- Jensen, T. J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83, 129–135 (1995).
Article CAS PubMed Google Scholar
- Reits, E. A., Vos, J. C., Gromme, M. & Neefjes, J. The major substrates for TAP in vivo are derived from newly synthesized proteins. Nature 404, 774–778 (2000). In this study the mobility of TAP as determined by FRAP is shown to be a reliable parameter for levels of intracellular peptides.
Article CAS PubMed Google Scholar
- Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404, 770–774 (2000).
Article CAS PubMed Google Scholar
- Yewdell, J. W., Anton, L. C. & Bennink, J. R. Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J. Immunol. 157, 1823–1826 (1996).
CAS PubMed Google Scholar
- Sherman, M. Y. & Goldberg, A. L. Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29, 15–32 (2001). Interesting analysis about the possible relationship between protein folding and neurodegeneration.
Article CAS PubMed Google Scholar
- Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Rev. Neurosci. 4, 49–60 (2003).
Article CAS Google Scholar
- Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).
Article CAS PubMed Google Scholar
- Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).
Article CAS PubMed Google Scholar
- Tomkinson, B. Tripeptidyl peptidases: enzymes that count. Trends Biochem. Sci. 24, 355–359 (1999).
Article CAS PubMed Google Scholar
- Beninga, J., Rock, K. L. & Goldberg, A. L. Interferon-γ can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J. Biol. Chem. 273, 18734–18742 (1998).
Article CAS PubMed Google Scholar
- York, I. A. et al. The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity 18, 429–440 (2003).
Article CAS PubMed Google Scholar
- Walsh, P. N. & Ahmad, S. S. Proteases in blood clotting. Essays Biochem. 38, 95–111 (2002).
Article CAS PubMed Google Scholar
- Budihardjo, I., Oliver, H., Lutter, M., Luo, X. & Wang, X. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15, 269–290 (1999).
Article CAS PubMed Google Scholar
- Brinckerhoff, C. E. & Matrisian, L. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nature Rev. Mol. Cell Biol. 3, 207–214 (2002).
Article CAS Google Scholar
- Xia, W. & Wolfe, M. S. Intramembrane proteolysis by presenilin and presenilin-like proteases. J. Cell Sci. 116, 2839–2844 (2003).
Article CAS PubMed Google Scholar
- Taylor, N. A., Van De Ven, W. J. & Creemers, J. W. Curbing activation: proprotein convertases in homeostasis and pathology. FASEB J. 17, 1215–1227 (2003).
Article CAS PubMed Google Scholar
- Ciechanover, A. & Brundin, P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446 (2003). Comprehensive review about the role of the ubiquitin–proteasome system in neurodegeneration.
Article CAS PubMed Google Scholar
- Schwartz, A. L. & Ciechanover, A. The ubiquitin–proteasome pathway and pathogenesis of human diseases. Annu. Rev. Med. 50, 57–74 (1999).
Article CAS PubMed Google Scholar
- Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. Nature 387, 296–299 (1997).
Article CAS PubMed Google Scholar
- Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).
Article CAS PubMed Google Scholar
- Pagano, M. & Benmaamar, R. When protein destruction runs amok, malignancy is on the loose. Cancer Cell 4, 251–256 (2003). Updated review about aberrant proteolysis in cancer.
Article CAS PubMed Google Scholar
- Rock, K. L. & Goldberg, A. L. Degradation of cell proteins and the generation of MHC class I-presented peptides. Annu. Rev. Immunol. 17, 739–779 (1999).
Article CAS PubMed Google Scholar
- Yewdell, J. W., Reits, E. & Neefjes, J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nature Rev. Immunol. 3, 952–961 (2003).
Article CAS Google Scholar
- Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).
Article CAS PubMed Google Scholar
- LeBlanc, R. et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res. 62, 4996–5000 (2002).
CAS PubMed Google Scholar
- Meng, L. et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl Acad. Sci. USA 96, 10403–10408 (1999).
Article CAS PubMed PubMed Central Google Scholar
- Sunwoo, J. B. et al. Novel proteasome inhibitor PS-341 inhibits activation of nuclear factor-κB, cell survival, tumor growth, and angiogenesis in squamous cell carcinoma. Clin. Cancer Res. 7, 1419–1428 (2001).
CAS PubMed Google Scholar
- Schwarz, K. et al. The selective proteasome inhibitors lactacystin and epoxomicin can be used to either up- or down-regulate antigen presentation at nontoxic doses. J. Immunol. 164, 6147–6157 (2000).
Article CAS PubMed Google Scholar
- Paramore, A. & Frantz, S. Bortezomib. Nature Rev. Drug Discov. 2, 611–612 (2003).
Article CAS Google Scholar
- Aghajanian, C. et al. A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin. Cancer Res. 8, 2505–2511 (2002).
CAS PubMed Google Scholar
- Andre, P. et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc. Natl Acad. Sci. USA 95, 13120–13124 (1998). First paper reporting that the HIV-1 protease inhibitor ritonavir modifies proteasome activity.
Article CAS PubMed PubMed Central Google Scholar
- Liang, J. S. et al. HIV protease inhibitors protect apolipoprotein B from degradation by the proteasome: a potential mechanism for protease inhibitor-induced hyperlipidemia. Nature Med. 7, 1327–1331 (2001).
Article CAS PubMed Google Scholar
- Pati, S. et al. Antitumorigenic effects of HIV protease inhibitor ritonavir: inhibition of Kaposi sarcoma. Blood 99, 3771–3779 (2002).
Article CAS PubMed Google Scholar
- Pajonk, F., Himmelsbach, J., Riess, K., Sommer, A. & McBride, W. H. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res. 62, 5230–5235 (2002).
CAS PubMed Google Scholar
- Bogyo, M. et al. Covalent modification of the active site threonine of proteasomal β subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proc. Natl Acad. Sci. USA 94, 6629–6634 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Fenteany, G. et al. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268, 726–731 (1995).
Article CAS PubMed Google Scholar
- Kisselev, A. F. & Goldberg, A. L. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 8, 739–758 (2001).
Article CAS PubMed Google Scholar
- Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Breitschopf, K., Bengal, E., Ziv, T., Admon, A. & Ciechanover, A. A novel site for ubiquitination: the N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO J. 17, 5964–5973 (1998).
Article CAS PubMed PubMed Central Google Scholar
- Bloom, J., Amador, V., Bartolini, F., DeMartino, G. & Pagano, M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 115, 71–82 (2003).
Article CAS PubMed Google Scholar
- Pickart, C. M. Mechanisms underlying ubiquitination. Annu Rev. Biochem. 70, 503–533 (2001).
Article CAS PubMed Google Scholar
- Laney, J. & Hochstrasser, M. Substrate targeting in the ubiquitin system. Cell 97, 427–430 (1999).
Article CAS PubMed Google Scholar
- Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).
Article CAS PubMed Google Scholar
- Dantuma, N. P., Lindsten, K., Glas, R., Jellne, M. & Masucci, M. G. Short-lived green fluorescent proteins for quantification of ubiquitin/proteasome-dependent proteolysis in living cells. Nature Biotechnol. 18, 538–543 (2000). N-end rule and UFD–GFP-based reporters for the ubiquitin–proteasome system.
Article CAS Google Scholar
- Bachmair, A., Finley, D. & Varshavsky, A. In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179–186 (1986).
Article CAS PubMed Google Scholar
- Johnson, E. S., Ma, P. C., Ota, I. M. & Varshavsky, A. A proteolytic pathway that recognizes ubiquitin as a degradation signal. J. Biol. Chem. 270, 17442–17456 (1995).
Article CAS PubMed Google Scholar
- Varshavsky, A. The N-end rule: functions, mysteries, uses. Proc. Natl Acad. Sci. USA 93, 12142–12149 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Stack, J. H., Whitney, M., Rodems, S. M. & Pollok, B. A. A ubiquitin-based tagging system for controlled modulation of protein stability. Nature Biotechnol. 18, 1298–1302 (2000).
Article CAS Google Scholar
- Gilon, T., Chomsky, O. & Kulka, R. G. Degradation signals for ubiquitin system proteolysis in Saccharomyces cerevisiae. EMBO J. 17, 2759–2766 (1998). Description of an elegant screen for identifying degradation signals.
Article CAS PubMed PubMed Central Google Scholar
- Bence, N. F., Sampat, R. M. & Kopito, R. R. Impairment of the ubiquitin–proteasome system by protein aggregation. Science 292, 1552–1555 (2001). The CL1–GFP reporter for the ubiquitin–proteasome system revealed impairment of the ubiquitin–proteasome system as a consequence of aggregate formation.
Article CAS PubMed Google Scholar
- Gilon, T., Chomsky, O. & Kulka, R. G. Degradation signals recognized by the Ubc6p–Ubc7p ubiquitin-conjugating enzyme pair. Mol. Cell. Biol. 20, 7214–7219 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Plemper, R. K. & Wolf, D. H. Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem. Sci. 24, 266–270 (1999).
Article CAS PubMed Google Scholar
- Ploegh, H. L. Viral strategies of immune evasion. Science 280, 248–253 (1998).
Article CAS PubMed Google Scholar
- Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432–438 (1996).
Article CAS PubMed Google Scholar
- Wiertz, E. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769–779 (1996).
Article CAS PubMed Google Scholar
- Kessler, B. M. et al. Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic β-subunits. Chem. Biol. 8, 913–929 (2001). Co-expression of GFP-tagged MHC class I and the viral US11 as reporter system for the ubiquitin–proteasome system.
Article CAS PubMed Google Scholar
- Myung, J., Kim, K. B., Lindsten, K., Dantuma, N. P. & Crews, C. M. Lack of proteasome active site allostery as revealed by subunit-specific inhibitors. Mol. Cell 7, 411–420 (2001). An illustration of how GFP-based reporters in combination with other in vitro assays can reveal information about the mode of action of the proteasome.
Article CAS PubMed Google Scholar
- Lee, D. H. & Goldberg, A. L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8, 397–403 (1998).
Article CAS PubMed Google Scholar
- Friant, S., Meier, K. D. & Riezman, H. Increased ubiquitin-dependent degradation can replace the essential requirement for heat shock protein induction. EMBO J. 22, 3783–3791 (2003).
Article CAS PubMed PubMed Central Google Scholar
- Dantuma, N., Heessen, S., Lindsten, K., Jellne, M. & Masucci, M. G. Inhibition of proteasomal degradation by the Gly–Ala repeat of Epstein–Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc. Natl Acad. Sci. USA 97, 8381–8385 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Verhoef, L. G., Lindsten, K., Masucci, M. G. & Dantuma, N. P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Hum. Mol. Genet. 11, 2689–2700 (2002).
Article CAS PubMed Google Scholar
- Zoghbi, H. Y. & Orr, H. T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23, 217–247 (2000).
Article CAS PubMed Google Scholar
- Levitskaya, J., Sharipo, A., Leonchiks, A., Ciechanover, A. & Masucci, M. G. Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly–Ala repeat domain of the Epstein–Barr virus nuclear antigen 1. Proc. Natl Acad. Sci. USA 94, 12616–12621 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Sharipo, A., Imreh, M., Leonchiks, A., Imreh, S. & Masucci, M. G. A minimal glycine–alanine repeat prevents the interaction of ubiquitinated IκBα with the proteasome: a new mechanism for selective inhibition of proteolysis. Nature Med. 4, 939–944 (1998).
Article CAS PubMed Google Scholar
- Cummings, C. J. et al. Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 24, 879–892 (1999).
Article CAS PubMed Google Scholar
- Dantuma, N. P. & Masucci, M. G. Stabilization signals: a novel regulatory mechanism in the ubiquitin/proteasome system. FEBS Lett. 529, 22–26 (2002).
Article CAS PubMed Google Scholar
- Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).
Article CAS PubMed Google Scholar
- Hadjantonakis, A. K. & Nagy, A. The color of mice: in the light of GFP-variant reporters. Histochem. Cell Biol. 115, 49–58 (2001).
Article CAS PubMed Google Scholar
- Huang, W. Y., Aramburu, J., Douglas, P. S. & Izumo, S. Transgenic expression of green fluorescence protein can cause dilated cardiomyopathy. Nature Med. 6, 482–483 (2000).
Article CAS PubMed Google Scholar
- Lindsten, K., Menendez-Benito, V., Masucci, M. G. & Dantuma, N. P. A transgenic mouse model of the ubiquitin/proteasome system. Nature Biotechnol. 21, 897–902 (2003). The UFD–GFP reporter substrate was used for the generation of the first transgenic mouse model of the ubiquitin–proteasome system.
Article CAS Google Scholar
- Luker, G. D., Pica, C. M., Song, J., Luker, K. E. & Piwnica-Worms, D. Imaging 26S proteasome activity and inhibition in living mice. Nature Med. 9, 969–973 (2003). In vivo monitoring of the ubiquitin–proteasome system with a xenotransplantation model.
Article CAS PubMed Google Scholar
- Hernández, F., Díaz-Hernández, M., Avila, J. & Lucas, J. J. Testing the ubiquitin–proteasome hypothesis of neurodegeneration in vivo. Trends Neurosci. (in the press).
- Petrucelli, L. et al. Parkin protects against the toxicity associated with mutant α-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 1007–1019 (2002).
Article CAS PubMed Google Scholar
- Lindsten, K. et al. Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J. Cell Biol. 157, 417–427 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Lindsten, K. & Dantuma, N. P. Monitoring the ubiquitin/proteasome system in conformational diseases. Ageing Res. Rev. 2, 433–449 (2003).
Article CAS PubMed Google Scholar
- Rubinsztein, D. C. Lessons from animal models of Huntington's disease. Trends Genet. 18, 202–209 (2002).
Article CAS PubMed Google Scholar
- Wong, P. C., Cai, H., Borchelt, D. R. & Price, D. L. Genetically engineered mouse models of neurodegenerative diseases. Nature Neurosci. 5, 633–639 (2002).
Article CAS PubMed Google Scholar
- Michalik, A. & Van Broeckhoven, C. Pathogenesis of polyglutamine disorders: aggregation revisited. Hum. Mol. Genet. 12, R173–186 (2003).
Article CAS PubMed Google Scholar
- Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nature Biotechnol. 21, 1387–1395 (2003). Detailed technical review about FRET.
Article CAS Google Scholar
- Reits, E. et al. Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 18, 97–108 (2003). Internally quenched peptide substrates were used to study stability and turnover of peptides in cells.
Article CAS PubMed Google Scholar
- Honey, K. & Rudensky, A. Y. Lysosomal cysteine proteases regulate antigen presentation. Nature Rev. Immunol. 3, 472–482 (2003).
Article CAS Google Scholar
- Desnick, R. J. & Schuchman, E. H. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nature Rev. Genet. 3, 954–966 (2002).
Article CAS PubMed Google Scholar
- Edwards, D. R. & Murphy, G. Cancer. Proteases — invasion and more. Nature 394, 527–528 (1998).
Article CAS PubMed Google Scholar
- Thurmond, R. L. et al. Identification of a potent and selective noncovalent cathepsin S inhibitor. J. Pharmacol. Exp. Ther. (2003) [epub ahead of print].
- Saegusa, K. et al. Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity. J. Clin. Invest. 110, 361–369 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Coussens, L. M., Fingleton, B. & Matrisian, L. M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295, 2387–2392 (2002).
Article CAS PubMed Google Scholar
- Overall, C. M. & Lopez-Otin, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nature Rev. Cancer 2, 657–672 (2002).
Article CAS Google Scholar
- Weissleder, R., Tung, C. H., Mahmood, U. & Bogdanov, A. Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nature Biotechnol. 17, 375–378 (1999). NIRF probe for monitoring cathepsin activity in tumours.
Article CAS Google Scholar
- Callahan, R. J., Bogdanov, A. Jr, Fischman, A. J., Brady, T. J. & Weissleder, R. Preclinical evaluation and phase I clinical trial of a 99mTc-labeled synthetic polymer used in blood pool imaging. Am. J. Roentgenol. 171, 137–143 (1998).
Article CAS Google Scholar
- Mahmood, U., Tung, C. H., Bogdanov, A. Jr & Weissleder, R. Near-infrared optical imaging of protease activity for tumor detection. Radiology 213, 866–870 (1999).
Article CAS PubMed Google Scholar
- Bremer, C., Tung, C. H., Bogdanov, A. Jr & Weissleder, R. Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes. Radiology 222, 814–818 (2002).
Article PubMed Google Scholar
- Chen, J. et al. In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105, 2766–2771 (2002).
Article PubMed Google Scholar
- Tung, C. H., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).
CAS PubMed Google Scholar
- Bremer, C., Tung, C. H. & Weissleder, R. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nature Med. 7, 743–748 (2001). NIRF probe was used to monitor MMP activity in vivo.
Article CAS PubMed Google Scholar
- Zucker, S. & Cao, J. Imaging metalloproteinase activity in vivo. Nature Med. 7, 655–656 (2001).
Article CAS PubMed Google Scholar
- Josephson, L., Mahmood, U., Wunderbaldinger, P., Tang, Y. & Weissleder, R. Pan and sentinel lymph node visualization using a near-infrared fluorescent probe. Mol. Imaging 2, 18–23 (2003).
Article PubMed Google Scholar
- Wunderbaldinger, P., Turetschek, K. & Bremer, C. Near-infrared fluorescence imaging of lymph nodes using a new enzyme sensing activatable macromolecular optical probe. Eur. Radiol. 13, 2206–2211 (2003).
Article PubMed Google Scholar
- Sameni, M., Moin, K. & Sloane, B. F. Imaging proteolysis by living human breast cancer cells. Neoplasia 2, 496–504 (2000).
Article CAS PubMed PubMed Central Google Scholar
- Baum, E. Z., Bebernitz, G. A. & Gluzman, Y. β-Galactosidase containing a human immunodeficiency virus protease cleavage site is cleaved and inactivated by human immunodeficiency virus protease. Proc. Natl Acad. Sci. USA 87, 10023–10027 (1990).
Article CAS PubMed PubMed Central Google Scholar
- Block, T. M. & Grafstrom, R. H. Novel bacteriological assay for detection of potential antiviral agents. Antimicrob. Agents Chemother. 34, 2337–2341 (1990).
Article CAS PubMed PubMed Central Google Scholar
- Tsien, R. Y. The green fluorescent protein. Annu Rev. Biochem. 67, 509–544 (1998).
Article CAS PubMed Google Scholar
- Yuan, J. & Yankner, B. A. Apoptosis in the nervous system. Nature 407, 802–809 (2000).
Article CAS PubMed Google Scholar
- Johnstone, R. W., Ruefli, A. A. & Lowe, S. W. Apoptosis: a link between cancer genetics and chemotherapy. Cell 108, 153–164 (2002).
Article CAS PubMed Google Scholar
- Reed, J. C. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol. Med. 7, 314–319 (2001).
Article CAS PubMed Google Scholar
- Xu, X. et al. Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res. 26, 2034–2035 (1998). GFP-based FRET reporter for caspases.
Article CAS PubMed PubMed Central Google Scholar
- van Roessel, P. & Brand, A. H. Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nature Cell Biol. 4, E15–20 (2002).
Article CAS PubMed Google Scholar
- Rehm, M. et al. Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J. Biol. Chem. 277, 24506–24514 (2002).
Article CAS PubMed Google Scholar
- Onuki, R. et al. Confirmation by FRET in individual living cells of the absence of significant amyloid β-mediated caspase 8 activation. Proc. Natl Acad. Sci. USA 99, 14716–14721 (2002).
Article CAS PubMed PubMed Central Google Scholar
- Harpur, A. G., Wouters, F. S. & Bastiaens, P. I. Imaging FRET between spectrally similar GFP molecules in single cells. Nature Biotechnol. 19, 167–169 (2001). FLIM method for imaging FRET between similar fluorescent proteins in a caspase probe.
Article CAS Google Scholar
- Lee, P., Beem, E. & Segal, M. S. Marker for real-time analysis of caspase activity in intact cells. Biotechniques 33, 1284–1287, 1289–1291 (2002). A modified N-end rule proteasome substrate, whose stability is regulated by caspase cleavage.
Article CAS PubMed Google Scholar
- Hellen, C. U. Assay methods for retroviral proteases. Methods Enzymol. 241, 46–58 (1994).
Article CAS PubMed Google Scholar
- Vogt, V. M. Proteolytic processing and particle maturation. Curr. Top. Microbiol. Immunol. 214, 95–131 (1996).
CAS PubMed Google Scholar
- Carr, A. Toxicity of antiretroviral therapy and implications for drug development. Nature Rev. Drug Discov. 2, 624–634 (2003).
Article CAS Google Scholar
- Molla, A. et al. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nature Med. 2, 760–766 (1996).
Article CAS PubMed Google Scholar
- Strack, P. R. et al. Apoptosis mediated by HIV protease is preceded by cleavage of Bcl-2. Proc. Natl Acad. Sci. USA 93, 9571–9576 (1996).
Article CAS PubMed PubMed Central Google Scholar
- Shoeman, R. L. et al. Human immunodeficiency virus type 1 protease cleaves the intermediate filament proteins vimentin, desmin, and glial fibrillary acidic protein. Proc. Natl Acad. Sci. USA 87, 6336–6340 (1990).
Article CAS PubMed PubMed Central Google Scholar
- Lindsten, K., Uhlikova, T., Konvalinka, J., Masucci, M. G. & Dantuma, N. P. Cell-based fluorescence assay for human immunodeficiency virus type 1 protease activity. Antimicrob. Agents Chemother. 45, 2616–2622 (2001). GFP probe for HIV-1 protease based on a GFP-protease precursor.
Article CAS PubMed PubMed Central Google Scholar
- Lamarre, D. et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 26, 186–189 (2003).
Article CAS Google Scholar
- Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300, 1763–1767 (2003).
Article CAS PubMed Google Scholar
- Reits, E. A., Griekspoor, A. C. & Neefjes, J. How does TAP pump peptides? Insights from DNA repair and traffic ATPases. Immunol. Today 21, 598–600 (2000).
Article CAS PubMed Google Scholar
- Reits, E. A. & Neefjes, J. J. From fixed to FRAP: measuring protein mobility and activity in living cells. Nature Cell Biol. 3, E145–147 (2001).
Article CAS PubMed Google Scholar
- Dykxhoorn, D. M., Novina, C. D. & Sharp, P. A. Killing the messenger: short RNAs that silence gene expression. Nature Rev. Mol. Cell Biol. 4, 457–467 (2003).
Article CAS Google Scholar
- Kessler, B. et al. Pathways accessory to proteasomal proteolysis are less efficient in major histocompatibility complex class I antigen production. J. Biol. Chem. 278, 10013–10021 (2003).
Article CAS PubMed Google Scholar
- Förster, T. Zwischenmolekulare energiewandering und fluoreszenz. Annalen Physik. 6, 55–75 (1948).
Article Google Scholar
- Rudolphi, K., Gerwin, N., Verzijl, N., van der Kraan, P. & van den Berg, W. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage 11, 738–746 (2003).
Article CAS PubMed Google Scholar
- Whelan, J. Caspase inhibitors for liver disease. Drug Discov. Today 7, 444–445 (2002).
Article PubMed Google Scholar
- Menendez–Arias, L. Targeting HIV: antiretroviral therapy and development of drug resistance. Trends Pharmacol. Sci. 23, 381–388 (2002).
Article PubMed Google Scholar
- Matz, M. V. et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature Biotechnol. 17, 969–973 (1999).
Article CAS Google Scholar