
    CAS Google Scholar
  48. Wu L, Paxton WA, Kassam N, Ruffing N, Rottman JB, Sullivan N, Choe H, Sodroski J, Newman W, Koup RA, Mackay CR: CCR5 levels and expression pattern correlate with infectability by macrophage-tropic HIV-1, in vitro. J Exp Med. 1997, 185 (9): 1681-1691. 10.1084/jem.185.9.1681.
    PubMed Central CAS PubMed Google Scholar
  49. Blanpain C, Lee B, Tackoen M, Puffer B, Boom A, Libert F, Sharron M, Wittamer V, Vassart G, Doms RW, Parmentier M: Multiple nonfunctional alleles of CCR5 are frequent in various human populations. Blood. 2000, 96 (5): 1638-1645.
    CAS PubMed Google Scholar
  50. Capoulade-Metay C, Trong LX, Dudoit Y, Versmisse P, Nguyen NV, Nguyen M, Scott-Algara D, Barre-Sinoussi F, Debre P, Bismuth G, Pancino G, Theodorou I: New CCR5 variants associated with reduced HIV coreceptor function in southeast Asia. AIDS. 2004, 18 (17): 2243-2252. 10.1097/00002030-200411190-00004.
    CAS PubMed Google Scholar
  51. Carrington M, Kissner T, Gerrard B, Ivanov S, O'Brien SJ, Dean M: Novel alleles of the chemokine-receptor gene CCR5. Am J Hum Genet. 1997, 61 (6): 1261-1267. 10.1086/301645.
    PubMed Central CAS PubMed Google Scholar
  52. Quillent C, Oberlin E, Braun J, Rousset D, Gonzalez-Canali G, Metais P, Montagnier L, Virelizier JL, Arenzana-Seisdedos F, Beretta A: HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet. 1998, 351 (9095): 14-18. 10.1016/S0140-6736(97)09185-X.
    CAS PubMed Google Scholar
  53. Martin MP, Dean M, Smith MW, Winkler C, Gerrard B, Michael NL, Lee B, Doms RW, Margolick J, Buchbinder S, Goedert JJ, O'Brien TR, Hilgartner MW, Vlahov D, O'Brien SJ, Carrington M: Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science. 1998, 282 (5395): 1907-1911. 10.1126/science.282.5395.1907.
    CAS PubMed Google Scholar
  54. Clegg AO, Ashton LJ, Biti RA, Badhwar P, Williamson P, Kaldor JM, Stewart GJ: CCR5 promoter polymorphisms, CCR5 59029A and CCR5 59353C, are under represented in HIV-1-infected long-term non-progressors. The Australian Long-Term Non-Progressor Study Group. AIDS. 2000, 14 (2): 103-108. 10.1097/00002030-200001280-00004.
    CAS PubMed Google Scholar
  55. Hladik F, Liu H, Speelmon E, Livingston-Rosanoff D, Wilson S, Sakchalathorn P, Hwangbo Y, Greene B, Zhu T, McElrath MJ: Combined effect of CCR5-Delta32 heterozygosity and the CCR5 promoter polymorphism -2459 A/G on CCR5 expression and resistance to human immunodeficiency virus type 1 transmission. J Virol. 2005, 79 (18): 11677-11684. 10.1128/JVI.79.18.11677-11684.2005.
    PubMed Central CAS PubMed Google Scholar
  56. Pastori C, Weiser B, Barassi C, Uberti-Foppa C, Ghezzi S, Longhi R, Calori G, Burger H, Kemal K, Poli G, Lazzarin A, Lopalco L: Long-lasting CCR5 internalization by antibodies in a subset of long-term nonprogressors: a possible protective effect against disease progression. Blood. 2006, 107 (12): 4825-4233. 10.1182/blood-2005-06-2463.
    PubMed Central CAS PubMed Google Scholar
  57. Bouhlal H, Latry V, Requena M, Aubry S, Kaveri SV, Kazatchkine MD, Belec L, Hocini H: Natural antibodies to CCR5 from breast milk block infection of macrophages and dendritic cells with primary R5-tropic HIV-1. J Immunol. 2005, 174 (11): 7202-7209.
    CAS PubMed Google Scholar
  58. Barassi C, Soprana E, Pastori C, Longhi R, Buratti E, Lillo F, Marenzi C, Lazzarin A, Siccardi AG, Lopalco L: Induction of murine mucosal CCR5-reactive antibodies as an anti-human immunodeficiency virus strategy. J Virol. 2005, 79 (11): 6848-6458. 10.1128/JVI.79.11.6848-6858.2005.
    PubMed Central CAS PubMed Google Scholar
  59. Ray N, Doms RW: HIV-1 coreceptors and their inhibitors. Curr Top Microbiol Immunol. 2006, 303: 97-120.
    CAS PubMed Google Scholar
  60. Kilby JM, Eron JJ: Novel therapies based on mechanisms of HIV-1 cell entry. N Engl J Med. 2003, 348 (22): 2228-2238. 10.1056/NEJMra022812.
    CAS PubMed Google Scholar
  61. Fatkenheuer G, Pozniak AL, Johnson MA, Plettenberg A, Staszewski S, Hoepelman AI, Saag MS, Goebel FD, Rockstroh JK, Dezube BJ, Jenkins TM, Medhurst C, Sullivan JF, Ridgway C, Abel S, James IT, Youle M, van der Ryst E: Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med. 2005, 11 (11): 1170-1172. 10.1038/nm1319.
    PubMed Google Scholar
  62. Smith MW, Carrington M, Winkler C, Lomb D, Dean M, Huttley G, O'Brien SJ: CCR2 chemokine receptor and AIDS progression. Nat Med. 1997, 3 (10): 1052-1053. 10.1038/nm1097-1052c.
    CAS PubMed Google Scholar
  63. Michael NL, Louie LG, Rohrbaugh AL, Schultz KA, Dayhoff DE, Wang CE, Sheppard HW: The role of CCR5 and CCR2 polymorphisms in HIV-1 transmission and disease progression. Nat Med. 1997, 3 (10): 1160-1162. 10.1038/nm1097-1160.
    CAS PubMed Google Scholar
  64. Lee B, Doranz BJ, Rana S, Yi Y, Mellado M, Frade JM, Martinez AC, O'Brien SJ, Dean M, Collman RG, Doms RW: Influence of the CCR2-V64I polymorphism on human immunodeficiency virus type 1 coreceptor activity and on chemokine receptor function of CCR2b, CCR3, CCR5, and CXCR4. J Virol. 1998, 72 (9): 7450-7458.
    PubMed Central CAS PubMed Google Scholar
  65. Mariani R, Wong S, Mulder LC, Wilkinson DA, Reinhart AL, LaRosa G, Nibbs R, O'Brien TR, Michael NL, Connor RI, Macdonald M, Busch M, Koup RA, Landau NR: CCR2-64I polymorphism is not associated with altered CCR5 expression or coreceptor function. J Virol. 1999, 73 (3): 2450-2459.
    PubMed Central CAS PubMed Google Scholar
  66. Nakayama EE, Tanaka Y, Nagai Y, Iwamoto A, Shioda T: A CCR2-V64I polymorphism affects stability of CCR2A isoform. AIDS. 2004, 18 (5): 729-738. 10.1097/00002030-200403260-00003.
    CAS PubMed Google Scholar
  67. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, de Ana AM, Martinez AC: Chemokine control of HIV-1 infection. Nature. 1999, 400 (6746): 723-724. 10.1038/23382.
    CAS PubMed Google Scholar
  68. Imai T, Hieshima K, Haskell C, Baba M, Nagira M, Nishimura M, Kakizaki M, Takagi S, Nomiyama H, Schall TJ, Yoshie O: Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 1997, 91 (4): 521-530. 10.1016/S0092-8674(00)80438-9.
    CAS PubMed Google Scholar
  69. Faure S, Meyer L, Costagliola D, Vaneensberghe C, Genin E, Autran B, Delfraissy JF, McDermott DH, Murphy PM, Debre P, Theodorou I, Combadiere C: Rapid progression to AIDS in HIV+ individuals with a structural variant of the chemokine receptor CX3CR1. Science. 2000, 287 (5461): 2274-2277. 10.1126/science.287.5461.2274.
    CAS PubMed Google Scholar
  70. Singh KK, Hughes MD, Chen J, Spector SA: Genetic polymorphisms in CX3CR1 predict HIV-1 disease progression in children independently of CD4+ lymphocyte count and HIV-1 RNA load. J Infect Dis. 2005, 191 (11): 1971-1980. 10.1086/430091.
    CAS PubMed Google Scholar
  71. Brumme ZL, Dong WW, Chan KJ, Hogg RS, Montaner JS, O'Shaughnessy MV, Harrigan PR: Influence of polymorphisms within the CX3CR1 and MDR-1 genes on initial antiretroviral therapy response. AIDS. 2003, 17 (2): 201-208. 10.1097/00002030-200301240-00010.
    CAS PubMed Google Scholar
  72. Vidal F, Vilades C, Domingo P, Broch M, Pedrol E, Dalmau D, Knobel H, Peraire J, Gutierrez C, Sambeat MA, Fontanet A, Deig E, Cairo M, Montero M, Richart C, Mallal S: Spanish HIV-1-infected long-term nonprogressors of more than 15 years have an increased frequency of the CX3CR1 249I variant allele. J Acquir Immune Defic Syndr. 2005, 40 (5): 527-531. 10.1097/01.qai.0000186362.50457.e0.
    CAS PubMed Google Scholar
  73. Kwa D, Boeser-Nunnink B, Schuitemaker H: Lack of evidence for an association between a polymorphism in CX3CR1 and the clinical course of HIV infection or virus phenotype evolution. AIDS. 2003, 17 (5): 759-761. 10.1097/00002030-200303280-00017.
    PubMed Google Scholar
  74. Puissant B, Roubinet F, Massip P, Sandres-Saune K, Apoil PA, Abbal M, Pasquier C, Izopet J, Blancher A: Analysis of CCR5, CCR2, CX3CR1, and SDF1 polymorphisms in HIV-positive treated patients: impact on response to HAART and on peripheral T lymphocyte counts. AIDS Res Hum Retroviruses. 2006, 22 (2): 153-162. 10.1089/aid.2006.22.153.
    CAS PubMed Google Scholar
  75. McDermott DH, Colla JS, Kleeberger CA, Plankey M, Rosenberg PS, Smith ED, Zimmerman PA, Combadiere C, Leitman SF, Kaslow RA, Goedert JJ, Berger EA, O'Brien TR, Murphy PM: Genetic polymorphism in CX3CR1 and risk of HIV disease. Science. 2000, 290 (5499): 2031-10.1126/science.290.5499.2031a.
    CAS PubMed Google Scholar
  76. Faure S, Meyer L, Genin E, Pellet P, Debre P, Theodorou I, Combadiere C: Deleterious genetic influence of CX3CR1 genotypes on HIV-1 disease progression. J Acquir Immune Defic Syndr. 2003, 32 (3): 335-337. 10.1097/00126334-200303010-00014.
    CAS PubMed Google Scholar
  77. Koot M, Keet IP, Vos AH, de Goede RE, Roos MT, Coutinho RA, Miedema F, Schellekens PT, Tersmette M: Prognostic value of HIV-1 syncytium-inducing phenotype for rate of CD4+ cell depletion and progression to AIDS. Ann Intern Med. 1993, 118 (9): 681-688.
    CAS PubMed Google Scholar
  78. Cheng-Mayer C, Seto D, Tateno M, Levy JA: Biologic features of HIV-1 that correlate with virulence in the host. Science. 1988, 240 (4848): 80-82. 10.1126/science.2832945.
    CAS PubMed Google Scholar
  79. Schuitemaker H, Koot M, Kootstra NA, Dercksen MW, de Goede RE, van Steenwijk RP, Lange JM, Schattenkerk JK, Miedema F, Tersmette M: Biological phenotype of human immunodeficiency virus type 1 clones at different stages of infection: progression of disease is associated with a shift from monocytotropic to T-cell-tropic virus population. J Virol. 1992, 66 (3): 1354-1360.
    PubMed Central CAS PubMed Google Scholar
  80. Ho SH, Shek L, Gettie A, Blanchard J, Cheng-Mayer C: V3 loop-determined coreceptor preference dictates the dynamics of CD4+-T-cell loss in simian-human immunodeficiency virus-infected macaques. J Virol. 2005, 79 (19): 12296-12303. 10.1128/JVI.79.19.12296-12303.2005.
    PubMed Central CAS PubMed Google Scholar
  81. Karlsson I, Antonsson L, Shi Y, Karlsson A, Albert J, Leitner T, Olde B, Owman C, Fenyo EM: HIV biological variability unveiled: frequent isolations and chimeric receptors reveal unprecedented variation of coreceptor use. AIDS. 2003, 17 (18): 2561-2569. 10.1097/00002030-200312050-00003.
    PubMed Google Scholar
  82. Lusso P: HIV and the chemokine system: 10 years later. Embo J. 2006, 25 (3): 447-456. 10.1038/sj.emboj.7600947.
    PubMed Central CAS PubMed Google Scholar
  83. Agace WW, Amara A, Roberts AI, Pablos JL, Thelen S, Uguccioni M, Li XY, Marsal J, Arenzana-Seisdedos F, Delaunay T, Ebert EC, Moser B, Parker CM: Constitutive expression of stromal derived factor-1 by mucosal epithelia and its role in HIV transmission and propagation. Curr Biol. 2000, 10 (6): 325-328. 10.1016/S0960-9822(00)00380-8.
    CAS PubMed Google Scholar
  84. Bunnik EM, Quakkelaar ED, van Nuenen AC, Boeser-Nunnink B, Schuitemaker H: Increased neutralization sensitivity of recently emerged CXCR4-using human immunodeficiency virus type 1 strains compared to coexisting CCR5-using variants from the same patient. J Virol. 2007, 81 (2): 525-531. 10.1128/JVI.01983-06.
    PubMed Central CAS PubMed Google Scholar
  85. Marodon G, Warren D, Filomio MC, Posnett DN: Productive infection of double-negative T cells with HIV in vivo. Proc Natl Acad Sci USA. 1999, 96 (21): 11958-11963. 10.1073/pnas.96.21.11958.
    PubMed Central CAS PubMed Google Scholar
  86. Menten P, Wuyts A, Van Damme J: Macrophage inflammatory protein-1. Cytokine Growth Factor Rev. 2002, 13 (6): 455-481. 10.1016/S1359-6101(02)00045-X.
    CAS PubMed Google Scholar
  87. Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P: Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science. 1995, 270 (5243): 1811-1815. 10.1126/science.270.5243.1811.
    CAS PubMed Google Scholar
  88. Ullum H, Cozzi Lepri A, Victor J, Aladdin H, Phillips AN, Gerstoft J, Skinhoj P, Pedersen BK: Production of beta-chemokines in human immunodeficiency virus (HIV) infection: evidence that high levels of macrophage inflammatory protein-1beta are associated with a decreased risk of HIV disease progression. J Infect Dis. 1998, 177 (2): 331-336.
    CAS PubMed Google Scholar
  89. Saha K, Bentsman G, Chess L, Volsky DJ: Endogenous production of beta-chemokines by CD4+, but not CD8+, T-cell clones correlates with the clinical state of human immunodeficiency virus type 1 (HIV-1)-infected individuals and may be responsible for blocking infection with non-syncytium-inducing HIV-1 in vitro. J Virol. 1998, 72 (1): 876-881.
    PubMed Central CAS PubMed Google Scholar
  90. Koning FA, Jansen CA, Dekker J, Kaslow RA, Dukers N, van Baarle D, Prins M, Schuitemaker H: Correlates of resistance to HIV-1 infection in homosexual men with high-risk sexual behaviour. AIDS. 2004, 18 (8): 1117-1126. 10.1097/00002030-200405210-00005.
    PubMed Google Scholar
  91. Saez-Cirion A, Versmisse P, Truong LX, Chakrabarti LA, Carpentier W, Barre-Sinoussi F, Scott-Algara D, Pancino G: Persistent resistance to HIV-1 infection in CD4 T cells from exposed uninfected Vietnamese individuals is mediated by entry and post-entry blocks. Retrovirology. 2006, 3: 81-10.1186/1742-4690-3-81.
    PubMed Central PubMed Google Scholar
  92. Amara A, Gall SL, Schwartz O, Salamero J, Montes M, Loetscher P, Baggiolini M, Virelizier JL, Arenzana-Seisdedos F: HIV coreceptor downregulation as antiviral principle: SDF-1alpha-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. J Exp Med. 1997, 186 (1): 139-146. 10.1084/jem.186.1.139.
    PubMed Central CAS PubMed Google Scholar
  93. Modi WS, Lautenberger J, An P, Scott K, Goedert JJ, Kirk GD, Buchbinder S, Phair J, Donfield S, O'Brien SJ, Winkler C: Genetic variation in the CCL18-CCL3-CCL4 chemokine gene cluster influences HIV Type 1 transmission and AIDS disease progression. Am J Hum Genet. 2006, 79 (1): 120-128. 10.1086/505331.
    PubMed Central CAS PubMed Google Scholar
  94. Vidal F, Peraire J, Domingo P, Broch M, Cairo M, Pedrol E, Montero M, Vilades C, Gutierrez C, Sambeat MA, Fontanet A, Dalmau D, Deig E, Knobel H, Sirvent JJ, Richart C, Veloso S, Saumoy M, Lopez-Dupla M, Olona M, Cadafalch J, Fuster M, Ochoa A, Soler A, Guelar A, Gonzalez J: Polymorphism of RANTES chemokine gene promoter is not associated with long-term nonprogressive HIV-1 infection of more than 16 years. J Acq ImM Def Syndr. 2006, 41 (1): 17-22. 10.1097/01.qai.0000188335.86466.ea.
    CAS Google Scholar
  95. Irving SG, Zipfel PF, Balke J, McBride OW, Morton CC, Burd PR, Siebenlist U, Kelly K: Two inflammatory mediator cytokine genes are closely linked and variably amplified on chromosome 17q. Nucleic Acids Res. 1990, 18 (11): 3261-3270. 10.1093/nar/18.11.3261.
    PubMed Central CAS PubMed Google Scholar
  96. Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs RJ, Freedman BI, Quinones MP, Bamshad MJ, Murthy KK, Rovin BH, Bradley W, Clark RA, Anderson SA, O'Connell R J, Agan BK, Ahuja SS, Bologna R, Sen L, Dolan MJ, Ahuja SK: The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science. 2005, 307 (5714): 1434-1440. 10.1126/science.1101160.
    CAS PubMed Google Scholar
  97. Colobran R, Adreani P, Ashhab Y, Llano A, Este JA, Dominguez O, Pujol-Borrell R, Juan M: Multiple products derived from two CCL4 loci: high incidence of a new polymorphism in HIV+ patients. J Immunol. 2005, 174 (9): 5655-5664.
    CAS PubMed Google Scholar
  98. Gallo RC, Garzino-Demo A, DeVico AL: HIV infection and pathogenesis: what about chemokines?. J Clin Immunol. 1999, 19 (5): 293-299. 10.1023/A:1020539524373.
    CAS PubMed Google Scholar
  99. Zagury D, Lachgar A, Chams V, Fall LS, Bernard J, Zagury JF, Bizzini B, Gringeri A, Santagostino E, Rappaport J, Feldman M, O'Brien SJ, Burny A, Gallo RC: C-C chemokines, pivotal in protection against HIV type 1 infection. Proc Natl Acad Sci U S A. 1998, 95 (7): 3857-3861. 10.1073/pnas.95.7.3857.
    PubMed Central CAS PubMed Google Scholar
  100. Liu H, Chao D, Nakayama EE, Taguchi H, Goto M, Xin X, Takamatsu JK, Saito H, Ishikawa Y, Akaza T, Juji T, Takebe Y, Ohishi T, Fukutake K, Maruyama Y, Yashiki S, Sonoda S, Nakamura T, Nagai Y, Iwamoto A, Shioda T: Polymorphism in RANTES chemokine promoter affects HIV-1 disease progression. Proc Natl Acad Sci U S A. 1999, 96 (8): 4581-4585. 10.1073/pnas.96.8.4581.
    PubMed Central CAS PubMed Google Scholar
  101. Wichukchinda N, Nakayama EE, Rojanawiwat A, Pathipvanich P, Auwanit W, Vongsheree S, Ariyoshi K, Sawanpanyalert P, Shioda T: Protective effects of IL4-589T and RANTES-28G on HIV-1 disease progression in infected Thai females. AIDS. 2006, 20 (2): 189-196. 10.1097/01.aids.0000199830.64735.6f.
    CAS PubMed Google Scholar
  102. Zhao XY, Lee SS, Wong KH, Chan KC, Ma S, Yam WC, Yuen KY, Ng MH, Zheng BJ: Effects of single nucleotide polymorphisms in the RANTES promoter region in healthy and HIV-infected indigenous Chinese. Eur J Immunogenet. 2004, 31 (4): 179-183. 10.1111/j.1365-2370.2004.00466.x.
    CAS PubMed Google Scholar
  103. McDermott DH, Beecroft MJ, Kleeberger CA, Al-Sharif FM, Ollier WE, Zimmerman PA, Boatin BA, Leitman SF, Detels R, Hajeer AH, Murphy PM: Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. Aids. 2000, 14 (17): 2671-2678. 10.1097/00002030-200012010-00006.
    CAS PubMed Google Scholar
  104. Fernandez RM, Borrego S, Marcos I, Rubio A, Lissen E, Antinolo G: Fluorescence resonance energy transfer analysis of the RANTES polymorphisms -403G --> A and -28G --> C: evaluation of both variants as susceptibility factors to HIV type 1 infection in the Spanish population. AIDS Res Hum Retroviruses. 2003, 19 (5): 349-352. 10.1089/088922203765551692.
    CAS PubMed Google Scholar
  105. Winkler C, An P, O'Brien SJ: Patterns of ethnic diversity among the genes that influence AIDS. Hum Mol Genet. 2004, 13 Spec No 1: R9-19. 10.1093/hmg/ddh075.
    PubMed Google Scholar
  106. An P, Nelson GW, Donfield S, Goederrt JJ, Phair J, Vlahov D, Buchbinder S, Farrar WL, Modi W, O'Brien S J, Winkler CA: Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl Acad Sci USA. 2002, 99 (15): 10002-10007. 10.1073/pnas.142313799.
    PubMed Central CAS PubMed Google Scholar
  107. Bleul CC, Farzan M, Choe H, Parolin C, Clark-Lewis I, Sodroski J, Springer TA: The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature. 1996, 382 (6594): 829-833. 10.1038/382829a0.
    CAS PubMed Google Scholar
  108. Oberlin E, Amara A, Bachelerie F, Bessia C, Virelizier JL, Arenzana-Seisdedos F, Schwartz O, Heard JM, Clark-Lewis I, Legler DF, Loetscher M, Baggiolini M, Moser B: The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996, 382 (6594): 833-835. 10.1038/382833a0.
    CAS PubMed Google Scholar
  109. Signoret N, Oldridge J, Pelchen-Matthews A, Klasse PJ, Tran T, Brass LF, Rosenkilde MM, Schwartz TW, Holmes W, Dallas W, Luther MA, Wells TN, Hoxie JA, Marsh M: Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J Cell Biol. 1997, 139 (3): 651-664. 10.1083/jcb.139.3.651.
    PubMed Central CAS PubMed Google Scholar
  110. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T, Bronson RT, Springer TA: Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA. 1998, 95 (16): 9448-9453. 10.1073/pnas.95.16.9448.
    PubMed Central CAS PubMed Google Scholar
  111. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T: Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996, 382 (6592): 635-638. 10.1038/382635a0.
    CAS PubMed Google Scholar
  112. Arya SK, Ginsberg CC, Davis-Warren A, D'Costa J: In vitro phenotype of SDF1 gene mutant that delays the onset of human immunodeficiency virus disease in vivo. J Hum Virol. 1999, 2 (3): 133-138.
    CAS PubMed Google Scholar
  113. Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M, Dean M, Honjo T, Tashiro K, Yabe D, Buchbinder S, Vittinghoff E, Goedert JJ, O'Brien TR, Jacobson LP, Detels R, Donfield S, Willoughby A, Gomperts E, Vlahov D, Phair J, O'Brien SJ: Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science. 1998, 279 (5349): 389-393. 10.1126/science.279.5349.389.
    CAS PubMed Google Scholar
  114. Hendel H, Henon N, Lebuanec H, Lachgar A, Poncelet H, Caillat-Zucman S, Winkler CA, Smith MW, Kenefic L, O'Brien S, Lu W, Andrieu JM, Zagury D, Schachter F, Rappaport J, Zagury JF: Distinctive effects of CCR5, CCR2, and SDF1 genetic polymorphisms in AIDS progression. J Acquir Immune Defic Syndr Hum Retrovirol. 1998, 19 (4): 381-386.
    CAS PubMed Google Scholar
  115. Ioannidis JP, Rosenberg PS, Goedert JJ, Ashton LJ, Benfield TL, Buchbinder SP, Coutinho RA, Eugen-Olsen J, Gallart T, Katzenstein TL, Kostrikis LG, Kuipers H, Louie LG, Mallal SA, Margolick JB, Martinez OP, Meyer L, Michael NL, Operskalski E, Pantaleo G, Rizzardi GP, Schuitemaker H, Sheppard HW, Stewart GJ, Theodorou ID, Ullum H, Vicenzi E, Vlahov D, Wilkinson D, Workman C, Zagury JF, O'Brien TR: Effects of CCR5-Delta32, CCR2-64I, and SDF-1 3'A alleles on HIV-1 disease progression: An international meta-analysis of individual-patient data. Ann Intern Med. 2001, 135 (9): 782-795.
    CAS PubMed Google Scholar
  116. Magierowska M, Lepage V, Lien TX, Lan NT, Guillotel M, Issafras H, Reynes JM, Fleury HJ, Chi NH, Follezou JY, Debre P, Theodorou I, Barre-Sinoussi F: Novel variant of the CCR5 gene in a Vietnamese population. Microbes Infect. 1999, 1 (2): 123-124. 10.1016/S1286-4579(99)80002-1.
    CAS PubMed Google Scholar
  117. Petersen DC, Glashoff RH, Shrestha S, Bergeron J, Laten A, Gold B, van Rensburg EJ, Dean M, Hayes VM: Risk for HIV-1 infection associated with a common CXCL12 (SDF1) polymorphism and CXCR4 variation in an African population. J Acquir Immune Defic Syndr. 2005, 40 (5): 521-526. 10.1097/01.qai.0000186360.42834.28.
    PubMed Central CAS PubMed Google Scholar
  118. Modi WS, Goedert JJ, Strathdee S, Buchbinder S, Detels R, Donfield S, O'Brien SJ, Winkler C: MCP-1-MCP-3-Eotaxin gene cluster influences HIV-1 transmission. AIDS. 2003, 17 (16): 2357-2365. 10.1097/00002030-200311070-00011.
    CAS PubMed Google Scholar
  119. Ji X, Gewurz H, Spear GT: Mannose binding lectin (MBL) and HIV. Mol Immunol. 2005, 42 (2): 145-152. 10.1016/j.molimm.2004.06.015.
    CAS PubMed Google Scholar
  120. Turville S, Wilkinson J, Cameron P, Dable J, Cunningham AL: The role of dendritic cell C-type lectin receptors in HIV pathogenesis. J Leukoc Biol. 2003, 74 (5): 710-718. 10.1189/jlb.0503208.
    CAS PubMed Google Scholar
  121. Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR: DC-SIGN-mediated internalization of HIV is required for trans- enhancement of T cell infection. Immunity. 2002, 16 (1): 135-144. 10.1016/S1074-7613(02)00259-5.
    CAS PubMed Google Scholar
  122. Burleigh L, Lozach PY, Schiffer C, Staropoli I, Pezo V, Porrot F, Canque B, Virelizier JL, Arenzana-Seisdedos F, Amara A: Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J Virol. 2006, 80 (6): 2949-2957. 10.1128/JVI.80.6.2949-2957.2006.
    PubMed Central CAS PubMed Google Scholar
  123. Martin MP, Lederman MM, Hutcheson HB, Goedert JJ, Nelson GW, van Kooyk Y, Detels R, Buchbinder S, Hoots K, Vlahov D, O'Brien SJ, Carrington M: Association of DC-SIGN promoter polymorphism with increased risk for parenteral, but not mucosal, acquisition of human immunodeficiency virus type 1 infection. J Virol. 2004, 78 (24): 14053-14056. 10.1128/JVI.78.24.14053-14056.2004.
    PubMed Central CAS PubMed Google Scholar
  124. Gramberg T, Zhu T, Chaipan C, Marzi A, Liu H, Wegele A, Andrus T, Hofmann H, Pohlmann S: Impact of polymorphisms in the DC-SIGNR neck domain on the interaction with pathogens. Virology. 2006, 347 (2): 354-363. 10.1016/j.virol.2005.11.033.
    CAS PubMed Google Scholar
  125. Liu H, Hwangbo Y, Holte S, Lee J, Wang C, Kaupp N, Zhu H, Celum C, Corey L, McElrath MJ, Zhu T: Analysis of genetic polymorphisms in CCR5, CCR2, stromal cell-derived factor-1, RANTES, and dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin in seronegative individuals repeatedly exposed to HIV-1. J Infect Dis. 2004, 190 (6): 1055-1058. 10.1086/423209.
    CAS PubMed Google Scholar
  126. Santos PR, Michel-Salzat A, Butor C: Chimpanzee DC-SIGN alleles predict the existence of A and B isoforms, but do not support a role for resistance to HIV infection. AIDS Res Hum Retroviruses. 2005, 21 (9): 820-829. 10.1089/aid.2005.21.820.
    CAS PubMed Google Scholar
  127. Fahrbach KM, Barry SM, Ayehunie S, Lamore S, Klausner M, Hope TJ: Activated CD34-Derived Langerhans Cells Mediate Transinfection with Human Immunodeficiency Virus. J Virol. 2007, 81 (13): 6858-6868. 10.1128/JVI.02472-06.
    PubMed Central CAS PubMed Google Scholar
  128. de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TB: Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med. 2007, 13 (3): 367-371. 10.1038/nm1541.
    CAS PubMed Google Scholar
  129. Schwartz O: Langerhans cells lap up HIV-1. Nat Med. 2007, 13 (3): 245-246. 10.1038/nm0307-245.
    CAS PubMed Google Scholar
  130. Verdijk P, Dijkman R, Plasmeijer EI, Mulder AA, Zoutman WH, Mieke Mommaas A, Tensen CP: A lack of Birbeck granules in Langerhans cells is associated with a naturally occurring point mutation in the human Langerin gene. J Invest Dermatol. 2005, 124 (4): 714-717. 10.1111/j.0022-202X.2005.23645.x.
    CAS PubMed Google Scholar
  131. Daher KA, Selsted ME, Lehrer RI: Direct inactivation of viruses by human granulocyte defensins. J Virol. 1986, 60 (3): 1068-1074.
    PubMed Central CAS PubMed Google Scholar
  132. Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI: Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 1985, 76 (4): 1427-1435.
    PubMed Central CAS PubMed Google Scholar
  133. Cole AM, Ganz T: Human antimicrobial peptides: analysis and application. Biotechniques. 2000, 29 (4): 822-6, 828, 830-1.
    CAS PubMed Google Scholar
  134. Jenssen H, Hamill P, Hancock RE: Peptide antimicrobial agents. Clin Microbiol Rev. 2006, 19 (3): 491-511. 10.1128/CMR.00056-05.
    PubMed Central CAS PubMed Google Scholar
  135. Klotman ME, Chang TL: Defensins in innate antiviral immunity. Nat Rev Immunol. 2006, 6 (6): 447-456. 10.1038/nri1860.
    CAS PubMed Google Scholar
  136. Nakashima H, Yamamoto N, Masuda M, Fujii N: Defensins inhibit HIV replication in vitro. AIDS. 1993, 7 (8): 1129-10.1097/00002030-199308000-00019.
    CAS PubMed Google Scholar
  137. Tang YQ, Yuan J, Osapay G, Osapay K, Tran D, Miller CJ, Ouellette AJ, Selsted ME: A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science. 1999, 286 (5439): 498-502. 10.1126/science.286.5439.498.
    CAS PubMed Google Scholar
  138. Cole AM, Lehrer RI: Minidefensins: antimicrobial peptides with activity against HIV-1. Curr Pharm Des. 2003, 9 (18): 1463-1473. 10.2174/1381612033454667.
    CAS PubMed Google Scholar
  139. Cole AM, Hong T, Boo LM, Nguyen T, Zhao C, Bristol G, Zack JA, Waring AJ, Yang OO, Lehrer RI: Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc Natl Acad Sci USA. 2002, 99 (4): 1813-1818. 10.1073/pnas.052706399.
    PubMed Central CAS PubMed Google Scholar
  140. Gallo SA, Wang W, Rawat SS, Jung G, Waring AJ, Cole AM, Lu H, Yan X, Daly NL, Craik DJ, Jiang S, Lehrer RI, Blumenthal R: Theta-defensins prevent HIV-1 Env-mediated fusion by binding gp41 and blocking 6-helix bundle formation. J Biol Chem. 2006, 281 (27): 18787-18792. 10.1074/jbc.M602422200.
    CAS PubMed Google Scholar
  141. Furci L, Sironi F, Tolazzi M, Vassena L, Lusso P: Alpha-defensins block the early steps of HIV-1 infection: interference with the binding of gp120 to CD4. Blood. 2007, 109 (7): 2928-2935.
    CAS PubMed Google Scholar
  142. Chang TL, Vargas J, DelPortillo A, Klotman ME: Dual role of alpha-defensin-1 in anti-HIV-1 innate immunity. J Clin Invest. 2005, 115 (3): 765-773. 10.1172/JCI200521948.
    PubMed Central CAS PubMed Google Scholar
  143. Zhang L, Yu W, He T, Yu J, Caffrey RE, Dalmasso EA, Fu S, Pham T, Mei J, Ho JJ, Zhang W, Lopez P, Ho DD: Contribution of Human alpha -Defensin 1, 2, and 3 to the Anti-HIV-1 Activity of CD8 Antiviral Factor. Science. 2002, 298 (5595): 995-1000. 10.1126/science.1076185.
    CAS PubMed Google Scholar
  144. Walker CM, Moody DJ, Stites DP, Levy JA: CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science. 1986, 234 (4783): 1563-1566. 10.1126/science.2431484.
    CAS PubMed Google Scholar
  145. Levy JA: The search for the CD8+ cell anti-HIV factor (CAF). Trends Immunol. 2003, 24 (12): 628-632. 10.1016/j.it.2003.10.005.
    CAS PubMed Google Scholar
  146. Mackewicz CE, Yuan J, Tran P, Diaz L, Mack E, Selsted ME, Levy JA: alpha-Defensins can have anti-HIV activity but are not CD8 cell anti-HIV factors. AIDS. 2003, 17 (14): F23-32. 10.1097/00002030-200309260-00001.
    CAS PubMed Google Scholar
  147. Schutte BC, Mitros JP, Bartlett JA, Walters JD, Jia HP, Welsh MJ, Casavant TL, McCray PB: Discovery of five conserved beta -defensin gene clusters using a computational search strategy. Proc Natl Acad Sci USA. 2002, 99 (4): 2129-2133. 10.1073/pnas.042692699.
    PubMed Central CAS PubMed Google Scholar
  148. Weinberg A, Quinones-Mateu ME, Lederman MM: Role of human beta-defensins in HIV infection. Adv Dent Res. 2006, 19 (1): 42-48.
    CAS PubMed Google Scholar
  149. Sun L, Finnegan CM, Kish-Catalone T, Blumenthal R, Garzino-Demo P, La Terra Maggiore GM, Berrone S, Kleinman C, Wu Z, Abdelwahab S, Lu W, Garzino-Demo A: Human beta-defensins suppress human immunodeficiency virus infection: potential role in mucosal protection. J Virol. 2005, 79 (22): 14318-14329. 10.1128/JVI.79.22.14318-14329.2005.
    PubMed Central CAS PubMed Google Scholar
  150. Feng Z, Dubyak GR, Lederman MM, Weinberg A: Cutting edge: human beta defensin 3--a novel antagonist of the HIV-1 coreceptor CXCR4. J Immunol. 2006, 177 (2): 782-786.
    CAS PubMed Google Scholar
  151. Quinones-Mateu ME, Lederman MM, Feng Z, Chakraborty B, Weber J, Rangel HR, Marotta ML, Mirza M, Jiang B, Kiser P, Medvik K, Sieg SF, Weinberg A: Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS. 2003, 17 (16): F39-48. 10.1097/00002030-200311070-00001.
    CAS PubMed Google Scholar
  152. Sun L, Demasi L, Lafferty M, Goicochea M, Lu W, Garzino-Demo A: CCR6 mediates the intracellular HIV inhibitory activity of human beta-defensin 2. Retrovirology. 2006, 3 Suppl 1: S77-10.1186/1742-4690-3-S1-S77.
    Google Scholar
  153. Armogida SA, Yannaras NM, Melton AL, Srivastava MD: Identification and quantification of innate immune system mediators in human breast milk. Allergy Asthma Proc. 2004, 25 (5): 297-304.
    CAS PubMed Google Scholar
  154. Jia HP, Starner T, Ackermann M, Kirby P, Tack BF, McCray PB: Abundant human beta-defensin-1 expression in milk and mammary gland epithelium. J Pediatr. 2001, 138 (1): 109-112. 10.1067/mpd.2001.109375.
    CAS PubMed Google Scholar
  155. Kuhn L, Trabattoni D, Kankasa C, Semrau K, Kasonde P, Lissoni F, Sinkala M, Ghosh M, Vwalika C, Aldrovandi GM, Thea DM, Clerici M: Alpha-defensins in the prevention of HIV transmission among breastfed infants. J Acquir Immune Defic Syndr. 2005, 39 (2): 138-142.
    PubMed Central CAS PubMed Google Scholar
  156. Braida L, Boniotto M, Pontillo A, Tovo PA, Amoroso A, Crovella S: A single-nucleotide polymorphism in the human beta-defensin 1 gene is associated with HIV-1 infection in Italian children. AIDS. 2004, 18 (11): 1598-1600. 10.1097/01.aids.0000131363.82951.fb.
    PubMed Google Scholar
  157. Segat L, Milanese M, Boniotto M, Crovella S, Bernardon M, Costantini M, Alberico S: DEFB-1 genetic polymorphism screening in HIV-1 positive pregnant women and their children. J Matern Fetal Neonatal Med. 2006, 19 (1): 13-16. 10.1080/14767050500381123.
    CAS PubMed Google Scholar
  158. Milanese M, Segat L, Pontillo A, Arraes LC, de Lima Filho JL, Crovella S: DEFB1 gene polymorphisms and increased risk of HIV-1 infection in Brazilian children. AIDS. 2006, 20 (12): 1673-1675. 10.1097/01.aids.0000238417.05819.40.
    CAS PubMed Google Scholar
  159. Trabattoni D, Caputo SL, Maffeis G, Vichi F, Biasin M, Pierotti P, Fasano F, Saresella M, Franchini M, Ferrante P, Mazzotta F, Clerici M: Human alpha defensin in HIV-exposed but uninfected individuals. J Acquir Immune Defic Syndr. 2004, 35 (5): 455-463. 10.1097/00126334-200404150-00003.
    CAS PubMed Google Scholar
  160. Aldred PM, Hollox EJ, Armour JA: Copy number polymorphism and expression level variation of the human alpha-defensin genes DEFA1 and DEFA3. Hum Mol Genet. 2005, 14 (14): 2045-2052. 10.1093/hmg/ddi209.
    CAS PubMed Google Scholar
  161. Hollox EJ, Armour JA, Barber JC: Extensive normal copy number variation of a beta-defensin antimicrobial-gene cluster. Am J Hum Genet. 2003, 73 (3): 591-600. 10.1086/378157.
    PubMed Central CAS PubMed Google Scholar
  162. Mars WM, Patmasiriwat P, Maity T, Huff V, Weil MM, Saunders GF: Inheritance of unequal numbers of the genes encoding the human neutrophil defensins HP-1 and HP-3. J Biol Chem. 1995, 270 (51): 30371-30376. 10.1074/jbc.270.51.30371.
    CAS PubMed Google Scholar
  163. Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW: Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984, 226 (4674): 544-547. 10.1126/science.6238408.
    CAS PubMed Google Scholar
  164. Sandstrom EG, Kaplan JC: Antiviral therapy in AIDS. Clinical pharmacological properties and therapeutic experience to date. Drugs. 1987, 34 (3): 372-390.
    CAS PubMed Google Scholar
  165. Klatzmann D, Laporte JP, Achour A, Brisson E, Gruest J, Montagnier L, Gluckman JC: Functional inhibition by cyclosporin A of the lymphocyte receptor for the AIDS virus (HIV). C R Acad Sci III. 1986, 303 (9): 343-348.
    CAS PubMed Google Scholar
  166. Luban J, Bossolt KL, Franke EK, Kalpana GV, Goff SP: Human immunodeficiency virus type 1 Gag protein binds to cyclophilins A and B. Cell. 1993, 73 (6): 1067-1078. 10.1016/0092-8674(93)90637-6.
    CAS PubMed Google Scholar
  167. Franke EK, Yuan HE, Luban J: Specific incorporation of cyclophilin A into HIV-1 virions. Nature. 1994, 372 (6504): 359-362. 10.1038/372359a0.
    CAS PubMed Google Scholar
  168. Ott DE, Coren LV, Johnson DG, Sowder RC, Arthur LO, Henderson LE: Analysis and localization of cyclophilin A found in the virions of human immunodeficiency virus type 1 MN strain. AIDS Res Hum Retroviruses. 1995, 11 (9): 1003-1006.
    CAS PubMed Google Scholar
  169. Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Gottlinger HG: Functional association of cyclophilin A with HIV-1 virions. Nature. 1994, 372 (6504): 363-365. 10.1038/372363a0.
    CAS PubMed Google Scholar
  170. Besnier C, Takeuchi Y, Towers G: Restriction of lentivirus in monkeys. Proc Natl Acad Sci USA. 2002, 99 (18): 11920-11925. 10.1073/pnas.172384599.
    PubMed Central CAS PubMed Google Scholar
  171. Cowan S, Hatziioannou T, Cunningham T, Muesing MA, Gottlinger HG, Bieniasz PD: Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proc Natl Acad Sci USA. 2002, 99 (18): 11914-11919. 10.1073/pnas.162299499.
    PubMed Central CAS PubMed Google Scholar
  172. Munk C, Brandt SM, Lucero G, Landau NR: A dominant block to HIV-1 replication at reverse transcription in simian cells. Proc Natl Acad Sci USA. 2002, 99 (21): 13843-13848. 10.1073/pnas.212400099.
    PubMed Central CAS PubMed Google Scholar
  173. Hatziioannou T, Perez-Caballero D, Cowan S, Bieniasz PD: Cyclophilin interactions with incoming human immunodeficiency virus type 1 capsids with opposing effects on infectivity in human cells. J Virol. 2005, 79 (1): 176-183. 10.1128/JVI.79.1.176-183.2005.
    PubMed Central CAS PubMed Google Scholar
  174. Sokolskaja E, Sayah DM, Luban J: Target cell cyclophilin A modulates human immunodeficiency virus type 1 infectivity. J Virol. 2004, 78 (23): 12800-12808. 10.1128/JVI.78.23.12800-12808.2004.
    PubMed Central CAS PubMed Google Scholar
  175. Luban J: Cyclophilin A, TRIM5, and Resistance to HIV-1 Infection. J Virol. 2006, 81 (3): 1054-1061. 10.1128/JVI.01519-06.
    PubMed Central PubMed Google Scholar
  176. Fischer G, Tradler T, Zarnt T: The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. FEBS Lett. 1998, 426 (1): 17-20. 10.1016/S0014-5793(98)00242-7.
    CAS PubMed Google Scholar
  177. Coaker G, Falick A, Staskawicz B: Activation of a phytopathogenic bacterial effector protein by a eukaryotic cyclophilin. Science. 2005, 308 (5721): 548-550. 10.1126/science.1108633.
    CAS PubMed Google Scholar
  178. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J: The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature. 2004, 427 (6977): 848-853. 10.1038/nature02343.
    CAS PubMed Google Scholar
  179. Keckesova Z, Ylinen LM, Towers GJ: Cyclophilin A renders human immunodeficiency virus type 1 sensitive to Old World monkey but not human TRIM5 alpha antiviral activity. J Virol. 2006, 80 (10): 4683-4690. 10.1128/JVI.80.10.4683-4690.2006.
    PubMed Central CAS PubMed Google Scholar
  180. Sokolskaja E, Berthoux L, Luban J: Cyclophilin A and TRIM5alpha independently regulate human immunodeficiency virus type 1 infectivity in human cells. J Virol. 2006, 80 (6): 2855-2862. 10.1128/JVI.80.6.2855-2862.2006.
    PubMed Central CAS PubMed Google Scholar
  181. Stremlau M, Song B, Javanbakht H, Perron M, Sodroski J: Cyclophilin A: an auxiliary but not necessary cofactor for TRIM5alpha restriction of HIV-1. Virology. 2006, 351 (1): 112-120.
    CAS PubMed Google Scholar
  182. Speelmon EC, Livingston-Rosanoff D, Li SS, Vu Q, Bui J, Geraghty DE, Zhao LP, McElrath MJ: Genetic association of the antiviral restriction factor TRIM5alpha with human immunodeficiency virus type 1 infection. J Virol. 2006, 80 (5): 2463-2471. 10.1128/JVI.80.5.2463-2471.2006.
    PubMed Central CAS PubMed Google Scholar
  183. Javanbakht H, An P, Gold B, Petersen DC, O'Huigin C, Nelson GW, O'Brien SJ, Kirk GD, Detels R, Buchbinder S, Donfield S, Shulenin S, Song B, Perron MJ, Stremlau M, Sodroski J, Dean M, Winkler C: Effects of human TRIM5alpha polymorphisms on antiretroviral function and susceptibility to human immunodeficiency virus infection. Virology. 2006, 354 (1): 15-27. 10.1016/j.virol.2006.06.031.
    CAS PubMed Google Scholar
  184. Goldschmidt V, Bleiber G, May M, Martinez R, Ortiz M, Telenti A: Role of common human TRIM5alpha variants in HIV-1 disease progression. Retrovirology. 2006, 3: 54-10.1186/1742-4690-3-54.
    PubMed Central PubMed Google Scholar
  185. Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK, Watt IN, Neuberger MS, Malim MH: DNA deamination mediates innate immunity to retroviral infection. Cell. 2003, 113 (6): 803-809. 10.1016/S0092-8674(03)00423-9.
    CAS PubMed Google Scholar
  186. Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D: Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature. 2003, 424 (6944): 99-103. 10.1038/nature01709.
    CAS PubMed Google Scholar
  187. Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L: The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature. 2003, 424 (6944): 94-98. 10.1038/nature01707.
    PubMed Central CAS PubMed Google Scholar
  188. Lecossier D, Bouchonnet F, Clavel F, Hance AJ: Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science. 2003, 300 (5622): 1112-10.1126/science.1083338.
    CAS PubMed Google Scholar
  189. Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, Munk C, Nymark-McMahon H, Landau NR: Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell. 2003, 114 (1): 21-31. 10.1016/S0092-8674(03)00515-4.
    CAS PubMed Google Scholar
  190. Yu Q, Konig R, Pillai S, Chiles K, Kearney M, Palmer S, Richman D, Coffin JM, Landau NR: Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat Struct Mol Biol. 2004, 11 (5): 435-442. 10.1038/nsmb758.
    CAS PubMed Google Scholar
  191. Turelli P, Mangeat B, Jost S, Vianin S, Trono D: Inhibition of hepatitis B virus replication by APOBEC3G. Science. 2004, 303 (5665): 1829-10.1126/science.1092066.
    PubMed Google Scholar
  192. Newman EN, Holmes RK, Craig HM, Klein KC, Lingappa JR, Malim MH, Sheehy AM: Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr Biol. 2005, 15 (2): 166-170. 10.1016/j.cub.2004.12.068.
    CAS PubMed Google Scholar
  193. Chiu YL, Witkowska HE, Hall SC, Santiago M, Soros VB, Esnault C, Heidmann T, Greene WC: High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition. Proc Natl Acad Sci USA. 2006, 103 (42): 15588-15593. 10.1073/pnas.0604524103.
    PubMed Central CAS PubMed Google Scholar
  194. Schumacher AJ, Nissley DV, Harris RS: APOBEC3G hypermutates genomic DNA and inhibits Ty1 retrotransposition in yeast. Proc Natl Acad Sci USA. 2005, 102 (28): 9854-9859. 10.1073/pnas.0501694102.
    PubMed Central CAS PubMed Google Scholar
  195. Esnault C, Heidmann O, Delebecque F, Dewannieux M, Ribet D, Hance AJ, Heidmann T, Schwartz O: APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature. 2005, 433 (7024): 430-433. 10.1038/nature03238.
    CAS PubMed Google Scholar
  196. Gu Y, Kodama H, Watanabe S, Kikuchi N, Ishitsuka I, Ozawa H, Fujisawa C, Shiga K: The first reported case of Menkes disease caused by an Alu insertion mutation. Brain Dev. 2007, 29 (2): 105-108. 10.1016/j.braindev.2006.05.012.
    PubMed Google Scholar
  197. Deininger PL, Batzer MA: Alu repeats and human disease. Mol Genet Metab. 1999, 67 (3): 183-193. 10.1006/mgme.1999.2864.
    CAS PubMed Google Scholar
  198. Apoil PA, Kuhlein E, Robert A, Rubie H, Blancher A: HIGM syndrome caused by insertion of an AluYb8 element in exon 1 of the CD40LG gene. Immunogenetics. 2007, 59 (1): 17-23. 10.1007/s00251-006-0175-5.
    CAS PubMed Google Scholar
  199. Marin M, Rose KM, Kozak SL, Kabat D: HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med. 2003, 9 (11): 1398-1403. 10.1038/nm946.
    CAS PubMed Google Scholar
  200. Yu X, Yu Y, Liu B, Luo K, Kong W, Mao P, Yu XF: Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex. Science. 2003, 302 (5647): 1056-1060. 10.1126/science.1089591.
    CAS PubMed Google Scholar
  201. Mehle A, Strack B, Ancuta P, Zhang C, McPike M, Gabuzda D: Vif overcomes the innate antiviral activity of APOBEC3G by promoting its degradation in the ubiquitin-proteasome pathway. J Biol Chem. 2004, 279 (9): 7792-7798. 10.1074/jbc.M313093200.
    CAS PubMed Google Scholar
  202. Mehle A, Goncalves J, Santa-Marta M, McPike M, Gabuzda D: Phosphorylation of a novel SOCS-box regulates assembly of the HIV-1 Vif-Cul5 complex that promotes APOBEC3G degradation. Genes Dev. 2004, 18 (23): 2861-2866. 10.1101/gad.1249904.
    PubMed Central CAS PubMed Google Scholar
  203. Hassaine G, Agostini I, Candotti D, Bessou G, Caballero M, Agut H, Autran B, Barthalay Y, Vigne R: Characterization of human immunodeficiency virus type 1 vif gene in long-term asymptomatic individuals. Virology. 2000, 276 (1): 169-180. 10.1006/viro.2000.0543.
    CAS PubMed Google Scholar
  204. Alexander L, Aquino-DeJesus M, Chan M, Andiman WA: Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by two-amino-acid insertion in HIV-1 vif from nonprogressing mother and child. J Virol. 2002, 76 (20): 10533-10539. 10.1128/JVI.76.20.10533-10539.2002.
    PubMed Central CAS PubMed Google Scholar
  205. Farrow MA, Somasundaran M, Zhang C, Gabuzda D, Sullivan JL, Greenough TC: Nuclear localization of HIV type 1 Vif isolated from a long-term asymptomatic individual and potential role in virus attenuation. AIDS Res Hum Retroviruses. 2005, 21 (6): 565-574. 10.1089/aid.2005.21.565.
    CAS PubMed Google Scholar
  206. An P, Bleiber G, Duggal P, Nelson G, May M, Mangeat B, Alobwede I, Trono D, Vlahov D, Donfield S, Goedert JJ, Phair J, Buchbinder S, O'Brien SJ, Telenti A, Winkler CA: APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol. 2004, 78 (20): 11070-11076. 10.1128/JVI.78.20.11070-11076.2004.
    PubMed Central CAS PubMed Google Scholar
  207. Do H, Vasilescu A, Diop G, Hirtzig T, Heath SC, Coulonges C, Rappaport J, Therwath A, Lathrop M, Matsuda F, Zagury JF: Exhaustive genotyping of the CEM15 (APOBEC3G) gene and absence of association with AIDS progression in a French cohort. J Infect Dis. 2005, 191 (2): 159-163. 10.1086/426826.
    CAS PubMed Google Scholar
  208. Valcke HS, Bernard NF, Bruneau J, Alary M, Tsoukas CM, Roger M: APOBEC3G genetic variants and their association with risk of HIV infection in highly exposed Caucasians. AIDS. 2006, 20 (15): 1984-1986. 10.1097/01.aids.0000247124.35129.e1.
    CAS PubMed Google Scholar
  209. Jin X, Brooks A, Chen H, Bennett R, Reichman R, Smith H: APOBEC3G/CEM15 (hA3G) mRNA levels associate inversely with human immunodeficiency virus viremia. J Virol. 2005, 79 (17): 11513-11516. 10.1128/JVI.79.17.11513-11516.2005.
    PubMed Central CAS PubMed Google Scholar
  210. An P, Duggal P, Wang LH, O'Brien SJ, Donfield S, Goedert JJ, Phair J, Buchbinder S, Kirk GD, Winkler CA: Polymorphisms of CUL5 are associated with CD4+ T cell loss in HIV-1 infected individuals. PLoS Genet. 2007, 3 (1): e19-10.1371/journal.pgen.0030019.
    PubMed Central PubMed Google Scholar
  211. Varthakavi V, Smith RM, Bour SP, Strebel K, Spearman P: Viral protein U counteracts a human host cell restriction that inhibits HIV-1 particle production. Proc Natl Acad Sci USA. 2003, 100 (25): 15154-15159. 10.1073/pnas.2433165100.
    PubMed Central CAS PubMed Google Scholar
  212. Neil SJ, Eastman SW, Jouvenet N, Bieniasz PD: HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2006, 2 (5): e39-10.1371/journal.ppat.0020039.
    PubMed Central PubMed Google Scholar
  213. Hsu K, Seharaseyon J, Dong P, Bour S, Marban E: Mutual functional destruction of HIV-1 Vpu and host TASK-1 channel. Mol Cell. 2004, 14 (2): 259-267. 10.1016/S1097-2765(04)00183-2.
    CAS PubMed Google Scholar
  214. Strebel K: HIV-1 Vpu: putting a channel to the TASK. Mol Cell. 2004, 14 (2): 150-152. 10.1016/S1097-2765(04)00205-9.
    CAS PubMed Google Scholar
  215. Akari H, Bour S, Kao S, Adachi A, Strebel K: The Human Immunodeficiency Virus Type 1 Accessory Protein Vpu Induces Apoptosis by Suppressing the Nuclear Factor kappaB-dependent Expression of Antiapoptotic Factors. J Exp Med. 2001, 194 (9): 1299-1312. 10.1084/jem.194.9.1299.
    PubMed Central CAS PubMed Google Scholar
  216. Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R: A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to ER degradation pathway through an F-box motif. Mol Cell. 1998, 4: 565-574. 10.1016/S1097-2765(00)80056-8.
    Google Scholar
  217. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Cote M, Rich RL, Myszka DG, Sundquist WI: Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell. 2001, 107 (1): 55-65. 10.1016/S0092-8674(01)00506-2.
    CAS PubMed Google Scholar
  218. VerPlank L, Bouamr F, LaGrassa TJ, Agresta B, Kikonyogo A, Leis J, Carter CA: Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55(Gag). Proc Natl Acad Sci USA. 2001, 98 (14): 7724-7729. 10.1073/pnas.131059198.
    PubMed Central CAS PubMed Google Scholar
  219. Martin-Serrano J, Zang T, Bieniasz PD: HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med. 2001, 7 (12): 1313-1319. 10.1038/nm1201-1313.
    CAS PubMed Google Scholar
  220. Welsch S, Keppler OT, Habermann A, Allespach I, Krijnse-Locker J, Krausslich HG: HIV-1 buds predominantly at the plasma membrane of primary human macrophages. PLoS Pathog. 2007, 3 (3): e36-10.1371/journal.ppat.0030036.
    PubMed Central PubMed Google Scholar
  221. Jouvenet N, Neil SJ, Bess C, Johnson MC, Virgen CA, Simon SM, Bieniasz PD: Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol. 2006, 4 (12): e435-10.1371/journal.pbio.0040435.
    PubMed Central PubMed Google Scholar
  222. Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M: In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J Cell Biol. 2007, 177 (2): 329-341. 10.1083/jcb.200609050.
    PubMed Central CAS PubMed Google Scholar
  223. Morita E, Sundquist WI: Retrovirus budding. Annu Rev Cell Dev Biol. 2004, 20: 395-425. 10.1146/annurev.cellbio.20.010403.102350.
    CAS PubMed Google Scholar
  224. von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He GP, Cimbora DM, Scott A, Krausslich HG, Kaplan J, Morham SG, Sundquist WI: The protein network of HIV budding. Cell. 2003, 114 (6): 701-713. 10.1016/S0092-8674(03)00714-1.
    CAS PubMed Google Scholar
  225. Amit I, Yakir L, Katz M, Zwang Y, Marmor MD, Citri A, Shtiegman K, Alroy I, Tuvia S, Reiss Y, Roubini E, Cohen M, Wides R, Bacharach E, Schubert U, Yarden Y: Tal, a Tsg101-specific E3 ubiquitin ligase, regulates receptor endocytosis and retrovirus budding. Genes Dev. 2004, 18 (14): 1737-1752. 10.1101/gad.294904.
    PubMed Central CAS PubMed Google Scholar
  226. Eastman SW, Martin-Serrano J, Chung W, Zang T, Bieniasz PD: Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding. J Biol Chem. 2005, 280 (1): 628-636. 10.1074/jbc.M413556200.
    CAS PubMed Google Scholar
  227. Strack B, Calistri A, Craig S, Popova E, Gottlinger HG: AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell. 2003, 114 (6): 689-699. 10.1016/S0092-8674(03)00653-6.
    CAS PubMed Google Scholar
  228. Stuchell MD, Garrus JE, Muller B, Stray KM, Ghaffarian S, McKinnon R, Krausslich HG, Morham SG, Sundquist WI: The human endosomal sorting complex required for transport (ESCRT-I) and its role in HIV-1 budding. J Biol Chem. 2004, 279 (34): 36059-360571. 10.1074/jbc.M405226200.
    CAS PubMed Google Scholar
  229. Bashirova AA, Bleiber G, Qi Y, Hutcheson H, Yamashita T, Johnson RC, Cheng J, Alter G, Goedert JJ, Buchbinder S, Hoots K, Vlahov D, May M, Maldarelli F, Jacobson L, O'Brien S J, Telenti A, Carrington M: Consistent effects of TSG101 genetic variability on multiple outcomes of exposure to human immunodeficiency virus type 1. J Virol. 2006, 80 (14): 6757-6763. 10.1128/JVI.00094-06.
    PubMed Central CAS PubMed Google Scholar
  230. Smith MS, Thresher RJ, Pagano JS: Inhibition of human immunodeficiency virus type 1 morphogenesis in T cells by alpha interferon. Antimicrob Agents Chemother. 1991, 35 (1): 62-67.
    PubMed Central CAS PubMed Google Scholar
  231. Yasuda Y, Miyake S, Kato S, Kita M, Kishida T, Kimura T, Ikuta K: Interferon-alpha treatment leads to accumulation of virus particles on the surface of cells persistently infected with the human immunodeficiency virus type 1. J Acquir Immune Defic Syndr. 1990, 3 (11): 1046-1051.
    CAS PubMed Google Scholar
  232. Okumura A, Lu G, Pitha-Rowe I, Pitha PM: Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc Natl Acad Sci USA. 2006, 103 (5): 1440-1445. 10.1073/pnas.0510518103.
    PubMed Central CAS PubMed Google Scholar
  233. Dooher JE, Schneider BL, Reed JC, Lingappa JR: Host ABCE1 is at Plasma Membrane HIV Assembly Sites and Its Dissociation from Gag is Linked to Subsequent Events of Virus Production. Traffic. 2007, 8 (3): 195-211. 10.1111/j.1600-0854.2006.00524.x.
    PubMed Central CAS PubMed Google Scholar
  234. Lingappa JR, Dooher JE, Newman MA, Kiser PK, Klein KC: Basic residues in the nucleocapsid domain of Gag are required for interaction of HIV-1 gag with ABCE1 (HP68), a cellular protein important for HIV-1 capsid assembly. J Biol Chem. 2006, 281 (7): 3773-3784. 10.1074/jbc.M507255200.
    CAS PubMed Google Scholar
  235. Zimmerman C, Klein KC, Kiser PK, Singh AR, Firestein BL, Riba SC, Lingappa JR: Identification of a host protein essential for assembly of immature HIV- 1 capsids. Nature. 2002, 415 (6867): 88-92. 10.1038/415088a.
    CAS PubMed Google Scholar
  236. Dong X, Li H, Derdowski A, Ding L, Burnett A, Chen X, Peters TR, Dermody TS, Woodruff E, Wang JJ, Spearman P: AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell. 2005, 120 (5): 663-674. 10.1016/j.cell.2004.12.023.
    CAS PubMed Google Scholar
  237. Huizing M, Gahl WA: Disorders of vesicles of lysosomal lineage: the Hermansky-Pudlak syndromes. Curr Mol Med. 2002, 2 (5): 451-467. 10.2174/1566524023362357.
    CAS PubMed Google Scholar
  238. Hammarstedt M, Garoff H: Passive and active inclusion of host proteins in human immunodeficiency virus type 1 gag particles during budding at the plasma membrane. J Virol. 2004, 78 (11): 5686-5697. 10.1128/JVI.78.11.5686-5697.2004.
    PubMed Central CAS PubMed Google Scholar
  239. Tremblay MJ, Fortin JF, Cantin R: The acquisition of host-encoded proteins by nascent HIV-1. Immunol Today. 1998, 19 (8): 346-351. 10.1016/S0167-5699(98)01286-9.
    CAS PubMed Google Scholar
  240. Fortin JF, Cantin R, Lamontagne G, Tremblay M: Host-derived ICAM-1 glycoproteins incorporated on human immunodeficiency virus type 1 are biologically active and enhance viral infectivity. J Virol. 1997, 71 (5): 3588-3596.
    PubMed Central CAS PubMed Google Scholar
  241. Bounou S, Leclerc JE, Tremblay MJ: Presence of host ICAM-1 in laboratory and clinical strains of human immunodeficiency virus type 1 increases virus infectivity and CD4(+)-T- cell depletion in human lymphoid tissue, a major site of replication in vivo. J Virol. 2002, 76 (3): 1004-1014.
    PubMed Central CAS PubMed Google Scholar
  242. Fortin JF, Cantin R, Bergeron MG, Tremblay MJ: Interaction between virion-bound host intercellular adhesion molecule-1 and the high-affinity state of lymphocyte function-associated antigen-1 on target cells renders R5 and X4 isolates of human immunodeficiency virus type 1 more refractory to neutralization. Virology. 2000, 268 (2): 493-503. 10.1006/viro.2000.0190.
    CAS PubMed Google Scholar
  243. Fortin JF, Cantin R, Tremblay MJ: T cells expressing activated LFA-1 are more susceptible to infection with human immunodeficiency virus type 1 particles bearing host-encoded ICAM-1. J Virol. 1998, 72 (3): 2105-2112.
    PubMed Central CAS PubMed Google Scholar
  244. Losier M, Fortin JF, Cantin R, Bergeron MG, Tremblay MJ: Virion-bound ICAM-1 and activated LFA-1: a combination of factors conferring resistance to neutralization by sera from human immunodeficiency virus type 1-infected individuals independently of the disease status and phase. Clin Immunol. 2003, 108 (2): 111-118. 10.1016/S1521-6616(03)00093-7.
    CAS PubMed Google Scholar
  245. Hioe CE, Chien PC, Lu C, Springer TA, Wang XH, Bandres J, Tuen M: LFA-1 expression on target cells promotes human immunodeficiency virus type 1 infection and transmission. J Virol. 2001, 75 (2): 1077-1082. 10.1128/JVI.75.2.1077-1082.2001.
    PubMed Central CAS PubMed Google Scholar
  246. Tardif MR, Tremblay MJ: LFA-1 is a key determinant for preferential infection of memory CD4+ T cells by human immunodeficiency virus type 1. J Virol. 2005, 79 (21): 13714-13724. 10.1128/JVI.79.21.13714-13724.2005.
    PubMed Central CAS PubMed Google Scholar
  247. Papa A, Danese S, Urgesi R, Grillo A, Guglielmo S, Roberto I, Semeraro S, Scaldaferri F, Pola R, Flex A, Fedeli G, Gasbarrini G, Pola P, Gasbarrini A: Intercellular adhesion molecule 1 gene polymorphisms in inflammatory bowel disease. Eur Rev Med Pharmacol Sci. 2004, 8 (5): 187-191.
    CAS PubMed Google Scholar
  248. Hoxie JA, Fitzharris TP, Youngbar PR, Matthews DM, Rackowski JL, Radka SF: Nonrandom association of cellular antigens with HTLV-III virions. Hum Immunol. 1987, 18 (1): 39-52. 10.1016/0198-8859(87)90111-X.
    CAS PubMed Google Scholar
  249. Orentas RJ, Hildreth JE: Association of host cell surface adhesion receptors and other membrane proteins with HIV and SIV. AIDS Res Hum Retroviruses. 1993, 9 (11): 1157-1165.
    CAS PubMed Google Scholar
  250. Chan WL, Rodgers A, Grief C, Almond N, Ellis S, Flanagan B, Silvera P, Bootman J, Stott J, Kent K, et al: Immunization with class I human histocompatibility leukocyte antigen can protect macaques against challenge infection with SIVmac-32H. AIDS. 1995, 9 (3): 223-228.
    CAS PubMed Google Scholar
  251. Arthur LO, Bess JW, Urban RG, Strominger JL, Morton WR, Mann DL, Henderson LE, Benveniste RE: Macaques immunized with HLA-DR are protected from challenge with simian immunodeficiency virus. J Virol. 1995, 69 (5): 3117-3124.
    PubMed Central CAS PubMed Google Scholar
  252. Rossio JL, Bess J, Henderson LE, Cresswell P, Arthur LO: HLA class II on HIV particles is functional in superantigen presentation to human T cells: implications for HIV pathogenesis. AIDS Res Hum Retroviruses. 1995, 11 (12): 1433-1439.
    CAS PubMed Google Scholar
  253. Gurer C, Cimarelli A, Luban J: Specific incorporation of heat shock protein 70 family members into primate lentiviral virions. J Virol. 2002, 76 (9): 4666-4670. 10.1128/JVI.76.9.4666-4670.2002.
    PubMed Central CAS PubMed Google Scholar
  254. Yung E, Sorin M, Pal A, Craig E, Morozov A, Delattre O, Kappes J, Ott D, Kalpana GV: Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1. Nat Med. 2001, 7 (8): 920-926. 10.1038/90959.
    CAS PubMed Google Scholar
  255. Halwani R, Cen S, Javanbakht H, Saadatmand J, Kim S, Shiba K, Kleiman L: Cellular distribution of Lysyl-tRNA synthetase and its interaction with Gag during human immunodeficiency virus type 1 assembly. J Virol. 2004, 78 (14): 7553-7564. 10.1128/JVI.78.14.7553-7564.2004.
    PubMed Central CAS PubMed Google Scholar
  256. Javanbakht H, Halwani R, Cen S, Saadatmand J, Musier-Forsyth K, Gottlinger H, Kleiman L: The interaction between HIV-1 Gag and human lysyl-tRNA synthetase during viral assembly. J Biol Chem. 2003, 278 (30): 27644-27651. 10.1074/jbc.M301840200.
    CAS PubMed Google Scholar
  257. Kleiman L, Halwani R, Javanbakht H: The selective packaging and annealing of primer tRNALys3 in HIV-1. Curr HIV Res. 2004, 2 (2): 163-175. 10.2174/1570162043484988.
    CAS PubMed Google Scholar
  258. Chertova E, Bess Jr JW, Crise BJ, Sowder IR, Schaden TM, Hilburn JM, Hoxie JA, Benveniste RE, Lifson JD, Henderson LE, Arthur LO: Envelope glycoprotein incorporation, not shedding of surface envelope glycoprotein (gp120/SU), Is the primary determinant of SU content of purified human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol. 2002, 76 (11): 5315-5325. 10.1128/JVI.76.11.5315-5325.2002.
    PubMed Central CAS PubMed Google Scholar
  259. Freed EO, Martin MA: Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol. 1995, 69: 1984-1989.
    PubMed Central CAS PubMed Google Scholar
  260. Freed EO, Martin MA: Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol. 1996, 70: 341-351.
    PubMed Central CAS PubMed Google Scholar
  261. Freed EO, Orenstein JM, Buckler White AJ, Martin MA: Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production. J Virol. 1994, 68: 5311-5320.
    PubMed Central CAS PubMed Google Scholar
  262. West JT, Weldon SK, Wyss S, Lin X, Yu Q, Thali M, Hunter E: Mutation of the dominant endocytosis motif in human immunodeficiency virus type 1 gp41 can complement matrix mutations without increasing Env incorporation. J Virol. 2002, 76 (7): 3338-3349. 10.1128/JVI.76.7.3338-3349.2002.
    PubMed Central CAS PubMed Google Scholar
  263. Blot G, Janvier K, Le Panse S, Benarous R, Berlioz-Torrent C: Targeting of the human immunodeficiency virus type 1 envelope to the trans-Golgi network through binding to TIP47 is required for env incorporation into virions and infectivity. J Virol. 2003, 77 (12): 6931-6945. 10.1128/JVI.77.12.6931-6945.2003.
    PubMed Central CAS PubMed Google Scholar
  264. Lopez-Verges S, Camus G, Blot G, Beauvoir R, Benarous R, Berlioz-Torrent C: Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA. 2006, 103 (40): 14947-14952. 10.1073/pnas.0602941103.
    PubMed Central CAS PubMed Google Scholar
  265. Lama J: The physiological relevance of CD4 receptor down-modulation during HIV infection. Curr HIV Res. 2003, 1: 167-184. 10.2174/1570162033485276.
    CAS PubMed Google Scholar
  266. Cortes MJ, Wong-Staal F, Lama J: Cell surface CD4 interferes with the infectivity of HIV-1 particles released from T cells. J Biol Chem. 2002, 277 (3): 1770-1779. 10.1074/jbc.M109807200.
    CAS PubMed Google Scholar
  267. Lama J, Mangasarian A, Trono D: Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr Biol. 1999, 9: 622-631. 10.1016/S0960-9822(99)80284-X.
    CAS PubMed Google Scholar
  268. Chen BK, Gandhi RT, Baltimore D: CD4 down-modulation during infection of human T cells with human immunodeficiency virus type 1 involves independent activities of vpu, env, and nef. J Virol. 1996, 70: 6044-6053.
    PubMed Central CAS PubMed Google Scholar
  269. Wildum S, Schindler M, Munch J, Kirchhoff F: Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J Virol. 2006, 80 (16): 8047-8059. 10.1128/JVI.00252-06.
    PubMed Central CAS PubMed Google Scholar
  270. Glushakova S, Munch J, Carl S, Greenough TC, Sullivan JL, Margolis L, Kirchhoff F: CD4 down-modulation by human immunodeficiency virus type 1 Nef correlates with the efficiency of viral replication and with CD4(+) T- cell depletion in human lymphoid tissue ex vivo. J Virol. 2001, 75 (21): 10113-10117. 10.1128/JVI.75.21.10113-10117.2001.
    PubMed Central CAS PubMed Google Scholar
  271. Lundquist CA, Tobiume M, Zhou J, Unutmaz D, Aiken C: Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes. J Virol. 2002, 76 (9): 4625-4633. 10.1128/JVI.76.9.4625-4633.2002.
    PubMed Central CAS PubMed Google Scholar
  272. Stoddart CA, Geleziunas R, Ferrell S, Linquist-Stepps V, Moreno ME, Bare C, Xu W, Yonemoto W, Bresnahan PA, McCune JM, Greene WC: Human immunodeficienty virus type 1 Nef-mediated downregulation of CD4 correlates with Nef enhancement of viral pathogenesis. J Virol. 2003, 77 (3): 2124-2133. 10.1128/JVI.77.3.2124-2133.2003.
    PubMed Central CAS PubMed Google Scholar
  273. Arganaraz ER, Schindler M, Kirchhoff F, Cortes MJ, Lama J: Enhanced CD4 down-modulation by late-stage HIV-1 nef alleles is associated with increased Env incorporation and viral replication. J Biol Chem. 2003, 36: 33912-33919. 10.1074/jbc.M303679200.
    Google Scholar
  274. Carl S, Greenough TC, Krumbiegel M, Greenberg M, Skowronski J, Sullivan JL, Kirchhoff F: Modulation of different human immunodeficiency virus type 1 nef functions during progression to AIDS. J Virol. 2001, 75 (8): 3657-3665. 10.1128/JVI.75.8.3657-3665.2001.
    PubMed Central CAS PubMed Google Scholar
  275. Brambilla A, Turchetto L, Gatti A, Bovolenta C, Veglia F, Santagostino E, Gringeri A, Clementi M, Poli G, Bagnarelli P, Vicenzi E: Defective nef alleles in a cohort of hemophiliacs with progressing and nonprogressing HIV-1 infection. Virology. 1999, 259 (2): 349-368. 10.1006/viro.1999.9783.
    CAS PubMed Google Scholar
  276. Geffin R, Wolf D, Muller R, Hill MD, Stellwag E, Freitag M, Sass G, Scott GB, Baur AS: Functional and structural defects in HIV type 1 nef genes derived from pediatric long-term survivors. AIDS Res Hum Retroviruses. 2000, 16 (17): 1855-1868. 10.1089/08892220050195810.
    CAS PubMed Google Scholar
  277. Rhodes DI, Ashton L, Solomon A, Carr A, Cooper D, Kaldor J, Deacon N: Characterization of three nef-defective human immunodeficiency virus type 1 strains associated with long-term nonprogression. Australian Long-Term Nonprogressor Study Group. J Virol. 2000, 74 (22): 10581-10588. 10.1128/JVI.74.22.10581-10588.2000.
    PubMed Central CAS PubMed Google Scholar
  278. Tobiume M, Takahoko M, Yamada T, Tatsumi M, Iwamoto A, Matsuda M: Inefficient enhancement of viral infectivity and CD4 downregulation by human immunodeficiency virus type 1 Nef from Japanese long-term nonprogressors. J Virol. 2002, 76 (12): 5959-5965. 10.1128/JVI.76.12.5959-5965.2002.
    PubMed Central CAS PubMed Google Scholar
  279. Coleman SH, Day JR, Guatelli J: The HIV-1 Nef protein as a target for antiretroviral therapy. Emerg Ther Targets. 2001, 5 (1): 1-22. 10.1517/14728222.5.1.1.
    CAS Google Scholar
  280. Kedzierska K, Crowe SM: Cytokines and HIV-1: interactions and clinical implications. Antivir Chem Chemother. 2001, 12 (3): 133-150.
    CAS PubMed Google Scholar
  281. Jacques C, Gosset M, Berenbaum F, Gabay C: The role of IL-1 and IL-1Ra in joint inflammation and cartilage degradation. Vitam Horm. 2006, 74: 371-403.
    CAS PubMed Google Scholar
  282. Do H, Vasilescu A, Carpentier W, Meyer L, Diop G, Hirtzig T, Coulonges C, Labib T, Spadoni JL, Therwath A, Lathrop M, Matsuda F, Zagury JF: Exhaustive genotyping of the interleukin-1 family genes and associations with AIDS progression in a French cohort. J Infect Dis. 2006, 194 (11): 1492-1504. 10.1086/508545.
    CAS PubMed Google Scholar
  283. Kinter A, Fauci AS: Interleukin-2 and human immunodeficiency virus infection: pathogenic mechanisms and potential for immunologic enhancement. Immunol Res. 1996, 15 (1): 1-15.
    CAS PubMed Google Scholar
  284. Shrestha S, Strathdee SA, Galai N, Oleksyk T, Fallin MD, Mehta S, Schaid D, Vlahov D, O'Brien SJ, Smith MW: Behavioral risk exposure and host genetics of susceptibility to HIV-1 infection. J Infect Dis. 2006, 193 (1): 16-26. 10.1086/498532.
    CAS PubMed Google Scholar
  285. Modi WS, O'Brien TR, Vlahov D, Buchbinder S, Gomperts E, Phair J, O'Brien SJ, Winkler C: Haplotype diversity in the interleukin-4 gene is not associated with HIV-1 transmission and AIDS progression. Immunogenetics. 2003, 55 (3): 157-164. 10.1007/s00251-003-0541-5.
    CAS PubMed Google Scholar
  286. Vasilescu A, Heath SC, Ivanova R, Hendel H, Do H, Mazoyer A, Khadivpour E, Goutalier FX, Khalili K, Rappaport J, Lathrop GM, Matsuda F, Zagury JF: Genomic analysis of Th1-Th2 cytokine genes in an AIDS cohort: identification of IL4 and IL10 haplotypes associated with the disease progression. Genes Immun. 2003, 4 (6): 441-449. 10.1038/sj.gene.6363983.
    CAS PubMed Google Scholar
  287. Soriano A, Lozano F, Oliva H, Garcia F, Nomdedeu M, De Lazzari E, Rodriguez C, Barrasa A, Lorenzo JI, Del Romero J, Plana M, Miro JM, Gatell JM, Vives J, Gallart T: Polymorphisms in the interleukin-4 receptor alpha chain gene influence susceptibility to HIV-1 infection and its progression to AIDS. Immunogenetics. 2005, 57 (9): 644-654. 10.1007/s00251-005-0041-x.
    CAS PubMed Google Scholar
  288. Maciaszek JW, Parada NA, Cruikshank WW, Center DM, Kornfeld H, Viglianti GA: IL-16 represses HIV-1 promoter activity. J Immunol. 1997, 158 (1): 5-8.
    CAS PubMed Google Scholar
  289. Zhou P, Goldstein S, Devadas K, Tewari D, Notkins AL: Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: inhibition of mRNA expression. Nat Med. 1997, 3 (6): 659-664. 10.1038/nm0697-659.
    CAS PubMed Google Scholar
  290. Kornfeld H, Cruikshank WW: Prospects for IL-16 in the treatment of AIDS. Expert Opin Biol Ther. 2001, 1 (3): 425-432. 10.1517/14712598.1.3.425.
    CAS PubMed Google Scholar
  291. Scala E, D'Offizi G, Rosso R, Turriziani O, Ferrara R, Mazzone AM, Antonelli G, Aiuti F, Paganelli R: C-C chemokines, IL-16, and soluble antiviral factor activity are increased in cloned T cells from subjects with long-term nonprogressive HIV. infection. J Immunol. 1997, 158 (9): 4485-4492.
    CAS PubMed Google Scholar
  292. Amiel C, Darcissac E, Truong MJ, Dewulf J, Loyens M, Mouton Y, Capron A, Bahr GM: Interleukin-16 (IL-16) inhibits human immunodeficiency virus replication in cells from infected subjects, and serum IL-16 levels drop with disease progression. J Infect Dis. 1999, 179 (1): 83-91. 10.1086/314550.
    CAS PubMed Google Scholar
  293. Bader A, Brockmeyer N, Schnaitmann E, Mertins L, Otteken A, Kurth R, Werner A: Interleukin-16 serum levels during the course of HIV-1 infection. AIDS. 2001, 15 (4): 528-529. 10.1097/00002030-200103090-00014.
    CAS PubMed Google Scholar
  294. Nakayama EE, Wasi C, Ajisawa A, Iwamoto A, Shioda T: A new polymorphism in the promoter region of the human interleukin-16 (IL-16) gene. Genes Immun. 2000, 1 (4): 293-294. 10.1038/sj.gene.6363672.
    CAS PubMed Google Scholar
  295. Stylianou E, Bjerkeli V, Yndestad A, Heggelund L, Waehre T, Damas JK, Aukrust P, Froland SS: Raised serum levels of interleukin-18 is associated with disease progression and may contribute to virological treatment failure in HIV-1-infected patients. Clin Exp Immunol. 2003, 132 (3): 462-466. 10.1046/j.1365-2249.2003.02179.x.
    PubMed Central CAS PubMed Google Scholar
  296. Wiercinska-Drapalo A, Jaroszewicz J, Flisiak R, Prokopowicz D: Plasma interleukin-18 is associated with viral load and disease progression in HIV-1-infected patients. Microbes Infect. 2004, 6 (14): 1273-1277. 10.1016/j.micinf.2004.07.009.
    CAS PubMed Google Scholar
  297. Torre D, Pugliese A: Interleukin-18: a proinflammatory cytokine in HIV-1 infection. Curr HIV Res. 2006, 4 (4): 423-430. 10.2174/157016206778559993.
    CAS PubMed Google Scholar
  298. Segat L, Bevilacqua D, Boniotto M, Arraes LC, de Souza PR, de Lima Filho JL, Crovella S: IL-18 gene promoter polymorphism is involved in HIV-1 infection in a Brazilian pediatric population. Immunogenetics. 2006, 58 (5-6): 471-473. 10.1007/s00251-006-0104-7.
    CAS PubMed Google Scholar
  299. Song W, Wilson CM, Allen S, Wang C, Li Y, Kaslow RA, Tang J: Interleukin 18 and human immunodeficiency virus type I infection in adolescents and adults. Clin Exp Immunol. 2006, 144 (1): 117-124. 10.1111/j.1365-2249.2006.03050.x.
    PubMed Central CAS PubMed Google Scholar
  300. Biron CA: Role of early cytokines, including alpha and beta interferons (IFN-alpha/beta), in innate and adaptive immune responses to viral infections. Semin Immunol. 1998, 10 (5): 383-390. 10.1006/smim.1998.0138.
    CAS PubMed Google Scholar
  301. Diop G, Hirtzig T, Do H, Coulonges C, Vasilescu A, Labib T, Spadoni JL, Therwath A, Lathrop M, Matsuda F, Zagury JF: Exhaustive genotyping of the interferon alpha receptor 1 (IFNAR1) gene and association of an IFNAR1 protein variant with AIDS progression or susceptibility to HIV-1 infection in a French AIDS cohort. Biomed Pharmacother. 2006, 60 (9): 569-577. 10.1016/j.biopha.2006.08.002.
    CAS PubMed Google Scholar
  302. Bafica A, Scanga CA, Schito M, Chaussabel D, Sher A: Influence of coinfecting pathogens on HIV expression: evidence for a role of Toll-like receptors. J Immunol. 2004, 172 (12): 7229-7234.
    CAS PubMed Google Scholar
  303. Finberg RW, Wang JP, Kurt-Jones EA: Toll like receptors and viruses. Rev Med Virol. 2007, 17 (1): 35-43. 10.1002/rmv.525.
    CAS PubMed Google Scholar
  304. Bentwich Z, Kalinkovich A, Weisman Z: Immune activation is a dominant factor in the pathogenesis of African AIDS. Immunol Today. 1995, 16 (4): 187-191. 10.1016/0167-5699(95)80119-7.
    CAS PubMed Google Scholar
  305. Quinn TC, Piot P, McCormick JB, Feinsod FM, Taelman H, Kapita B, Stevens W, Fauci AS: Serologic and immunologic studies in patients with AIDS in North America and Africa. The potential role of infectious agents as cofactors in human immunodeficiency virus infection. JAMA. 1987, 257 (19): 2617-2621. 10.1001/jama.257.19.2617.
    CAS PubMed Google Scholar
  306. Akira S: TLR signaling. Curr Top Microbiol Immunol. 2006, 311: 1-16.
    CAS PubMed Google Scholar
  307. Pomerantz RJ, Feinberg MB, Trono D, Baltimore D: Lipopolysaccharide is a potent monocyte/macrophage-specific stimulator of human immunodeficiency virus type 1 expression. J Exp Med. 1990, 172 (1): 253-261. 10.1084/jem.172.1.253.
    CAS PubMed Google Scholar
  308. Schlaepfer E, Audige A, Joller H, Speck RF: TLR7/8 triggering exerts opposing effects in acute versus latent HIV infection. J Immunol. 2006, 176 (5): 2888-2895.
    CAS PubMed Google Scholar
  309. Agrawal S, Martin RR: Was induction of HIV-1 through TLR9?. J Immunol. 2003, 171 (4): 1621-
    CAS PubMed Google Scholar
  310. Bafica A, Scanga CA, Schito ML, Hieny S, Sher A: Cutting edge: in vivo induction of integrated HIV-1 expression by mycobacteria is critically dependent on Toll-like receptor 2. J Immunol. 2003, 171 (3): 1123-1127.
    CAS PubMed Google Scholar
  311. Equils O, Faure E, Thomas L, Bulut Y, Trushin S, Arditi M: Bacterial lipopolysaccharide activates HIV long terminal repeat through Toll-like receptor 4. J Immunol. 2001, 166 (4): 2342-2347.
    CAS PubMed Google Scholar
  312. Equils O, Schito ML, Karahashi H, Madak Z, Yarali A, Michelsen KS, Sher A, Arditi M: Toll-like receptor 2 (TLR2) and TLR9 signaling results in HIV-long terminal repeat trans-activation and HIV replication in HIV-1 transgenic mouse spleen cells: implications of simultaneous activation of TLRs on HIV replication. J Immunol. 2003, 170 (10): 5159-5164.
    CAS PubMed Google Scholar
  313. Sundstrom JB, Little DM, Villinger F, Ellis JE, Ansari AA: Signaling through Toll-like receptors triggers HIV-1 replication in latently infected mast cells. J Immunol. 2004, 172 (7): 4391-4401.
    CAS PubMed Google Scholar
  314. Toossi Z: Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease. J Infect Dis. 2003, 188 (8): 1146-1155. 10.1086/378676.
    PubMed Google Scholar
  315. Agrawal S: Importance of nucleotide sequence and chemical modifications of antisense oligonucleotides. Biochim Biophys Acta. 1999, 1489 (1): 53-68.
    CAS PubMed Google Scholar
  316. Lisziewicz J, Sun D, Weichold FF, Thierry AR, Lusso P, Tang J, Gallo RC, Agrawal S: Antisense oligodeoxynucleotide phosphorothioate complementary to Gag mRNA blocks replication of human immunodeficiency virus type 1 in human peripheral blood cells. Proc Natl Acad Sci USA. 1994, 91 (17): 7942-7946. 10.1073/pnas.91.17.7942.
    PubMed Central CAS PubMed Google Scholar
  317. Bochud PY, Hersberger M, Taffe P, Bochud M, Stein CM, Rodrigues SD, Calandra T, Francioli P, Telenti A, Speck RF, Aderem A: Polymorphisms in Toll-like receptor 9 influence the clinical course of HIV-1 infection. AIDS. 2007, 21 (4): 441-446. 10.1097/QAD.0b013e328012b8ac.
    CAS PubMed Google Scholar
  318. Abu-Raddad LJ, Patnaik P, Kublin JG: Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science. 2006, 314 (5805): 1603-1606. 10.1126/science.1132338.
    CAS PubMed Google Scholar
  319. Kublin JG, Patnaik P, Jere CS, Miller WC, Hoffman IF, Chimbiya N, Pendame R, Taylor TE, Molyneux ME: Effect of Plasmodium falciparum malaria on concentration of HIV-1-RNA in the blood of adults in rural Malawi: a prospective cohort study. Lancet. 2005, 365 (9455): 233-240.
    PubMed Google Scholar
  320. Patnaik P, Jere CS, Miller WC, Hoffman IF, Wirima J, Pendame R, Meshnick SR, Taylor TE, Molyneux ME, Kublin JG: Effects of HIV-1 serostatus, HIV-1 RNA concentration, and CD4 cell count on the incidence of malaria infection in a cohort of adults in rural Malawi. J Infect Dis. 2005, 192 (6): 984-991. 10.1086/432730.
    CAS PubMed Google Scholar
  321. Gallagher M, Malhotra I, Mungai PL, Wamachi AN, Kioko JM, Ouma JH, Muchiri E, King CL: The effects of maternal helminth and malaria infections on mother-to-child HIV transmission. AIDS. 2005, 19 (16): 1849-1855. 10.1097/01.aids.0000189846.90946.5d.
    PubMed Google Scholar
  322. Kannangara S, DeSimone JA, Pomerantz RJ: Attenuation of HIV-1 infection by other microbial agents. J Infect Dis. 2005, 192 (6): 1003-1009. 10.1086/432767.
    PubMed Google Scholar
  323. Grivel JC, Ito Y, Faga G, Santoro F, Shaheen F, Malnati MS, Fitzgerald W, Lusso P, Margolis L: Suppression of CCR5- but not CXCR4-tropic HIV-1 in lymphoid tissue by human herpesvirus 6. Nat Med. 2001, 7 (11): 1232-1235. 10.1038/nm1101-1232.
    CAS PubMed Google Scholar
  324. Lisco A, Grivel JC, Biancotto A, Vanpouille C, Origgi F, Malnati MS, Schols D, Lusso P, Margolis LB: Viral interactions in human lymphoid tissue: Human herpesvirus 7 suppresses the replication of CCR5-tropic human immunodeficiency virus type 1 via CD4 modulation. J Virol. 2007, 81 (2): 708-717. 10.1128/JVI.01367-06.
    PubMed Central CAS PubMed Google Scholar
  325. Wallace PK, Howell AL, Fanger MW: Role of Fc gamma receptors in cancer and infectious disease. J Leukoc Biol. 1994, 55 (6): 816-826.
    CAS PubMed Google Scholar
  326. Brouwer KC, Lal RB, Mirel LB, Yang C, van Eijk AM, Ayisi J, Otieno J, Nahlen BL, Steketee R, Lal AA, Shi YP: Polymorphism of Fc receptor IIa for IgG in infants is associated with susceptibility to perinatal HIV-1 infection. AIDS. 2004, 18 (8): 1187-1194. 10.1097/00002030-200405210-00012.
    CAS PubMed Google Scholar
  327. Shi YP, Nahlen BL, Kariuki S, Urdahl KB, McElroy PD, Roberts JM, Lal AA: Fcgamma receptor IIa (CD32) polymorphism is associated with protection of infants against high-density Plasmodium falciparum infection. VII. Asembo Bay Cohort Project. J Infect Dis. 2001, 184 (1): 107-111. 10.1086/320999.
    CAS PubMed Google Scholar
  328. Griffiths GM: Protein sorting and secretion during CTL killing. Semin Immunol. 1997, 9 (2): 109-115. 10.1006/smim.1997.0059.
    CAS PubMed Google Scholar
  329. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hallahan CW, Van Baarle D, Kostense S, Miedema F, McLaughlin M, Ehler L, Metcalf J, Liu S, Connors M: HIV-specific CD8 T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nature. 2002, 3 (11): 1061-1068.
    CAS Google Scholar
  330. McIlroy D, Meyer L, Dudoit Y, Samri A, Delfraissy JF, Autran B, Debre P, Theodorou I: Polymorphism in the proximal promoter region of the perforin gene and its impact on the course of HIV infection. Int J Immunogenet. 2006, 33 (2): 73-79. 10.1111/j.1744-313X.2006.00571.x.
    CAS PubMed Google Scholar

Download references