RNA sequencing: the teenage years (original) (raw)
Emrich, S. J., Barbazuk, W. B., Li, L. & Schnable, P. S. Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res.17, 69–73 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mortazavi, A., Williams, B. A., Mccue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods5, 621–628 (2008). ArticleCASPubMed Google Scholar
Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. & Gilad, Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res.18, 1509–1517 (2008). ArticleCASPubMedPubMed Central Google Scholar
Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods5, 613–619 (2008). ArticleCASPubMed Google Scholar
Li, W., Notani, D. & Rosenfeld, M. G. Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nat. Rev. Genet.17, 207–223 (2016). ArticleCASPubMed Google Scholar
Garalde, D. R. et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods15, 201–206 (2018). The first report of Oxford Nanopore direct sequencing of RNA molecules without reverse transcription or amplification. It reports full-length, strand-specific RNA sequencing and detection of RNA nucleotide analogues. ArticleCASPubMed Google Scholar
Byrne, A. et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun.8, 16027 (2017). ArticleCASPubMedPubMed Central Google Scholar
Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol.31, 1009–1014 (2013). ArticleCASPubMedPubMed Central Google Scholar
Cartolano, M., Huettel, B., Hartwig, B., Reinhardt, R. & Schneeberger, K. cDNA library enrichment of full length transcripts for SMRT long read sequencing. PLOS ONE11, e0157779 (2016). A paper comparing the performance of reverse transcriptases for long-read RNA-seq, using Pacific Biosciences Iso-Seq, and discussing the challenges of sequencing full-length transcripts, due to RNA degradation, shearing and incomplete cDNA synthesis. ArticleCASPubMedPubMed Central Google Scholar
Dard-Dascot, C. et al. Systematic comparison of small RNA library preparation protocols for next-generation sequencing. BMC Genomics19, 118 (2018). ArticleCASPubMedPubMed Central Google Scholar
Giraldez, M. D. et al. Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol.36, 746–757 (2018). ArticleCASPubMedPubMed Central Google Scholar
Creecy, J. P. & Conway, T. Quantitative bacterial transcriptomics with RNA-seq. Curr. Opin. Microbiol.23, 133–140 (2015). ArticleCASPubMed Google Scholar
Hör, J., Gorski, S. A. & Vogel, J. Bacterial RNA biology on a genome scale. Mol. Cell70, 785–799 (2018). ArticleCASPubMed Google Scholar
Schwartz, S. & Motorin, Y. Next-generation sequencing technologies for detection of modified nucleotides in RNAs. RNA Biol.14, 1124–1137 (2017). ArticlePubMed Google Scholar
Leinonen, R., Sugawara, H. & Shumway, M. The sequence read archive. Nucleic Acids Res.39, D19–D21 (2011). ArticleCASPubMed Google Scholar
Su, Z. et al. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol.32, 903–914 (2014). A thorough comparison of RNA-seq platforms and methods, which assesses multiple performance and quality metrics using cell line and control RNAs across multiple sequencing instruments and multiple laboratories. ArticleCAS Google Scholar
Li, S. et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat. Biotechnol.32, 915–925 (2014). ArticleCASPubMedPubMed Central Google Scholar
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res.47, D766–D773 (2019). ArticleCASPubMed Google Scholar
Piovesan, A., Caracausi, M., Antonaros, F., Pelleri, M. C. & Vitale, L. GeneBase 1.1: a tool to summarize data from NCBI Gene datasets and its application to an update of human gene statistics. Database2016, baw153 (2016). ArticlePubMedPubMed Central Google Scholar
Gazzoli, I. et al. Non-sequential and multi-step splicing of the dystrophin transcript. RNA Biol.13, 290–305 (2016). ArticlePubMed Google Scholar
Tilgner, H. et al. Microfluidic isoform sequencing shows widespread splicing coordination in the human transcriptome. Genome Res.28, 231–242 (2018). ArticleCASPubMedPubMed Central Google Scholar
Wu, I., Ben-yehezkel, T., Genomics, L. & Jose, S. A. Single-molecule long-read survey of human transcriptomes using LoopSeq synthetic long read sequencing. Preprint at bioRxivhttps://doi.org/10.1101/532135 (2019). Article Google Scholar
Fu, G. K., Hu, J., Wang, P.-H. & Fodor, S. P. Counting individual DNA molecules by the stochastic attachment of diverse labels. Proc. Natl Acad. Sci. USA108, 9026–9031 (2011). ArticlePubMedPubMed Central Google Scholar
Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods9, 72–74 (2011). ArticleCASPubMed Google Scholar
Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods11, 163–166 (2014). ArticleCASPubMed Google Scholar
Oikonomopoulos, S., Wang, Y. C., Djambazian, H., Badescu, D. & Ragoussis, J. Benchmarking of the Oxford Nanopore MinION sequencing for quantitative and qualitative assessment of cDNA populations. Sci. Rep.6, 31602 (2016). ArticleCASPubMedPubMed Central Google Scholar
Thomas, S., Underwood, J. G., Tseng, E. & Holloway, A. K. Long-read sequencing of chicken transcripts and identification of new transcript isoforms. PLOS ONE9, e94650 (2014). ArticleCASPubMedPubMed Central Google Scholar
Matz, M. et al. Amplification of cDNA ends based on template-switching effect and step-out PCR. Proc. Natl Acad. Sci. USA27, 1558–1560 (1999). CAS Google Scholar
Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol.30, 777–782 (2012). ArticleCASPubMedPubMed Central Google Scholar
Ardui, S., Ameur, A., Vermeesch, J. R. & Hestand, M. S. Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical. Nucleic Acids Res.46, 2159–2168 (2018). ArticleCASPubMedPubMed Central Google Scholar
Bolisetty, M. T., Rajadinakaran, G. & Graveley, B. R. Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol.16, 204 (2015). ArticleCASPubMedPubMed Central Google Scholar
Prazsák, I. et al. Long-read sequencing uncovers a complex transcriptome topology in varicella zoster virus. BMC Genomics19, 873 (2018). ArticleCASPubMedPubMed Central Google Scholar
Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol.17, 239 (2016). ArticleCASPubMedPubMed Central Google Scholar
Weirather, J. L. et al. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Res.6, 100 (2017). A paper providing an assessment of the power of long-read sequencing in transcriptome analysis. It reports hybrid sequencing through the combination of Illumina short reads with Pacific Biosciences or Nanopore long reads. ArticlePubMedPubMed Central Google Scholar
Wongsurawat, T., Jenjaroenpun, P., Wassenaar, T. M. & Taylor, D. Decoding the epitranscriptional landscape from native RNA sequences. Preprint at bioRxivhttps://doi.org/10.1101/487819 (2018). Article Google Scholar
Tilgner, H., Grubert, F., Sharon, D. & Snyder, M. P. Defining a personal, allele-specific, and single-molecule long-read transcriptome. Proc. Natl Acad. Sci. USA111, 9869–9874 (2014). ArticleCASPubMedPubMed Central Google Scholar
Au, K. F. et al. Characterization of the human ESC transcriptome by hybrid sequencing. Proc. Natl Acad. Sci. USA110, E4821–E4830 (2013). ArticleCASPubMedPubMed Central Google Scholar
Sahraeian, S. M. E. et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis. Nat. Commun.8, 59 (2017). A paper that assesses RNA-seq workflows that incorporate RNA variant calling, editing and fusion detection, covering both short- and long-read RNA-seq methods, and that benchmarks 39 analysis tools. ArticleCASPubMedPubMed Central Google Scholar
Kohli, M. et al. Androgen receptor variant AR-V9 is coexpressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance. Clin. Cancer Res.23, 4704–4715 (2017). ArticleCASPubMedPubMed Central Google Scholar
Quail, M. A. et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics13, 341 (2012). ArticleCASPubMedPubMed Central Google Scholar
Nottingham, R. M. et al. RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA22, 597–613 (2016). ArticleCASPubMedPubMed Central Google Scholar
Zhao, C., Liu, F. & Pyle, A. M. An ultra-processive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA24, 185–193 (2017). Google Scholar
Antipov, D., Korobeynikov, A., McLean, J. S. & Pevzner, P. A. HybridSPAdes: an algorithm for hybrid assembly of short and long reads. Bioinformatics32, 1009–1015 (2016). ArticleCASPubMed Google Scholar
Morlan, J. D., Qu, K. & Sinicropi, D. V. Selective depletion of rRNA enables whole transcriptome profiling of archival fixed tissue. PLOS ONE7, e42882 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chen, Z. & Duan, X. Ribosomal RNA depletion for massively parallel bacterial RNA-sequencing applications. Methods Mol. Biol.733, 93–103 (2011). ArticleCASPubMed Google Scholar
Herbert, Z. T. et al. Cross-site comparison of ribosomal depletion kits for Illumina RNAseq library construction. BMC Genomics19, 199 (2018). ArticleCASPubMedPubMed Central Google Scholar
Zhao, W. et al. Comparison of RNA-Seq by poly (A) capture, ribosomal RNA depletion, and DNA microarray for expression profiling. BMC Genomics15, 419 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zhao, S., Zhang, Y., Gamini, R., Zhang, B. & Von Schack, D. Evaluation of two main RNA-seq approaches for gene quantification in clinical RNA sequencing: PolyA+ selection versus rRNA depletion. Sci. Rep.8, 4781 (2018). ArticleCASPubMedPubMed Central Google Scholar
Fullwood, M. J., Wei, C., Liu, E. T. & Ruan, Y. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res.19, 521–532 (2009). ArticleCASPubMedPubMed Central Google Scholar
Chen, W. et al. Alternative polyadenylation: methods, findings, and impacts. Genomics Proteomics Bioinformatics15, 287–300 (2017). ArticlePubMedPubMed Central Google Scholar
Shepard, P. J., Choi, E., Lu, J., Flanagan, L. A. & Hertel, K. J. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA17, 761–772 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chang, H., Lim, J., Ha, M. & Kim, V. N. TAIL-seq: genome-wide determination of poly(A) tail length and 3΄ end modifications. Mol. Cell53, 1044–1052 (2014). ArticleCASPubMed Google Scholar
Murata, M. et al. Detecting expressed genes using CAGE. Methods Mol. Biol.1164, 67–85 (2014). ArticleCASPubMed Google Scholar
Batut, P., Dobin, A., Plessy, C., Carninci, P. & Gingeras, T. R. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Res.23, 169–180 (2013). ArticleCASPubMedPubMed Central Google Scholar
Islam, S. et al. Highly multiplexed and strand-specific single-cell RNA 5΄ end sequencing. Nat. Protoc.7, 813–828 (2012). ArticleCASPubMed Google Scholar
The FANTOM Consortium & The RIKEN PMI and CLST (DGT). A promoter-level mammalian expression atlas. Nature507, 462–470 (2014). ArticleCAS Google Scholar
Adiconis, X. et al. Comprehensive comparative analysis of 5΄-end RNA-sequencing methods. Nat. Methods15, 505–511 (2018). A primary reference for users considering CAGE or similar methods. ArticleCASPubMedPubMed Central Google Scholar
Parekh, S., Ziegenhain, C., Vieth, B., Enard, W. & Hellmann, I. The impact of amplification on differential expression analyses by RNA-seq. Sci. Rep.6, 25533 (2016). ArticleCASPubMedPubMed Central Google Scholar
Hong, J. & Gresham, D. Incorporation of unique molecular identifiers in TruSeq adapters improves the accuracy of quantitative sequencing. Biotechniques63, 221–226 (2017). ArticleCASPubMedPubMed Central Google Scholar
Fu, Y., Wu, P.-H., Beane, T., Zamore, P. D. & Weng, Z. Elimination of PCR duplicates in RNA-seq and small RNA-seq using unique molecular identifiers. BMC Genomics19, 531 (2018). A paper reporting that the majority of RNA-seq duplicates are driven by RNA input rather than sequencing depth and PCR cycles. It also shows that computational removal of duplicates can have unintended consequences on the analysis results. ArticleCASPubMedPubMed Central Google Scholar
Ziegenhain, C. et al. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell65, 631–643 (2017). A comparison of six scRNA-seq methods that describes the pros and cons of the various approaches and is an excellent introduction to scRNA-seq. ArticleCASPubMed Google Scholar
Romero, I. G., Pai, A. A., Tung, J. & Gilad, Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol.12, 42 (2014). ArticleCAS Google Scholar
Cieslik, M. et al. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res.25, 1372–1381 (2015). ArticleCASPubMedPubMed Central Google Scholar
Adiconis, X. et al. Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat. Methods10, 623–629 (2013). A paper covering many of the factors that users with low-quality samples must consider before starting RNA-seq experiments. ArticleCASPubMedPubMed Central Google Scholar
Schuierer, S. et al. A comprehensive assessment of RNA-seq protocols for degraded and low-quantity samples. BMC Genomics18, 442 (2017). ArticleCASPubMedPubMed Central Google Scholar
Hodges, E. et al. Genome-wide in situ exon capture for selective resequencing. Nat. Genet.39, 1522–1527 (2007). ArticleCASPubMed Google Scholar
Li, W. et al. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis. BMC Genomics16, 1069 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lamarre, S. et al. Optimization of an RNA-Seq differential gene expression analysis depending on biological replicate number and library size. Front. Plant Sci.9, 108 (2018). ArticlePubMedPubMed Central Google Scholar
Hansen, K. D., Wu, Z., Irizarry, R. A. & Leek, J. T. Sequencing technology does not eliminate biological variability. Nat. Biotechnol.29, 572–573 (2011). Required reading for anyone considering RNA-seq or other -omics technologies. A well-written reminder of why quantitative RNA experiments will always need replicates, even if RNA assay technologies were perfect. The authors caution users against being over-enthusiastic about new technologies and discarding lessons learned about experimental design. ArticleCASPubMedPubMed Central Google Scholar
Norton, S. S., Vaquero-Garcia, J., Lahens, N. F., Grant, G. R. & Barash, Y. Outlier detection for improved differential splicing quantification from RNA-Seq experiments with replicates. Bioinformatics34, 1488–1497 (2017). ArticleCASPubMed Central Google Scholar
Busby, M. A., Stewart, C., Miller, C. A., Grzeda, K. R. & Marth, G. T. Scotty: a web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics29, 656–657 (2013). ArticleCASPubMedPubMed Central Google Scholar
Wu, Z. & Wu, H. in Statistical Genomics: Methods and Protocols (eds Mathé, E. & Davis, S.) 379–390 (Humana Press, 2016).
Wu, H., Wang, C. & Wu, Z. PROPER: comprehensive power evaluation for differential expression using RNA-seq. Bioinformatics31, 233–241 (2015). ArticleCASPubMed Google Scholar
Gaye, A. Extending the R Library PROPER to enable power calculations for isoform-level analysis with EBSeq. Front. Genet.7, 225 (2017). ArticleCASPubMedPubMed Central Google Scholar
Schurch, N. J. et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA22, 1641–1641 (2016). ArticleCASPubMedPubMed Central Google Scholar
Montgomery, S. B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature464, 773–777 (2010). ArticleCASPubMed Google Scholar
Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol.17, 13 (2016). An overview of computational tools and methods used in RNA-seq analysis. ArticleCASPubMedPubMed Central Google Scholar
Lei, R., Ye, K., Gu, Z. & Sun, X. Diminishing returns in next-generation sequencing (NGS) transcriptome data. Gene557, 82–87 (2014). ArticleCASPubMed Google Scholar
Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics12, 323 (2011). ArticleCASPubMedPubMed Central Google Scholar
Chhangawala, S., Rudy, G., Mason, C. E. & Rosenfeld, J. A. The impact of read length on quantification of differentially expressed genes and splice junction detection. Genome Biol.16, 131 (2015). ArticleCASPubMedPubMed Central Google Scholar
Katz, Y., Wang, E. T., Airoldi, E. M. & Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods7, 1009–1015 (2010). ArticleCASPubMedPubMed Central Google Scholar
Alamancos, G. P., Agirre, E. & Eyras, E. Methods to study splicing from high-throughput RNA sequencing data. Methods Mol. Biol.1126, 357–397 (2014). ArticleCASPubMed Google Scholar
Seyednasrollah, F., Laiho, A. & Elo, L. L. Comparison of software packages for detecting differential expression in RNA-seq studies. Brief. Bioinform.16, 59–70 (2013). ArticleCASPubMedPubMed Central Google Scholar
Williams, C. R., Baccarella, A., Parrish, J. Z. & Kim, C. C. Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-seq. BMC Bioinformatics18, 38 (2017). A useful overview of several popular computational analysis tools and how they can be used in combination. ArticleCASPubMedPubMed Central Google Scholar
Cock, P. J. A., Fields, C. J., Goto, N., Heuer, M. L. & Rice, P. M. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res.38, 1767–1771 (2010). ArticleCASPubMed Google Scholar
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol.14, R36 (2013). ArticleCASPubMedPubMed Central Google Scholar
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, (15–21 (2013). Google Scholar
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol.28, 511–515 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pertea, M., Kim, D., Pertea, G., Leek, J. T. & Steven, L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie, and Ballgown. Nat. Protoc.11, 1650–1667 (2017). ArticleCAS Google Scholar
Xie, Y. et al. SOAPdenovo-Trans: De novo transcriptome assembly with short RNA-Seq reads. Bioinformatics30, 1660–1666 (2014). ArticleCASPubMed Google Scholar
Patro, R., Mount, S. M. & Kingsford, C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol.32, 462–464 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.34, 4–8 (2016). Google Scholar
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14, 417–419 (2017). ArticleCASPubMedPubMed Central Google Scholar
Wu, D. C., Yao, J., Ho, K. S., Lambowitz, A. M. & Wilke, C. O. Limitations of alignment-free tools in total RNA-seq quantification. BMC Genomics19, 510 (2018). A useful comparison of popular mRNA-seq analysis methods, with particular emphasis on alignment-free tools. ArticleCASPubMedPubMed Central Google Scholar
Yang, C., Wu, P.-Y., Tong, L., Phan, J. H. & Wang, M. D. The impact of RNA-seq aligners on gene expression estimation. ACM BMB9, 462–471 (2016). Google Scholar
Robert, C. & Watson, M. Errors in RNA-Seq quantification affect genes of relevance to human disease. Genome Biol.16, 177 (2015). An experimental demonstration of the importance of read mapping and quantification in the computational analysis of mRNA-seq experiments. This paper clearly describes the impact that different alignments and quantification methods can have on biological conclusions. ArticleCASPubMedPubMed Central Google Scholar
McDermaid, A. et al. A new machine learning-based framework for mapping uncertainty analysis in RNA-Seq read alignment and gene expression estimation. Front. Genet.9, 313 (2018). ArticleCASPubMedPubMed Central Google Scholar
Quinn, T. P., Crowley, T. M. & Richardson, M. F. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based versus log-ratio transformation-based methods. BMC Bioinformatics19, 274 (2018). ArticleCASPubMedPubMed Central Google Scholar
Vijay, N., Poelstra, J. W., Künstner, A. & Wolf, J. B. W. Challenges and strategies in transcriptome assembly and differential gene expression quantification. A comprehensive in silico assessment of RNA-seq experiments. Mol. Ecol.22, 620–634 (2013). ArticleCASPubMed Google Scholar
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res.4, 1521 (2016). ArticlePubMed Central Google Scholar
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc.7, 562–578 (2012). ArticleCASPubMedPubMed Central Google Scholar
Anders, S., Pyl, P. T. & Huber, W. HTSeq — a Python framework to work with high-throughput sequencing data. Bioinformatics31, 166–169 (2015). ArticleCASPubMed Google Scholar
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics30, 923–930 (2014). ArticleCASPubMed Google Scholar
Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci.131, 281–285 (2012). ArticleCASPubMed Google Scholar
Risso, D., Ngai, J., Speed, T. P. & Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol.32, 896–902 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bourgon, R., Gentleman, R. & Huber, W. Independent filtering increases detection power for high-throughput experiments. Proc. Natl Acad. Sci. USA107, 9456–9551 (2010). Article Google Scholar
Bullard, J. H., Purdom, E., Hansen, K. D. & Dudoit, S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC11, 94–107 (2010). Google Scholar
Dillies, M. A. et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform.14, 671–683 (2013). ArticleCASPubMed Google Scholar
Li, X. et al. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data. PLOS ONE12, e0176185 (2017). ArticleCASPubMedPubMed Central Google Scholar
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol.11, R25 (2010). ArticleCASPubMedPubMed Central Google Scholar
Robinson, M. D., Mccarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140 (2010). ArticleCASPubMed Google Scholar
Chen, K. et al. The overlooked fact: fundamental need for spike-in control for virtually all genome-wide analyses. Mol. Cell. Biol.36, 662–667 (2016). ArticleCASPubMed Central Google Scholar
Hardwick, S. A., Deveson, I. W. & Mercer, T. R. Reference standards for next-generation sequencing. Nat. Rev. Genet.18, 473–484 (2017). A review of the use of spike-in controls and their associated statistical principles. It introduces readers to the concept of commutability: the ability of a spike-in control to perform comparably to experimental RNA samples. ArticleCASPubMed Google Scholar
Pine, P. S. et al. Evaluation of the External RNA Controls Consortium (ERCC) reference material using a modified Latin square design. BMC Biotechnol.16, 54 (2016). ArticlePubMedPubMed Central Google Scholar
Paul, L. et al. SIRVs: spike-in RNA variants as external isoform controls in RNA-sequencing. Preprint at bioRxivhttps://doi.org/10.1101/080747 (2016).
Hardwick, S. A. et al. Spliced synthetic genes as internal controls in RNA sequencing experiments. Nat. Methods13, 792–798 (2016). ArticleCASPubMed Google Scholar
Risso, D., Ngai, J., Speed, T. & Dudoit, S. in Statistical Analysis of Next Generation Sequencing Data (eds Datta, S. & Nettleton, D.) 169–190 (Springer, 2014).
Qing, T., Yu, Y., Du, T. T. & Shi, L. M. mRNA enrichment protocols determine the quantification characteristics of external RNA spike-in controls in RNA-Seq studies. Sci. China Life Sci.56, 134–142 (2013). ArticleCASPubMed Google Scholar
Lun, A. T. L., Calero-nieto, F. J., Haim-vilmovsky, L., Göttgens, B. & Marioni, J. C. Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data. Genome Res.27, 1795–1806 (2017). ArticleCASPubMedPubMed Central Google Scholar
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res.43, e47 (2015). ArticleCASPubMedPubMed Central Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). ArticleCASPubMedPubMed Central Google Scholar
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol.15, R29 (2014). ArticleCASPubMedPubMed Central Google Scholar
Frazee, A. et al. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol.33, 243–246 (2015). ArticleCASPubMedPubMed Central Google Scholar
Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol.14, R95 (2013). ArticleCASPubMedPubMed Central Google Scholar
Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods6, 377–382 (2009). ArticleCASPubMed Google Scholar
Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet.16, 133–145 (2015). This review provides an overview and in-depth discussion of scRNA-seq transcript quantitation methods. The authors highlight the analytical challenges that are unique to single-cell experiments. ArticleCASPubMed Google Scholar
Svensson, V., Vento-Tormo, R. & Teichmann, S. A. Exponential scaling of single-cell RNA-seq in the past decade. Nat. Protoc.13, 599–604 (2018). This review is an excellent introduction to the full range of single-cell sequencing methods. ArticleCASPubMed Google Scholar
Leelatian, N. et al. Single cell analysis of human tissues and solid tumors with mass cytometry. Cytometry B92, 68–78 (2018). A useful description of the pitfalls of tissue dissociation for users of single-cell sequencing to consider. ArticleCAS Google Scholar
Hines, W. C., Su, Y., Kuhn, I., Polyak, K. & Bissell, M. J. Sorting out the FACS: a devil in the details. Cell Rep.6, 779–781 (2014). ArticleCASPubMed Google Scholar
Islam, S. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res.21, 1160–1167 (2011). ArticleCASPubMedPubMed Central Google Scholar
Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods10, 1093–1098 (2013). ArticleCASPubMed Google Scholar
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell161, 1202–1214 (2015). ArticleCASPubMedPubMed Central Google Scholar
Cao, J. et al. Comprehensive single cell transcriptional profiling of a multicellular organism by combinatorial indexing. Science357, 661–667 (2017). ArticleCASPubMedPubMed Central Google Scholar
Rosenberg, A. B. et al. Single cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science360, 176–182 (2018). ArticleCASPubMedPubMed Central Google Scholar
Sena, J. A. et al. Unique molecular identifiers reveal a novel sequencing artefact with implications for RNA-Seq based gene expression analysis. Sci. Rep.8, 13121 (2018). ArticleCASPubMedPubMed Central Google Scholar
Picelli, S. et al. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc.9, 171–181 (2014). ArticleCASPubMed Google Scholar
Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep.2, 666–673 (2012). ArticleCASPubMed Google Scholar
Insel, T. R., Landis, S. C. & Collins, F. S. The NIH BRAIN initiative. 340, 687–689 (2013).
Young, M. D. et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science599, 594–599 (2018). ArticleCAS Google Scholar
Hui Ryu, K., Huang, L., Min Kang, H. & Schiefelbein, J. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiol.179, 1444–1456 (2019). ArticleCAS Google Scholar
Chen, J. et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat. Protoc.12, 566–580 (2017). ArticleCASPubMed Google Scholar
Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science353, 78–82 (2016). ArticleCASPubMed Google Scholar
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science1467, 1463–1467 (2019). ArticleCAS Google Scholar
Crosetto, N., Bienko, M. & van Oudenaarden, A. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet.16, 57–66 (2015). ArticleCASPubMed Google Scholar
Moor, A. E. & Itzkovitz, S. Spatial transcriptomics: paving the way for tissue-level systems biology. Curr. Opin. Biotechnol.46, 126–133 (2017). This review of spatial RNA-seq methods introduces the main methods in more detail and discusses some of the technical challenges that remain to be resolved. ArticleCASPubMed Google Scholar
Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science358, 64–69 (2017). ArticleCASPubMed Google Scholar
Datta, S. et al. Laser capture microdissection: big data from small samples. Histol. Histopathol.30, 1255–1269 (2015). CASPubMedPubMed Central Google Scholar
Lovatt, D., Bell, T. & Eberwine, J. Single-neuron isolation for RNA analysis using pipette capture and laser capture microdissection. Cold Spring Harb. Protoc.2015, 60–68 (2015). Article Google Scholar
Cubi, R. et al. Laser capture microdissection enables transcriptomic analysis of dividing and quiescent liver stages of Plasmodium relapsing species. Cell. Microbiol.19, e12735 (2017). ArticleCASPubMed Central Google Scholar
Giacomello, S. et al. Spatially resolved transcriptome profiling in model plant species. Nat. Plants3, 17061 (2017). ArticleCASPubMed Google Scholar
Moncada, R. et al. Integrating single-cell RNA-Seq with spatial transcriptomics in pancreatic ductal adenocarcinoma using multimodal intersection analysis. Preprint at bioRxivhttps://doi.org/10.1101/254375 (2018). Article Google Scholar
Ke, R. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods10, 857–860 (2013). ArticleCASPubMed Google Scholar
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science348, aaa6090 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods11, 360–361 (2014). ArticleCASPubMedPubMed Central Google Scholar
Wang, G., Moffitt, J. R. & Zhuang, X. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep.8, 4847 (2018). ArticleCASPubMedPubMed Central Google Scholar
Pichon, X., Lagha, M., Mueller, F. & Bertrand, E. A. Growing toolbox to image gene expression in single cells: sensitive approaches for demanding challenges. Mol. Cell71, 468–480 (2018). ArticleCASPubMed Google Scholar
Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science93, 89–93 (2019). ArticleCAS Google Scholar
Edsgärd, D., Johnsson, P. & Sandberg, R. Identification of spatial expression trends in single-cell gene expression data. Nat. Methods15, 339–342 (2018). ArticleCASPubMedPubMed Central Google Scholar
Core, L. J., Waterfall, J. & Lis, J. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science322, 1845–1848 (2008). ArticleCASPubMedPubMed Central Google Scholar
Core, L. J. & Lis, J. T. Transcription regulation through promoter-proximal pausing of RNA polymerase II. Science319, 1791–1792 (2008). ArticleCASPubMedPubMed Central Google Scholar
Skalska, L., Beltran-nebot, M., Ule, J. & Jenner, R. G. Regulatory feedback from nascent RNA to chromatin and transcription. Nat. Rev. Mol. Cell. Biol.18, 331–337 (2017). ArticleCASPubMed Google Scholar
Tani, H. et al. Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Res.22, 947–956 (2012). ArticleCASPubMedPubMed Central Google Scholar
Paulsen, M. T. et al. Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response. Proc. Natl Acad. Sci. USA110, 2240–2245 (2013). ArticlePubMedPubMed Central Google Scholar
Kwak, H., Fuda, N. J., Core, L. J. & Lis, J. T. Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science339, 950–953 (2013). ArticleCASPubMedPubMed Central Google Scholar
Nojima, T., Gomes, T., Carmo-fonseca, M. & Proudfoot, N. J. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide. Nat. Protoc.11, 413–428 (2016). ArticleCASPubMedPubMed Central Google Scholar
Nagari, A., Murakami, S., Malladi, V. S. & Kraus, W. L. Computational approaches for mining GRO-Seq data to identify and characterize active enhancers. Methods Mol. Biol.1468, 121–138 (2017). ArticleCASPubMedPubMed Central Google Scholar
Kruesi, W. S., Core, L. J., Waters, C. T., Lis, J. T. & Meyer, B. J. Condensin controls recruitment of RNA polymerase II to achieve nematode X-chromosome dosage compensation. eLife18, e00808 (2013). Article Google Scholar
Scruggs, B. S. et al. Bidirectional transcription arises from two distinct hubs of transcription factor binding and active chromatin. Mol. Cell58, 1101–1112 (2015). ArticleCASPubMedPubMed Central Google Scholar
Churchman, L. S. & Weissman, J. S. Nascent transcript sequencing visualizes transcription at nucleotide resolution. Nature469, 368–373 (2011). ArticleCASPubMed Google Scholar
Wallace, E. W. J. & Beggs, J. D. Extremely fast and incredibly close: cotranscriptional splicing in budding yeast. RNA23, 601–610 (2017). ArticlePubMedPubMed Central Google Scholar
Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol.29, 436–442 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schwalb, B. et al. TT-seq maps the human transient transcriptome. Science352, 1225–1228 (2016). ArticleCASPubMed Google Scholar
Marzi, M. J. & Nicassio, F. Uncovering the stability of mature miRNAs by 4-thio-uridine metabolic labeling. Methods Mol. Biol.1823, 141–152 (2018). ArticleCASPubMed Google Scholar
Riml, C. et al. Osmium-mediated transformation of 4-thiouridine to cytidine as key to study RNA dynamics by sequencing. Angew. Chem. Int. Ed.56, 13479–13483 (2017). ArticleCAS Google Scholar
Schofield, J. A., Duffy, E. E., Kiefer, L., Sullivan, M. C. & Simon, M. D. TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding. Nat. Methods15, 221–225 (2018). ArticleCASPubMedPubMed Central Google Scholar
Matsushima, W. et al. SLAM-ITseq: sequencing cell type-specific transcriptomes without cell sorting. Development145, dev164640 (2018). ArticleCASPubMedPubMed Central Google Scholar
Jürges, C., Dölken, L. & Erhard, F. Dissecting newly transcribed and old RNA using GRAND-SLAM. Bioinformatics34, 218–226 (2018). ArticleCAS Google Scholar
Johannes, G., Carter, M. S., Eisen, M. B., Brown, P. O. & Sarnow, P. Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl Acad. Sci. USA96, 13118–13123 (1999). ArticleCASPubMedPubMed Central Google Scholar
Yamashita, R. et al. Genome-wide characterization of transcriptional start sites in humans by integrative transcriptome analysis. Genome Res.21, 775–789 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. S. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science324, 218–223 (2009). ArticleCASPubMedPubMed Central Google Scholar
Parker, M. W. et al. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Invest.124, 1622–1635 (2014). ArticleCASPubMedPubMed Central Google Scholar
Bhat, M. et al. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov.14, 261–278 (2015). ArticleCASPubMed Google Scholar
Leibovitch, M. & Topisirovic, I. Dysregulation of mRNA translation and energy metabolism in cancer. Adv. Biol. Regul.67, 30–39 (2018). ArticleCASPubMed Google Scholar
Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res.24, 2033–2040 (2014). ArticleCASPubMedPubMed Central Google Scholar
Floor, S. N., Doudna, J. A., States, U. & Initiative, I. G. Tunable protein synthesis by transcript isoforms in human cells. eLife5, e10921 (2016). ArticlePubMedPubMed Central Google Scholar
Steitz, J. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature224, 957–964 (1969). ArticleCASPubMed Google Scholar
Hsu, P. Y. et al. Super-resolution ribosome profiling reveals unannotated translation events in Arabidopsis. Proc. Natl Acad. Sci. USA113, E7126–E7135 (2016). ArticleCASPubMedPubMed Central Google Scholar
Calviello, L. & Ohler, U. Beyond read-counts: ribo-seq data analysis to understand the functions of the transcriptome. Trends Genet.33, 728–744 (2017). ArticleCASPubMed Google Scholar
Li, W., Wang, W., Uren, P. J., Penalva, L. O. F. & Smith, A. D. Riborex: fast and flexible identification of differential translation from Ribo-seq data. Bioinformatics33, 1735–1737 (2017). ArticleCASPubMedPubMed Central Google Scholar
Zhong, Y. et al. RiboDiff: Detecting changes of mRNA translation efficiency from ribosome footprints. Bioinformatics33, 139–141 (2017). ArticleCASPubMed Google Scholar
Gao, X. et al. Quantitative profiling of initiating ribosomes in vivo. Nat. Methods12, 147–153 (2015). ArticleCASPubMed Google Scholar
Archer, S. K., Shirokikh, N. E., Beilharz, T. H. & Preiss, T. Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature535, 570–574 (2016). ArticleCASPubMed Google Scholar
Kwok, C. K., Tang, Y., Assmann, S. M. & Bevilacqua, P. C. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing. Trends Biochem. Sci.40, 221–232 (2015). ArticleCASPubMed Google Scholar
Merino, E. J., Wilkinson, K. A., Coughlan, J. L. & Weeks, K. M. RNA structure analysis at single nucleotide resolution by selective 2΄-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc.127, 4223–4231 (2005). ArticleCASPubMed Google Scholar
Strobel, E. J., Yu, A. M. & Lucks, J. B. High-throughput determination of RNA structures. Nat. Rev. Genet.19, 615–634 (2018). A good introduction to RNA structural analysis using RNA-seq. ArticleCASPubMedPubMed Central Google Scholar
Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature467, 103–107 (2010). ArticleCASPubMed Google Scholar
Underwood, J. G. et al. FragSeq: Transcriptome-wide RNA structure probing using high-throughput sequencing. Nat. Methods7, 995–1001 (2010). ArticleCASPubMedPubMed Central Google Scholar
Lucks, J. B. et al. Multiplexed RNA structure characterization with selective 2΄-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Proc. Natl Acad. Sci. USA108, 11063–11068 (2011). ArticlePubMedPubMed Central Google Scholar
Ding, Y. et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature505, 696–700 (2014). ArticleCASPubMed Google Scholar
Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature505, 701–705 (2014). ArticleCASPubMed Google Scholar
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. E. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods11, 959–965 (2014). ArticleCASPubMedPubMed Central Google Scholar
Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods14, 75–82 (2017). ArticleCASPubMed Google Scholar
Incarnato, D. et al. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res.45, 9716–9725 (2017). ArticleCASPubMedPubMed Central Google Scholar
Novoa, E. M., Beaudoin, J., Giraldez, A. J., Mattick, J. S. & Kellis, M. Best practices for genome-wide RNA structure analysis: combination of mutational profiles and drop-off information. Preprint at bioRxivhttps://doi.org/10.1101/176883 (2017). Article Google Scholar
Tang, Y., Assmann, S. M. & Bevilacqua, P. C. Protein structure is related to RNA structural reactivity in vivo. J. Mol. Biol.428, 758–766 (2016). ArticleCASPubMed Google Scholar
Warner, K. D., Hajdin, C. E. & Weeks, K. M. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov.17, 547–558 (2018). ArticleCASPubMedPubMed Central Google Scholar
Kudla, G., Granneman, S., Hahn, D., Beggs, J. D. & Tollervey, D. Cross-linking, ligation, and sequencing of hybrids reveals RNA–RNA interactions in yeast. Proc. Natl Acad. Sci. USA108, 10010–10015 (2011). ArticlePubMedPubMed Central Google Scholar
Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature493, 231–235 (2013). ArticleCASPubMed Google Scholar
Engreitz, J. M. et al. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent pre-mRNAs and chromatin sites. Cell159, 188–199 (2014). ArticleCASPubMedPubMed Central Google Scholar
Aw, J. G. et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation. Mol. Cell62, 603–617 (2016). ArticleCASPubMed Google Scholar
Sharma, E. et al. Global mapping of human RNA-RNA interactions. Mol. Cell62, 618–626 (2016). ArticleCASPubMed Google Scholar
Gong, J. et al. RISE: a database of RNA interactome from sequencing experiments. Nucleic Acids Res.46, 194–201 (2018). ArticleCAS Google Scholar
Schönberger, B., Schaal, C., Schäfer, R. & Voß, B. RNA interactomics: recent advances and remaining challenges. F1000Res.7, 1824 (2018). Article Google Scholar
Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science316, 1497–1502 (2007). ArticleCASPubMed Google Scholar
Tenenbaum, S. A., Carson, C. C., Lager, P. J. & Keene, J. D. Identifying mRNA subsets in messenger ribonucleoprotein complexes by using cDNA arrays. Proc. Natl Acad. Sci. USA97, 14085–14090 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mili, S. & Steitz, J. Evidence for reassociation of RNA-binding proteins after cell lysis: Implications for the interpretation of immunoprecipitation analyses. RNA10, 1692–1694 (2004). ArticleCASPubMedPubMed Central Google Scholar
Niranjanakumari, S., Lasda, E. & Brazas, R. Reversible cross-linking combined with immunoprecipitation to study RNA–protein interactions in vivo. Methods26, 182–190 (2002). ArticleCASPubMed Google Scholar
Hendrickson, G., Kelley, D., Tenen, D., Bernstein, D. & Rinn, J. Widespread RNA binding by chromatin-associated proteins. Genome Biol.17, 28 (2016). ArticleCAS Google Scholar
Ule, J. et al. CLIP identifies Nova-regulated RNA networks in the brain. Science302, 1212–1215 (2003). ArticleCASPubMed Google Scholar
König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol.17, 909–915 (2010). ArticleCASPubMedPubMed Central Google Scholar
Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell141, 129–141 (2010). ArticleCASPubMedPubMed Central Google Scholar
Garzia, A., Meyer, C., Morozov, P., Sajek, M. & Tuschl, T. Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins. Methods118, 24–40 (2017). ArticleCASPubMed Google Scholar
Van Nostrand, E. L. et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods13, 508–514 (2016). ArticleCASPubMedPubMed Central Google Scholar
Chakrabarti, A. M., Haberman, N., Praznik, A., Luscombe, N. M. & Ule, J. Data science issues in studying protein–RNA interactions with CLIP technologies. Annu. Rev.1, 235–261 (2018). Google Scholar
Lee, F. C. Y. & Ule, J. Advances in CLIP technologies for studies of protein-RNA interactions. Mol. Cell69, 354–369 (2018). A review of RNA–protein interaction methods, with a 5-page table describing the methodological advances of each. Vital reading for anyone considering CLIP–seq analysis. ArticleCASPubMed Google Scholar
Buenrostro, J. D. et al. Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol.32, 562–568 (2014). ArticleCASPubMedPubMed Central Google Scholar
Cook, K. B., Hughes, T. R. & Morris, Q. D. High-throughput characterization of protein-RNA interactions. Brief. Funct. Genomics14, 74–89 (2015). ArticleCASPubMed Google Scholar
Doebele, R. C. et al. An oncogenic NTRK fusion in a patient with soft-tissue sarcoma with response to the tropomyosin-related kinase inhibitor. Cancer Discov.5, 1049–1057 (2015). ArticleCASPubMedPubMed Central Google Scholar
Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D. & Craig, D. W. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat. Rev. Genet.17, 257–271 (2016). ArticleCASPubMedPubMed Central Google Scholar