Reverse mathematics (original) (raw)

About DBpedia

Die reverse Mathematik, ein Teilgebiet der mathematischen Logik, versucht zu bestimmen, welche Axiome notwendig sind, um bestimmte Theoreme zu beweisen. Reverse Mathematik ist damit gewissermaßen die Umkehrung der gewöhnlichen Mathematik, die versucht, Theoreme aus Axiomen herzuleiten. Die reverse Mathematik wurde 1974 von Harvey Friedman als mathematisches Projekt aufgebracht. Die Idee dazu entstand aus Ergebnissen der Mengenlehre, unter anderem dem klassischen Theorem, dass das Auswahlaxiom und das Lemma von Zorn über der Zermelo-Fraenkel-Mengenlehre ZF äquivalent sind.

Property Value
dbo:abstract Die reverse Mathematik, ein Teilgebiet der mathematischen Logik, versucht zu bestimmen, welche Axiome notwendig sind, um bestimmte Theoreme zu beweisen. Reverse Mathematik ist damit gewissermaßen die Umkehrung der gewöhnlichen Mathematik, die versucht, Theoreme aus Axiomen herzuleiten. Die reverse Mathematik wurde 1974 von Harvey Friedman als mathematisches Projekt aufgebracht. Die Idee dazu entstand aus Ergebnissen der Mengenlehre, unter anderem dem klassischen Theorem, dass das Auswahlaxiom und das Lemma von Zorn über der Zermelo-Fraenkel-Mengenlehre ZF äquivalent sind. (de) Les mathématiques à rebours sont une branche des mathématiques qui pourrait être définie simplement par l'idée de « remonter aux axiomes à partir des théorèmes », contrairement au sens habituel (des axiomes vers les théorèmes). Un peu plus précisément, il s'agit d'évaluer la robustesse logique d'un ensemble de résultats mathématiques usuels en déterminant exactement quels axiomes sont nécessaires et suffisants pour les prouver. (fr) Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones. The reverse mathematics program was foreshadowed by results in set theory such as the classical theorem that the axiom of choice and Zorn's lemma are equivalent over ZF set theory. The goal of reverse mathematics, however, is to study possible axioms of ordinary theorems of mathematics rather than possible axioms for set theory. Reverse mathematics is usually carried out using subsystems of second-order arithmetic, where many of its definitions and methods are inspired by previous work in constructive analysis and proof theory. The use of second-order arithmetic also allows many techniques from recursion theory to be employed; many results in reverse mathematics have corresponding results in computable analysis. In higher-order reverse mathematics, the focus is on subsystems of higher-order arithmetic, and the associated richer language. The program was founded by Harvey Friedman and brought forward by Steve Simpson. A standard reference for the subject is , while an introduction for non-specialists is . An introduction to higher-order reverse mathematics, and also the founding paper, is . (en) 逆数学とは、数学の定理の証明に必要な公理を決定しようとする数理論理学のプログラムである。簡単に言えば、通常の数学が公理から定理を導くのとは逆に、「定理から公理を証明する」手法を用いることが特徴である。「選択公理とツォルンの補題はZF上で同値である」、というような集合論の古典的定理は、逆数学プログラムの予兆となるものだった。しかし、実際の逆数学では主に、集合論の公理ではなく、通常の数学の定理を研究するのを目的とする。 逆数学は大抵の場合、について実行され、定理がと証明論に動機付けられたの部分体系のうち、どれに対応するのかを研究する。2階算術を使うことで、再帰理論からの多くの技術も利用できる。実際、逆数学の結果の多くは、計算可能性解析学の結果を反映している。 逆数学は、 によってはじめて言及された。基本文献はを参照。 (ja) La matematica inversa è un ramo della matematica che si occupa di determinare quali sono gli assiomi minimi necessari per dimostrare un particolare teorema e più in generale cerca di determinare la teoria base che costituisce la matematica nel suo complesso. Partendo da una base di assiomi debole, si può scoprire che molte proposizioni matematiche sono equivalenti all'assioma aggiunto ad essa per dimostrarlo, come ad esempio il lemma di Zorn rispetto all'assioma della scelta. La maggior parte della matematica può essere formalizzata usando l'aritmetica del second'ordine e nei famosi teoremi dimostrati in ACA0, che è definita nell'aritmetica di Peano anche se questa è sovrabbondante come assiomi necessari per le dimostrazioni. Insiemi più ampi dei numeri reali, compresi tutti gli insiemi di Borel, possono essere codificati per mezzo di numeri reali con le relazioni di appartenenza esprimibili con l'. La differenza primaria fra la matematica classica nella teoria degli insiemi (ZFC) e nell'aritmetica del second'ordine è che in quest'ultima si usano codici degli insiemi invece che gli insiemi stessi (tranne che per gli insiemi di numeri interi). Con una formalizzazione corretta, la maggior parte dei teoremi generali sono effettivamente equivalenti all'assioma canonico minimo richiesto per la loro dimostrazione. La maggior parte dei risultati di base nell'analisi e nell'algebra sono provabili in WKL0, la cui consistenza logica equivale a quella dell'aritmetica ricorsiva primitiva e in cui il repertorio di funzioni dimostrabilmente ricorsive consiste delle funzioni ricorsive primitive. I teoremi aritmetici di base possono essere dimostrati nell'aritmetica di funzione esponenziale (EFA), che oltre agli assiomi di base per somma, moltiplicazione e l'elevamento a potenza, include l'assioma di induzione per le formule limitate da quantificatori. EFA basta, tra l'altro, per dimostrare che la teoria dei campi reali chiusi, e quindi anche la geometria classica, è completa. (it) 逆数学(Reverse mathematics)是数学的一个分支,大致可以看成是“从定理导向公理”而不是通常的方向(从公理到定理)。更精确一点,它试图通过找出证明所需的充分和必要的公理来评价一批常用数学结果的逻辑有效性。 该领域由Harvey Friedman在其文章“二阶算术系统及其应用(Some systems of second order arithmetic and their use)”中创立。它被Stephen G. Simpson和他的学生以及其他一些人所追随。Simpson写了关于该主题的参考教科书二阶算数的子系统(Subsystems of Second Order Arithmetic);本条目大部分内容取自该书的简介性质的第一章。其他参考读物的细节参看。 (zh)
dbo:wikiPageExternalLink http://www.math.psu.edu/simpson/sosoa/ https://rmzoo.math.uconn.edu/ https://www2.mathematik.tu-darmstadt.de/~kohlenbach/ http://www.math.psu.edu/simpson/ http://www.math.ohio-state.edu/~friedman/ http://www.brics.dk/RS/00/49/BRICS-RS-00-49.pdf https://www.math.wisc.edu/~lempp/theses/hunter.pdf%7Ctype=PhD
dbo:wikiPageID 326365 (xsd:integer)
dbo:wikiPageLength 35057 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1123230385 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cambridge_University_Press dbr:Prime_ideal dbr:Princeton_University_Press dbr:Elementary_function_arithmetic dbr:David_Hilbert dbr:Determinacy dbr:Algebraic_closure dbr:Archimedean_property dbr:Jordan_curve_theorem dbr:Riemann_integral dbr:Ulrich_Kohlenbach dbr:University_of_Wisconsin–Madison dbr:Vector_space dbr:Induction,_bounding_and_least_number_principles dbr:Kőnig's_lemma dbr:Compactness dbr:Computable_function dbr:Countable_set dbr:Analytical_hierarchy dbc:Proof_theory dbr:Mathematical_logic dbr:Separable_space dbr:Epsilon_numbers_(mathematics) dbr:Giuseppe_Vitali dbr:Constructive_analysis dbr:Theorem dbr:Ordered_field dbr:Ordinal_analysis dbr:Arithmetical_hierarchy dbr:Lindelöf dbr:Closed-form_expression dbr:Combinatorics dbr:Commutative_ring dbr:Complete_metric_space dbr:Computable_analysis dbr:Feferman–Schütte_ordinal dbr:Low_basis_theorem dbr:Transcendence_basis dbr:Primitive_recursive_arithmetic dbr:Steve_Simpson_(mathematician) dbr:Maximal_ideal dbr:Topology dbr:Gödel's_completeness_theorem dbr:Heine–Borel_theorem dbr:Law_of_excluded_middle dbr:Robinson_arithmetic dbr:Algorithmically_random_sequence dbr:Errett_Bishop dbr:Field_(mathematics) dbr:Cauchy_sequence dbr:Gauge_integral dbr:Proof_theory dbr:Ring_(mathematics) dbr:Group_(mathematics) dbr:Gödel's_incompleteness_theorems dbr:Hahn–Banach_theorem dbr:Hermann_Weyl dbr:Baire_category_theorem dbr:Baire_space dbr:Cousin dbr:Cousin's_theorem dbr:Abstract_algebra dbc:Computability_theory dbc:Mathematical_logic dbr:Supremum dbr:Effective_Polish_space dbr:Zorn's_lemma dbr:Axiom dbr:Axiom_of_choice dbr:Bolzano–Weierstrass_theorem dbr:Solomon_Feferman dbr:Constructivism_(mathematics) dbr:Impredicativity dbr:Intermediate_value_theorem dbr:Metric_space dbr:Natural_number dbr:Necessity_and_sufficiency dbr:Open_set dbr:Cantor_space dbr:Ramsey's_theorem dbr:Rational_number dbr:Real_closed_field dbr:Real_number dbr:Sequence_(mathematics) dbr:Set_theory dbr:Kleene's_recursion_theorem dbr:Second-order_arithmetic dbr:Low_(computability) dbr:Lusin's_separation_theorem dbr:Perfect_set_property dbr:Post's_theorem dbr:Silver's_dichotomy dbr:Ulm's_theorem dbr:S2S_(mathematics) dbr:Cantor–Bendixson_theorem dbr:Axiom_scheme dbr:Psi0(Omega_omega) dbr:Brouwer_fixed_point_theorem dbr:Analysis_(mathematics) dbr:Ascoli's_theorem dbr:Higher-order_arithmetic dbr:Recursion_theory dbr:Banach–Steinhaus_theorem dbr:Besicovitch dbr:Nested_sequence_of_closed_intervals dbr:ZF_set_theory dbr:Well_ordering
dbp:authorlink Harvey Friedman (en)
dbp:b 0 (xsd:integer) 1 (xsd:integer) 2 (xsd:integer) 3 (xsd:integer)
dbp:first Harvey (en)
dbp:last Friedman (en)
dbp:p 0 (xsd:integer) 1 (xsd:integer) * (en)
dbp:wikiPageUsesTemplate dbt:DELTA dbt:Citation dbt:Citation_needed dbt:Clarify dbt:Harvtxt dbt:Main dbt:Math dbt:More_citations_needed dbt:Redirect dbt:Reflist dbt:Sfnp dbt:Short_description dbt:Su dbt:Harvs dbt:Mathematical_logic
dbp:year 1975 (xsd:integer) 1976 (xsd:integer)
dcterms:subject dbc:Proof_theory dbc:Computability_theory dbc:Mathematical_logic
gold:hypernym dbr:Program
rdf:type dbo:Work
rdfs:comment Die reverse Mathematik, ein Teilgebiet der mathematischen Logik, versucht zu bestimmen, welche Axiome notwendig sind, um bestimmte Theoreme zu beweisen. Reverse Mathematik ist damit gewissermaßen die Umkehrung der gewöhnlichen Mathematik, die versucht, Theoreme aus Axiomen herzuleiten. Die reverse Mathematik wurde 1974 von Harvey Friedman als mathematisches Projekt aufgebracht. Die Idee dazu entstand aus Ergebnissen der Mengenlehre, unter anderem dem klassischen Theorem, dass das Auswahlaxiom und das Lemma von Zorn über der Zermelo-Fraenkel-Mengenlehre ZF äquivalent sind. (de) Les mathématiques à rebours sont une branche des mathématiques qui pourrait être définie simplement par l'idée de « remonter aux axiomes à partir des théorèmes », contrairement au sens habituel (des axiomes vers les théorèmes). Un peu plus précisément, il s'agit d'évaluer la robustesse logique d'un ensemble de résultats mathématiques usuels en déterminant exactement quels axiomes sont nécessaires et suffisants pour les prouver. (fr) 逆数学とは、数学の定理の証明に必要な公理を決定しようとする数理論理学のプログラムである。簡単に言えば、通常の数学が公理から定理を導くのとは逆に、「定理から公理を証明する」手法を用いることが特徴である。「選択公理とツォルンの補題はZF上で同値である」、というような集合論の古典的定理は、逆数学プログラムの予兆となるものだった。しかし、実際の逆数学では主に、集合論の公理ではなく、通常の数学の定理を研究するのを目的とする。 逆数学は大抵の場合、について実行され、定理がと証明論に動機付けられたの部分体系のうち、どれに対応するのかを研究する。2階算術を使うことで、再帰理論からの多くの技術も利用できる。実際、逆数学の結果の多くは、計算可能性解析学の結果を反映している。 逆数学は、 によってはじめて言及された。基本文献はを参照。 (ja) 逆数学(Reverse mathematics)是数学的一个分支,大致可以看成是“从定理导向公理”而不是通常的方向(从公理到定理)。更精确一点,它试图通过找出证明所需的充分和必要的公理来评价一批常用数学结果的逻辑有效性。 该领域由Harvey Friedman在其文章“二阶算术系统及其应用(Some systems of second order arithmetic and their use)”中创立。它被Stephen G. Simpson和他的学生以及其他一些人所追随。Simpson写了关于该主题的参考教科书二阶算数的子系统(Subsystems of Second Order Arithmetic);本条目大部分内容取自该书的简介性质的第一章。其他参考读物的细节参看。 (zh) Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones. (en) La matematica inversa è un ramo della matematica che si occupa di determinare quali sono gli assiomi minimi necessari per dimostrare un particolare teorema e più in generale cerca di determinare la teoria base che costituisce la matematica nel suo complesso. Partendo da una base di assiomi debole, si può scoprire che molte proposizioni matematiche sono equivalenti all'assioma aggiunto ad essa per dimostrarlo, come ad esempio il lemma di Zorn rispetto all'assioma della scelta. (it)
rdfs:label Reverse Mathematik (de) Mathématiques à rebours (fr) Matematica inversa (it) 逆数学 (ja) Reverse mathematics (en) 逆数学 (zh)
owl:sameAs freebase:Reverse mathematics wikidata:Reverse mathematics dbpedia-de:Reverse mathematics dbpedia-fr:Reverse mathematics dbpedia-it:Reverse mathematics dbpedia-ja:Reverse mathematics dbpedia-tr:Reverse mathematics dbpedia-zh:Reverse mathematics https://global.dbpedia.org/id/vVKM
prov:wasDerivedFrom wikipedia-en:Reverse_mathematics?oldid=1123230385&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Reverse_mathematics
is dbo:knownFor of dbr:Steve_Simpson_(mathematician)
is dbo:wikiPageRedirects of dbr:Reverse_Mathematics dbr:Constructive_reverse_mathematics dbr:Arithmetical_transfinite_recursion dbr:Bounded_reverse_mathematics dbr:Weak_Konig's_lemma dbr:Weak_König's_lemma
is dbo:wikiPageWikiLink of dbr:Carl_Jockusch dbr:Elementary_function_arithmetic dbr:List_of_Vanderbilt_University_people dbr:List_of_first-order_theories dbr:Determinacy dbr:Jordan_curve_theorem dbr:Beta-model dbr:Reverse_Mathematics dbr:David_Seetapun dbr:Dushnik–Miller_theorem dbr:Dyadic_rational dbr:Induction,_bounding_and_least_number_principles dbr:Kőnig's_lemma dbr:List_of_mathematical_logic_topics dbr:Computability_theory dbr:An_Introduction_to_the_Philosophy_of_Mathematics dbr:Mathematical_logic dbr:Ordinal_collapsing_function dbr:Μ_operator dbr:Ekeland's_variational_principle dbr:Conservative_extension dbr:Constructive_set_theory dbr:Equiconsistency dbr:Ordinal_analysis dbr:Liu_Lu dbr:Big_Five dbr:Stephen_Cook dbr:Computability_in_Analysis_and_Physics dbr:Zermelo–Fraenkel_set_theory dbr:Kruskal's_tree_theorem dbr:Specker_sequence dbr:Steve_Simpson_(mathematician) dbr:Gödel's_completeness_theorem dbr:Harvey_Friedman dbr:Large_countable_ordinal dbr:Laver's_theorem dbr:Bar_induction dbr:Brouwer_fixed-point_theorem dbr:Church's_thesis_(constructive_mathematics) dbr:Foundations_of_mathematics dbr:Hilbert's_program dbr:History_of_logic dbr:Proof_theory dbr:RCA_(disambiguation) dbr:ACA dbr:ATR dbr:Hahn–Banach_theorem dbr:Higman's_lemma dbr:Axiom_of_dependent_choice dbr:Constructive_reverse_mathematics dbr:Buchholz's_ordinal dbr:Ramsey's_theorem dbr:Real_number dbr:Second-order_arithmetic dbr:WKL dbr:Low_(computability) dbr:Sylvester–Gallai_theorem dbr:Symbolic_regression dbr:Silver's_dichotomy dbr:Ultrafinitism dbr:Reverse_Mathematics:_Proofs_from_the_Inside_Out dbr:Slicing_the_Truth dbr:S2S_(mathematics) dbr:Arithmetical_transfinite_recursion dbr:Bounded_reverse_mathematics dbr:Weak_Konig's_lemma dbr:Weak_König's_lemma
is dbp:knownFor of dbr:Steve_Simpson_(mathematician)
is foaf:primaryTopic of wikipedia-en:Reverse_mathematics