dbo:abstract |
En mathématiques, un espace séquentiel est un espace topologique dont la topologie est définie par l'ensemble de ses suites convergentes. C'est le cas en particulier pour tout espace à base dénombrable. (fr) In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces (especially metric spaces) are sequential. In any topological space if a convergent sequence is contained in a closed set then the limit of that sequence must be contained in as well. This property is known as sequential closure. Sequential spaces are precisely those topological spaces for which sequentially closed sets are in fact closed. (These definitions can also be rephrased in terms of sequentially open sets; see below.) Said differently, any topology can be described in terms of nets (also known as Moore–Smith sequences), but those sequences may be "too long" (indexed by too large an ordinal) to compress into a sequence. Sequential spaces are those topological spaces for which nets of countable length (i.e., sequences) suffice to describe the topology. Any topology can be refined (that is, made finer) to a sequential topology, called the sequential coreflection of The related concepts of Fréchet–Urysohn spaces, T-sequential spaces, and -sequential spaces are also defined in terms of how a space's topology interacts with sequences, but have subtly different properties. Sequential spaces and -sequential spaces were introduced by S. P. Franklin. (en) In topologia, uno spazio sequenziale è uno spazio topologico che soddisfa un assioma di numerabilità piuttosto debole. Gli spazi sequenziali costituiscono la più generale classe di spazi topologici per la quale le successioni di punti caratterizzano completamente la topologia. (it) 数学の位相空間論関連分野における列型空間(れつけいくうかん、れつがたくうかん、英: sequential space; 列状空間、列性空間)とは、開集合と閉集合が点列の収束で特長づけられる位相空間のことである。この空間上で定義された関数の連続性もまた、点列の収束性で特長づけられる。しかし列型空間であっても閉包の概念は点列の収束で特長づけられるとは限らず、これが可能な列型空間をフレシェ・ウリゾーン空間という。 位相空間が列型空間である必要十分条件はその空間が第一可算公理を満たす空間の商空間となることである。 空間にこうした可算性に関する条件が必要となるのは点列の概念がそもそも可算な全順序列として定義されているからであり、点列から可算性と全順序性の束縛を外した概念である有向点族の概念を用いれば空間に仮定を置くことなく収束で位相構造を特長づけられる。 任意の列型空間はを持つ。 (ja) 일반위상수학에서 점렬 공간(點列空間, 영어: sequential space)은 위상수학적 구조를 그물 대신 점렬만으로 다룰 수 있는 위상 공간이다. 점렬성은 제1 가산 공간의 조건을 매우 약화시킨 것이다. 점렬 공간의 범주는 범주론적으로 여러 좋은 성질들을 갖는다. (ko) In de topologie en aanverwante deelgebieden van de wiskunde, is een sequentiële ruimte een topologische ruimte, die voldoet aan een zeer zwak aftelbaarheidsaxioma. Sequentiële ruimten zijn de meest algemene klasse van ruimten, waarvoor rijen voldoende zijn om de topologie te bepalen. Elke sequentiële ruimte heeft een "telbare krapte". (nl) У топології секвенційним простором називається топологічний простір у якому властивість збіжності чи розбіжності послідовностей повністю визначає топологію. Поняття вперше формально ввів американський математик Стен Френклін у 1965 році. (uk) |
dbo:wikiPageExternalLink |
https://arxiv.org/abs/math/0412558 http://matwbn.icm.edu.pl/ksiazki/fm/fm57/fm5717.pdf http://www.mathnet.ru/links/0411dc60fab54ffac1cb8172e57c8f69/rm5901.pdf%7Caccess-date=10 https://dergipark.org.tr/en/download/article-file/692156%7Caccess-date=10 http://projecteuclid.org/euclid.mmj/1028999711%7Caccess-date=10 http://projecteuclid.org/euclid.pjm/1102779712%7Caccess-date=10 http://matwbn.icm.edu.pl/ksiazki/fm/fm61/fm6115.pdf%7Caccess-date=10 |
dbo:wikiPageID |
4668395 (xsd:integer) |
dbo:wikiPageLength |
28986 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID |
1120680444 (xsd:integer) |
dbo:wikiPageWikiLink |
dbr:Schwartz_space dbr:Metrizable_space dbr:Montel_space dbr:Coreflective_subcategory dbr:DF-space dbr:Limit_ordinal dbr:Complement_(set_theory) dbr:Continuous_dual_space dbr:Mathematics dbr:Noetherian_ring dbr:Second-countable_space dbr:Closure_(topology) dbr:Closure_operator dbc:Properties_of_topological_spaces dbr:Fréchet_space dbr:Fréchet–Urysohn_space dbr:Full_subcategory dbr:Limit_(category_theory) dbr:Limit_(mathematics) dbr:Smooth_function dbr:Stan_Franklin dbr:Closed_set dbr:Functional_analysis dbr:Successor_ordinal dbr:Topological_vector_space dbr:Topological_vector_spaces dbr:Topology dbr:Norman_Steenrod dbr:Product_(category_theory) dbr:Quotient_space_(topology) dbc:General_topology dbr:Cocountable_topology dbr:Differentiable_manifold dbr:Discrete_space dbr:Distribution_(mathematics) dbr:Axiom_of_countability dbr:Final_topology dbr:Continuous_function_(topology) dbr:Idempotence dbr:Indexed_family dbr:Interior_(topology) dbr:Metric_space dbr:Natural_numbers dbr:Neighborhood_basis dbr:Net_(mathematics) dbr:Open_map dbr:Cartesian_closed_category dbr:Category_(mathematics) dbr:Category_of_topological_spaces dbr:Sequence dbr:Exponential_object dbr:Image_(mathematics) dbr:Subspace_topology dbr:Zariski_topology dbr:First-countable_space dbr:First_uncountable_ordinal dbr:Topological_space dbr:Preclosure_operator dbr:T1_space dbr:Strong_dual_space dbr:Kuratowski_closure_operator dbr:Fréchet-Urysohn_space dbr:Pseudometrizable_space dbr:Basis_(topology) dbr:Transfinite_iteration dbr:Weak*_topology dbr:Finer_topology dbr:Countable_tightness dbr:Prime_spectrum dbr:Convergent_sequence dbr:CW-complex dbr:Sequential_continuity dbr:Sequentially_continuous dbr:Surjective_map dbr:Ascoli_space |
dbp:wikiPageUsesTemplate |
dbt:Collist dbt:Align dbt:Anchor dbt:Annotated_link dbt:Cite_journal dbt:Disputed_inline dbt:Em dbt:Main dbt:Mvar dbt:Reflist dbt:See_also dbt:Sfn dbt:Short_description dbt:Slink dbt:Isbn dbt:Trèves_François_Topological_vector_spaces,_distributions_and_kernels dbt:Wilansky_Modern_Methods_in_Topological_Vector_Spaces |
dcterms:subject |
dbc:Properties_of_topological_spaces dbc:General_topology |
gold:hypernym |
dbr:Space |
rdf:type |
owl:Thing yago:WikicatClosureOperators yago:Abstraction100002137 yago:Function113783816 yago:MathematicalRelation113783581 yago:Operator113786413 yago:Possession100032613 yago:Property113244109 yago:Relation100031921 yago:WikicatPropertiesOfTopologicalSpaces |
rdfs:comment |
En mathématiques, un espace séquentiel est un espace topologique dont la topologie est définie par l'ensemble de ses suites convergentes. C'est le cas en particulier pour tout espace à base dénombrable. (fr) In topologia, uno spazio sequenziale è uno spazio topologico che soddisfa un assioma di numerabilità piuttosto debole. Gli spazi sequenziali costituiscono la più generale classe di spazi topologici per la quale le successioni di punti caratterizzano completamente la topologia. (it) 数学の位相空間論関連分野における列型空間(れつけいくうかん、れつがたくうかん、英: sequential space; 列状空間、列性空間)とは、開集合と閉集合が点列の収束で特長づけられる位相空間のことである。この空間上で定義された関数の連続性もまた、点列の収束性で特長づけられる。しかし列型空間であっても閉包の概念は点列の収束で特長づけられるとは限らず、これが可能な列型空間をフレシェ・ウリゾーン空間という。 位相空間が列型空間である必要十分条件はその空間が第一可算公理を満たす空間の商空間となることである。 空間にこうした可算性に関する条件が必要となるのは点列の概念がそもそも可算な全順序列として定義されているからであり、点列から可算性と全順序性の束縛を外した概念である有向点族の概念を用いれば空間に仮定を置くことなく収束で位相構造を特長づけられる。 任意の列型空間はを持つ。 (ja) 일반위상수학에서 점렬 공간(點列空間, 영어: sequential space)은 위상수학적 구조를 그물 대신 점렬만으로 다룰 수 있는 위상 공간이다. 점렬성은 제1 가산 공간의 조건을 매우 약화시킨 것이다. 점렬 공간의 범주는 범주론적으로 여러 좋은 성질들을 갖는다. (ko) In de topologie en aanverwante deelgebieden van de wiskunde, is een sequentiële ruimte een topologische ruimte, die voldoet aan een zeer zwak aftelbaarheidsaxioma. Sequentiële ruimten zijn de meest algemene klasse van ruimten, waarvoor rijen voldoende zijn om de topologie te bepalen. Elke sequentiële ruimte heeft een "telbare krapte". (nl) У топології секвенційним простором називається топологічний простір у якому властивість збіжності чи розбіжності послідовностей повністю визначає топологію. Поняття вперше формально ввів американський математик Стен Френклін у 1965 році. (uk) In topology and related fields of mathematics, a sequential space is a topological space whose topology can be completely characterized by its convergent/divergent sequences. They can be thought of as spaces that satisfy a very weak axiom of countability, and all first-countable spaces (especially metric spaces) are sequential. Any topology can be refined (that is, made finer) to a sequential topology, called the sequential coreflection of Sequential spaces and -sequential spaces were introduced by S. P. Franklin. (en) |
rdfs:label |
Espace séquentiel (fr) Spazio sequenziale (it) 列型空間 (ja) 점렬 공간 (ko) Sequentiële ruimte (nl) Sequential space (en) Секвенційний простір (uk) |
rdfs:seeAlso |
dbr:Topology dbr:Filters |
owl:sameAs |
freebase:Sequential space yago-res:Sequential space wikidata:Sequential space dbpedia-fr:Sequential space dbpedia-he:Sequential space dbpedia-it:Sequential space dbpedia-ja:Sequential space dbpedia-ko:Sequential space dbpedia-nl:Sequential space dbpedia-uk:Sequential space https://global.dbpedia.org/id/2Yvta |
prov:wasDerivedFrom |
wikipedia-en:Sequential_space?oldid=1120680444&ns=0 |
foaf:isPrimaryTopicOf |
wikipedia-en:Sequential_space |
is dbo:wikiPageRedirects of |
dbr:Sequential_closure dbr:Sequential_closure_operator dbr:Fréchet-Uryson_space dbr:N-sequential_space dbr:Sequential_continuity_at_a_point dbr:Sequentially_Hausdorff dbr:Sequentially_closed dbr:Sequentially_continuous dbr:Sequentially_open dbr:T-sequential_space |
is dbo:wikiPageWikiLink of |
dbr:List_of_general_topology_topics dbr:Bornological_space dbr:DF-space dbr:LB-space dbr:Continuous_function dbr:Continuous_linear_operator dbr:General_topology dbr:Pytkeev_space dbr:Fréchet–Urysohn_space dbr:Bounded_operator dbr:Adherent_point dbr:Filters_in_topology dbr:Countably_generated_space dbr:Hereditary_property dbr:Distribution_(mathematics) dbr:Axiom_of_countability dbr:Spaces_of_test_functions_and_distributions dbr:Final_topology dbr:Metric_space dbr:Metrizable_topological_vector_space dbr:Net_(mathematics) dbr:Sequence_covering_map dbr:Sequence_space dbr:Sequential_closure dbr:First-countable_space dbr:Sequential_closure_operator dbr:Preclosure_operator dbr:Sequentially_compact_space dbr:T1_space dbr:Fréchet-Uryson_space dbr:N-sequential_space dbr:Sequential_continuity_at_a_point dbr:Sequentially_Hausdorff dbr:Sequentially_closed dbr:Sequentially_continuous dbr:Sequentially_open dbr:T-sequential_space |
is rdfs:seeAlso of |
dbr:Fréchet–Urysohn_space dbr:Filters_in_topology |
is foaf:primaryTopic of |
wikipedia-en:Sequential_space |