Cancer transcriptome profiling at the juncture of clinical translation (original) (raw)
Velculescu, V. E. et al. Characterization of the yeast transcriptome. Cell88, 243–251 (1997). ArticleCASPubMed Google Scholar
Carninci, P. et al. The transcriptional landscape of the mammalian genome. Science309, 1559–1563 (2005). This is the first study to show the transcriptional complexity of a mammalian genome. ArticleCASPubMed Google Scholar
Frye, M., Jaffrey, S. R., Pan, T., Rechavi, G. & Suzuki, T. RNA modifications: what have we learned and where are we headed? Nat. Rev. Genet.17, 365–372 (2016). ArticleCASPubMed Google Scholar
Johnson, J. M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science302, 2141–2144 (2003). ArticleCASPubMed Google Scholar
Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol.28, 511–515 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shoemaker, D. D. et al. Experimental annotation of the human genome using microarray technology. Nature409, 922–927 (2001). ArticleCASPubMed Google Scholar
Hughes, T. R. et al. Functional discovery via a compendium of expression profiles. Cell102, 109–126 (2000). ArticleCASPubMed Google Scholar
Byron, S. A., Van Keuren-Jensen, K. R., Engelthaler, D. M., Carpten, J. D. & Craig, D. W. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat. Rev. Genet.17, 257–271 (2016). This is an excellent and complementary Review on the clinical applications of RNA-seq. ArticleCASPubMedPubMed Central Google Scholar
Chang, J. C. et al. Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet362, 362–369 (2003). This study demonstrates the feasibility of predicting the therapeutic response from microarray data obtained from breast cancer biopsy samples. ArticleCASPubMed Google Scholar
Staunton, J. E. et al. Chemosensitivity prediction by transcriptional profiling. Proc. Natl Acad. Sci. USA98, 10787–10792 (2001). This study demonstrates the feasibility of chemosensitivity prediction from microarray data obtained from cell lines. ArticleCASPubMedPubMed Central Google Scholar
Dudley, J. T., Tibshirani, R., Deshpande, T. & Butte, A. J. Disease signatures are robust across tissues and experiments. Mol. Syst. Biol.5, 307 (2009). ArticlePubMedPubMed Central Google Scholar
Ma'ayan, A. Colliding dynamical complex network models: biological attractors versus attractors from material physics. Biophys. J.103, 1816–1817 (2012). ArticleCASPubMedPubMed Central Google Scholar
Costello, J. C. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol.32, 1202–1212 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lamb, J. et al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science313, 1929–1935 (2006). ArticleCASPubMed Google Scholar
Gerstein, M. & Jansen, R. The current excitement in bioinformatics-analysis of whole-genome expression data: how does it relate to protein structure and function? Curr. Opin. Struct. Biol.10, 574–584 (2000). ArticleCASPubMed Google Scholar
Goya, R. et al. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics26, 730–736 (2010). ArticleCASPubMedPubMed Central Google Scholar
Maher, C. A. et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc. Natl Acad. Sci. USA106, 12353–12358 (2009). ArticlePubMedPubMed Central Google Scholar
van Dijk, E. L., Auger, H., Jaszczyszyn, Y. & Thermes, C. Ten years of next-generation sequencing technology. Trends Genet.30, 418–426 (2014). ArticleCASPubMed Google Scholar
Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science316, 1484–1488 (2007). ArticleCASPubMed Google Scholar
Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science309, 1567–1569 (2005). ArticleCASPubMed Google Scholar
Gall, J. G. & Pardue, M. L. Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl Acad. Sci. USA63, 378–383 (1969). ArticleCASPubMedPubMed Central Google Scholar
Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA74, 5463–5467 (1977). ArticleCASPubMedPubMed Central Google Scholar
Alwine, J. C., Kemp, D. J. & Stark, G. R. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc. Natl Acad. Sci. USA74, 5350–5354 (1977). ArticleCASPubMedPubMed Central Google Scholar
Bell, G. I. et al. Nucleotide sequence of a cDNA clone encoding human preproinsulin. Nature282, 525–527 (1979). ArticleCASPubMed Google Scholar
Nakanishi, S. et al. Nucleotide sequence of cloned cDNA for bovine corticotropin-β-lipotropin precursor. Nature278, 423–427 (1979). ArticleCASPubMed Google Scholar
Fiddes, J. C. & Goodman, H. M. Isolation, cloning and sequence analysis of the cDNA for the alpha-subunit of human chorionic gonadotropin. Nature281, 351–356 (1979). ArticleCASPubMed Google Scholar
Okubo, K. et al. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat. Genet.2, 173–179 (1992). ArticleCASPubMed Google Scholar
Chiang, P. W. et al. Use of a fluorescent-PCR reaction to detect genomic sequence copy number and transcriptional abundance. Genome Res.6, 1013–1026 (1996). ArticleCASPubMed Google Scholar
Gibson, U. E., Heid, C. A. & Williams, P. M. A novel method for real time quantitative RT-PCR. Genome Res.6, 995–1001 (1996). ArticleCASPubMed Google Scholar
Heid, C. A., Stevens, J., Livak, K. J. & Williams, P. M. Real time quantitative PCR. Genome Res.6, 986–994 (1996). ArticleCASPubMed Google Scholar
Higuchi, R., Fockler, C., Dollinger, G. & Watson, R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology11, 1026–1030 (1993). CASPubMed Google Scholar
Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science270, 467–470 (1995). ArticleCASPubMed Google Scholar
Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol.14, 1675–1680 (1996). ArticleCASPubMed Google Scholar
Sutcliffe, J. G., Milner, R. J., Bloom, F. E. & Lerner, R. A. Common 82-nucleotide sequence unique to brain RNA. Proc. Natl Acad. Sci. USA79, 4942–4946 (1982). ArticleCASPubMedPubMed Central Google Scholar
Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science270, 484–487 (1995). ArticleCASPubMed Google Scholar
Hanriot, L. et al. A combination of LongSAGE with Solexa sequencing is well suited to explore the depth and the complexity of transcriptome. BMC Genomics9, 418 (2008). ArticleCASPubMedPubMed Central Google Scholar
Carninci, P. et al. High-efficiency full-length cDNA cloning by biotinylated CAP trapper. Genomics37, 327–336 (1996). ArticleCASPubMed Google Scholar
Dias Neto, E. et al. Shotgun sequencing of the human transcriptome with ORF expressed sequence tags. Proc. Natl Acad. Sci. USA97, 3491–3496 (2000). ArticlePubMedPubMed Central Google Scholar
de Souza, S. J. et al. Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags. Proc. Natl Acad. Sci. USA97, 12690–12693 (2000). ArticleCASPubMedPubMed Central Google Scholar
Brenner, S. et al. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat. Biotechnol.18, 630–634 (2000). ArticleCASPubMed Google Scholar
Bainbridge, M. N. et al. Analysis of the prostate cancer cell line LNCaP transcriptome using a sequencing-by-synthesis approach. BMC Genomics7, 246 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nielsen, K. L., Høgh, A. L. & Emmersen, J. DeepSAGE — digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res.34, e133 (2006). ArticleCASPubMedPubMed Central Google Scholar
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods5, 621–628 (2008). ArticleCASPubMed Google Scholar
Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods9, 72–74 (2012). ArticleCAS Google Scholar
Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep.2, 666–673 (2012). ArticleCASPubMed Google Scholar
Cieslik, M. et al. The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing. Genome Res.25, 1372–1381 (2015). ArticleCASPubMedPubMed Central Google Scholar
Cabanski, C. R. et al. cDNA hybrid capture improves transcriptome analysis on low-input and archived samples. J. Mol. Diagn.16, 440–451 (2014). ArticleCASPubMedPubMed Central Google Scholar
Mercer, T. R. et al. Targeted sequencing for gene discovery and quantification using RNA CaptureSeq. Nat. Protoc.9, 989–1009 (2014). ArticleCASPubMed Google Scholar
Git, A. et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA16, 991–1006 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yamamoto, T., Jay, G. & Pastan, I. Unusual features in the nucleotide sequence of a cDNA clone derived from the common region of avian sarcoma virus messenger RNA. Proc. Natl Acad. Sci. USA77, 176–180 (1980). ArticleCASPubMedPubMed Central Google Scholar
Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science276, 1268–1272 (1997). ArticleCASPubMed Google Scholar
Brentani, H. et al. The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags. Proc. Natl Acad. Sci. USA100, 13418–13423 (2003). ArticleCASPubMedPubMed Central Google Scholar
DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat. Genet.14, 457–460 (1996). ArticleCASPubMed Google Scholar
Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA96, 6745–6750 (1999). ArticleCASPubMedPubMed Central Google Scholar
Consortium, T. E. P. An integrated encyclopedia of DNA elements in the human genome. Nature489, 57–74 (2012). ArticleCAS Google Scholar
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature483, 603–607 (2012). ArticleCASPubMedPubMed Central Google Scholar
Klijn, C. et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat. Biotechnol.33, 306–312 (2015). ArticleCASPubMed Google Scholar
Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet.45, 580–585 (2013). ArticleCAS Google Scholar
Burks, C. et al. The GenBank nucleic acid sequence database. Comput. Appl. Biosci.1, 225–233 (1985). CASPubMed Google Scholar
Boguski, M. S., Lowe, T. M. J. & Tolstoshev, C. M. dbEST — database for 'expressed sequence tags'. Nat. Genet.4, 332–333 (1993). ArticleCASPubMed Google Scholar
Lal, A. et al. A public database for gene expression in human cancers. Cancer Res.59, 5403–5407 (1999). CASPubMed Google Scholar
Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences. J. Mol. Biol.147, 195–197 (1981). ArticleCASPubMed Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). ArticleCASPubMed Google Scholar
Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI Reference Sequence (Refseq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res.33, D501–D504 (2005). ArticleCASPubMed Google Scholar
Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res.30, 207–210 (2002). ArticleCASPubMedPubMed Central Google Scholar
Brazma, A. et al. ArrayExpress — a public repository for microarray gene expression data at the EBI. Nucleic Acids Res.31, 68–71 (2003). ArticleCASPubMedPubMed Central Google Scholar
Chen, Y., Dougherty, E. R. & Bittner, M. L. Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Opt.2, 364–374 (1997). ArticleCASPubMed Google Scholar
Smyth, G., Yang, Y. & Speed, T. in Functional Genomics (eds Brownstein, M. & Khodursky, A.) 111–136 (Humana Press, 2003). Book Google Scholar
Tomlins, S. A. et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet.39, 41–51 (2007). ArticleCASPubMed Google Scholar
Coletta, A. et al. InSilico DB genomic datasets hub: an efficient starting point for analyzing genome-wide studies in GenePattern, Integrative Genomics Viewer, and R/Bioconductor. Genome Biol.13, R104 (2012). ArticleCASPubMedPubMed Central Google Scholar
Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature501, 338–345 (2013). ArticleCASPubMed Google Scholar
Onder, T. T. et al. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res.68, 3645–3654 (2008). ArticleCASPubMed Google Scholar
Chen, J.-J., Knudsen, S., Mazin, W., Dahlgaard, J. & Zhang, B. A. 71-gene signature of TRAIL sensitivity in cancer cells. Mol. Cancer Ther.11, 34–44 (2012). ArticleCASPubMed Google Scholar
Rosenwald, A. et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell3, 185–197 (2003). ArticleCASPubMed Google Scholar
Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nat. Genet.38, 1043–1048 (2006). This paper shows that aneuploidy is associated with a gene expression signature that is associated with poor clinical outcomes. ArticleCASPubMed Google Scholar
Ramaswamy, S., Ross, K. N., Lander, E. S. & Golub, T. R. A molecular signature of metastasis in primary solid tumors. Nat. Genet.33, 49–54 (2003). This study reports a signature of cancer with high metastatic potential. ArticleCASPubMed Google Scholar
Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature439, 353–357 (2006). ArticleCASPubMed Google Scholar
Ross, D. T. et al. Systematic variation in gene expression patterns in human cancer cell lines. Nat. Genet.24, 227–235 (2000). ArticleCASPubMed Google Scholar
Singer, G. A. C. et al. Genome-wide analysis of alternative promoters of human genes using a custom promoter tiling array. BMC Genomics9, 349 (2008). ArticleCASPubMedPubMed Central Google Scholar
Nacu, S. et al. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples. BMC Med. Genom.4, 11 (2011). ArticleCAS Google Scholar
Pan, Q., Shai, O., Lee, L. J., Frey, B. J. & Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet.40, 1413–1415 (2008). ArticleCASPubMed Google Scholar
Davuluri, R. V., Suzuki, Y., Sugano, S., Plass, C. & Huang, T. H.-M. The functional consequences of alternative promoter use in mammalian genomes. Trends Genet.24, 167–177 (2008). ArticleCASPubMed Google Scholar
Wiesner, T. et al. Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature526, 453–457 (2015). ArticleCASPubMedPubMed Central Google Scholar
Liu, J. et al. Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nat. Commun.5, 3830 (2014). ArticleCASPubMed Google Scholar
Keene, J. D. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet.8, 533–543 (2007). ArticleCASPubMed Google Scholar
Dominissini, D., Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N. & Rechavi, G. Transcriptome-wide mapping of _N_6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc.8, 176–189 (2013). ArticleCASPubMed Google Scholar
Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer118, 3030–3044 (2006). ArticleCASPubMed Google Scholar
Abreu, A. L. P., Souza, R. P., Gimenes, F. & Consolaro, M. E. L. A review of methods for detect human Papillomavirus infection. Virol. J.9, 262 (2012). ArticleCASPubMedPubMed Central Google Scholar
Li, J.-W. et al. ViralFusionSeq: accurately discover viral integration events and reconstruct fusion transcripts at single-base resolution. Bioinformatics29, 649–651 (2013). ArticleCASPubMedPubMed Central Google Scholar
Piskol, R., Ramaswami, G. & Li, J. B. Reliable identification of genomic variants from RNA-seq data. Am. J. Hum. Genet.93, 641–651 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kim, K.-T. et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells. Genome Biol.16, 127 (2015). ArticleCASPubMedPubMed Central Google Scholar
Paul, M. R. et al. Multivariate models from RNA-Seq SNVs yield candidate molecular targets for biomarker discovery: SNV-DA. BMC Genomics17, 263 (2016). ArticleCASPubMedPubMed Central Google Scholar
Sheng, Q., Zhao, S., Li, C.-I., Shyr, Y. & Guo, Y. Practicability of detecting somatic point mutation from RNA high throughput sequencing data. Genomics107, 163–169 (2016). ArticleCASPubMed Google Scholar
Tang, X. et al. The eSNV-detect: a computational system to identify expressed single nucleotide variants from transcriptome sequencing data. Nucleic Acids Res.42, e172 (2014). ArticleCASPubMedPubMed Central Google Scholar
Lopez-Maestre, H. et al. SNP calling from RNA-seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Res.44, e148 (2016). PubMedPubMed Central Google Scholar
Deelen, P. et al. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels. Genome Med.7, 30 (2015). ArticlePubMedPubMed Central Google Scholar
Wilkerson, M. D. et al. Integrated RNA and DNA sequencing improves mutation detection in low purity tumors. Nucleic Acids Res.42, e107 (2014). ArticleCASPubMedPubMed Central Google Scholar
Maher, C. A. et al. Transcriptome sequencing to detect gene fusions in cancer. Nature458, 97–101 (2009). This study shows that gene fusions can be detected from RNA-seq data. ArticleCASPubMedPubMed Central Google Scholar
MacDonald, J. W. & Ghosh, D. COPA — cancer outlier profile analysis. Bioinformatics22, 2950–2951 (2006). ArticleCASPubMed Google Scholar
Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science310, 644–648 (2005). ArticleCASPubMed Google Scholar
Romani, A., Guerra, E., Trerotola, M. & Alberti, S. Detection and analysis of spliced chimeric mRNAs in sequence databanks. Nucleic Acids Res.31, e17 (2003). ArticleCASPubMedPubMed Central Google Scholar
Gröschel, S. et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell157, 369–381 (2014). ArticleCASPubMed Google Scholar
Kalyana-Sundaram, S. et al. Gene fusions associated with recurrent amplicons represent a class of passenger aberrations in breast cancer. Neoplasia14, 702–708 (2012). ArticleCASPubMedPubMed Central Google Scholar
Duro, D. et al. Inactivation of the P16INK4/MTS1 gene by a chromosome translocation t(9;14)(p21–22;q11) in an acute lymphoblastic leukemia of B-cell type. Cancer Res.56, 848–854 (1996). CASPubMed Google Scholar
Coyaud, E. et al. Wide diversity of PAX5 alterations in B-ALL: a Groupe Francophone de Cytogénétique Hématologique study. Blood115, 3089–3097 (2010). ArticleCASPubMed Google Scholar
Sun, Z., Bhagwate, A., Prodduturi, N., Yang, P. & Kocher, J.-P. A. Indel detection from RNA-seq data: tool evaluation and strategies for accurate detection of actionable mutations. Brief. Bioinform.https://academic.oup.com/bib/article/18/6/973/2562816 (2016).
Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature464, 768–772 (2010). ArticleCASPubMedPubMed Central Google Scholar
DeVeale, B., van der Kooy, D. & Babak, T. Critical evaluation of imprinted gene expression by RNA–Seq: a new perspective. PLoS Genet.8, e1002600 (2012). ArticleCASPubMedPubMed Central Google Scholar
Babak, T. et al. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat. Genet.47, 544–549 (2015). ArticleCASPubMedPubMed Central Google Scholar
Reddy, T. E. et al. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res.22, 860–869 (2012). ArticleCASPubMedPubMed Central Google Scholar
Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science343, 193–196 (2014). ArticleCASPubMed Google Scholar
Tuch, B. B. et al. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations. PLoS ONE5, e9317 (2010). ArticleCASPubMedPubMed Central Google Scholar
Anwar, S. L. et al. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PLoS ONE7, e49462 (2012). ArticleCASPubMedPubMed Central Google Scholar
Burgess, M. R. et al. KRAS allelic imbalance enhances fitness and modulates MAP kinase dependence in cancer. Cell168, 817–829.e15 (2017). ArticleCASPubMedPubMed Central Google Scholar
Nilsson, J. et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br. J. Cancer100, 1603–1607 (2009). ArticleCASPubMedPubMed Central Google Scholar
Best, M. G. et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell28, 666–676 (2015). ArticleCASPubMedPubMed Central Google Scholar
Tang, F. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods6, 377–382 (2009). ArticleCASPubMed Google Scholar
Benes, V., Blake, J. & Doyle, K. Ribo-Zero Gold Kit: improved RNA-seq results after removal of cytoplasmic and mitochondrial ribosomal RNA. Nat. Methods8 (2011).
Armour, C. D. et al. Digital transcriptome profiling using selective hexamer priming for cDNA synthesis. Nat. Methods6, 647–649 (2009). ArticleCASPubMed Google Scholar
Linsen, S. E. V. et al. Limitations and possibilities of small RNA digital gene expression profiling. Nat. Methods6, 474–476 (2009). ArticleCASPubMed Google Scholar
Raabe, C. A., Tang, T.-H., Brosius, J. & Rozhdestvensky, T. S. Biases in small RNA deep sequencing data. Nucleic Acids Res.42, 1414–1426 (2014). ArticleCASPubMed Google Scholar
The FANTOM Consortium and the RIKEN PMI and CLST (DGT). A promoter-level mammalian expression atlas. Nature507, 462–470 (2014).
Zhernakova, D. V. et al. DeepSAGE reveals genetic variants associated with alternative polyadenylation and expression of coding and non-coding transcripts. PLoS Genet.9, e1003594 (2013). ArticleCASPubMedPubMed Central Google Scholar
Langevin, S. A. et al. Peregrine: a rapid and unbiased method to produce strand-specific RNA-Seq libraries from small quantities of starting material. RNA Biol.10, 502–515 (2013). ArticleCASPubMedPubMed Central Google Scholar
Levin, J. Z. et al. Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol.10, R115 (2009). This is the first study to introduce the concept of capture RNA-seq. ArticleCASPubMedPubMed Central Google Scholar
Archer, S. K., Shirokikh, N. E. & Preiss, T. Selective and flexible depletion of problematic sequences from RNA-seq libraries at the cDNA stage. BMC Genomics15, 401 (2014). ArticleCASPubMedPubMed Central Google Scholar
Eikrem, O. et al. Transcriptome sequencing (RNAseq) enables utilization of formalin-fixed, paraffin-embedded biopsies with clear cell renal cell carcinoma for exploration of disease biology and biomarker development. PLoS ONE11, e0149743 (2016). ArticleCASPubMedPubMed Central Google Scholar
Beltran, H. et al. Impact of therapy on genomics and transcriptomics in high-risk prostate cancer treated with neoadjuvant docetaxel and androgen deprivation therapy. Clin. Cancer Res.http://dx.doi.org/10.1158/1078-0432.CCR-17-1034 (2017).
Core, L. J., Waterfall, J. J. & Lis, J. T. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science322, 1845–1848 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hah, N. et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell145, 622–634 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kim, Y. J. et al. HDAC inhibitors induce transcriptional repression of high copy number genes in breast cancer through elongation blockade. Oncogene32, 2828–2835 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature467, 103–107 (2010). ArticleCASPubMed Google Scholar
Kwok, C. K., Marsico, G., Sahakyan, A. B., Chambers, V. S. & Balasubramanian, S. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods13, 841–844 (2016). ArticleCASPubMed Google Scholar
Chu, C., Qu, K., Zhong, F. L., Artandi, S. E. & Chang, H. Y. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell44, 667–678 (2011). ArticleCASPubMedPubMed Central Google Scholar
Engreitz, J. M. et al. RNA-RNA interactions enable specific targeting of noncoding rnas to nascent pre-mRNAs and chromatin sites. Cell159, 188–199 (2014). ArticleCASPubMedPubMed Central Google Scholar
Hermann, T. & Westhof, E. RNA as a drug target: chemical, modelling, and evolutionary tools. Curr. Opin. Biotechnol.9, 66–73 (1998). ArticleCASPubMed Google Scholar
Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science339, 1074–1077 (2013). ArticleCASPubMed Google Scholar
Wang, N. et al. UNDO: a Bioconductor R package for unsupervised deconvolution of mixed gene expressions in tumor samples. Bioinformatics31, 137–139 (2015). ArticleCASPubMed Google Scholar
Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res.42, e161 (2014). ArticleCASPubMed Central Google Scholar
Smyth, G. K. in Bioinformatics and Computational Biology Solutions Using R and Bioconductor (eds Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudoit, S.) 397–420 (Springer, 2005). Book Google Scholar
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol.15, R29 (2014). This study introduces a simple normalization method for RNA-seq data that made it possible to use standard linear model tools for analysis. ArticleCASPubMedPubMed Central Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). ArticleCASPubMedPubMed Central Google Scholar
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics26, 139–140 (2010). ArticleCASPubMed Google Scholar
Frasor, J. et al. Profiling of estrogen up- and down-regulated gene expression in human breast cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology144, 4562–4574 (2003). ArticleCASPubMed Google Scholar
Frazee, A. C. et al. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol.33, 243–246 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lee, H. K., Hsu, A. K., Sajdak, J., Qin, J. & Pavlidis, P. Coexpression analysis of human genes across many microarray data sets. Genome Res.14, 1085–1094 (2004). ArticleCASPubMedPubMed Central Google Scholar
Mitrea, C. et al. Methods and approaches in the topology-based analysis of biological pathways. Front. Physiol.4, 278 (2013). ArticlePubMedPubMed Central Google Scholar
Majeti, R. et al. Dysregulated gene expression networks in human acute myelogenous leukemia stem cells. Proc. Natl Acad. Sci. USA106, 3396–3401 (2009). ArticlePubMedPubMed Central Google Scholar
de la Fuente, A. From 'differential expression' to 'differential networking' — identification of dysfunctional regulatory networks in diseases. Trends Genet.26, 326–333 (2010). ArticleCASPubMed Google Scholar
Xiao, Y. et al. Gene Perturbation Atlas (GPA): a single-gene perturbation repository for characterizing functional mechanisms of coding and non-coding genes. Sci. Rep.5, 10889 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lynn, D. J. et al. InnateDB: facilitating systems-level analyses of the mammalian innate immune response. Mol. Syst. Biol.4, 218 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ulloa-Montoya, F. et al. Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J. Clin. Orthod.31, 2388–2395 (2013). CAS Google Scholar
Saal, L. H. et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc. Natl Acad. Sci. USA104, 7564–7569 (2007). ArticleCASPubMedPubMed Central Google Scholar
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics14, 7 (2013). ArticlePubMedPubMed Central Google Scholar
Vaske, C. J. et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics26, i237–i245 (2010). ArticleCASPubMedPubMed Central Google Scholar
Witt, H. et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell20, 143–157 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bayliss, J. et al. Lowered H3K27me3 and DNA hypomethylation define poorly prognostic pediatric posterior fossa ependymomas. Sci. Transl Med.8, 366ra161 (2016). ArticleCASPubMedPubMed Central Google Scholar
Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature403, 503–511 (2000). ArticleCASPubMed Google Scholar
Roberts, K. G. et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med.371, 1005–1015 (2014). ArticleCASPubMedPubMed Central Google Scholar
van ' t Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature415, 530–536 (2002). This study demonstrates the use of microarrays to prognosticate and distinguish cancers withBRCA1orBRCA2mutations. Article Google Scholar
Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med.351, 2817–2826 (2004). ArticleCASPubMed Google Scholar
Parker, J. S. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J. Clin. Oncol.27, 1160–1167 (2009). ArticlePubMedPubMed Central Google Scholar
Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA95, 14863–14868 (1998). ArticleCASPubMedPubMed Central Google Scholar
Yeoh, E.-J. et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell1, 133–143 (2002). This study discovers subtypes of ALL that differ in biology, outcomes and response to therapy. ArticleCASPubMed Google Scholar
Verhaak, R. G. W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell17, 98 (2010). ArticleCASPubMedPubMed Central Google Scholar
Anghel, C. V. et al. ISOpureR: an R implementation of a computational purification algorithm of mixed tumour profiles. BMC Bioinformatics16, 156 (2015). ArticlePubMedPubMed Central Google Scholar
Yoshihara, K. et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun.4, 2612 (2013). ArticleCASPubMed Google Scholar
Quon, G. et al. Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. Genome Med.5, 29 (2013). ArticlePubMedPubMed Central Google Scholar
Choi, H. et al. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model. Cell Rep.10, 1187–1201 (2015). ArticleCASPubMed Google Scholar
Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature546, 431–435 (2017). ArticleCASPubMedPubMed Central Google Scholar
Giustacchini, A. et al. Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia. Nat. Med.23, 692–702 (2017). ArticleCASPubMed Google Scholar
Chin, K. et al. Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell10, 529–541 (2006). ArticleCASPubMed Google Scholar
Kuijjer, M. L. et al. Identification of osteosarcoma driver genes by integrative analysis of copy number and gene expression data. Genes Chromosomes Cancer51, 696–706 (2012). ArticleCASPubMed Google Scholar
Kristensen, V. N. et al. Integrated molecular profiles of invasive breast tumors and ductal carcinoma in situ (DCIS) reveal differential vascular and interleukin signaling. Proc. Natl Acad. Sci. USA109, 2802–2807 (2012). ArticlePubMed Google Scholar
Michailidou, K. et al. Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nat. Genet.47, 373–380 (2015). ArticleCASPubMedPubMed Central Google Scholar
Bojesen, S. E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet.45, 371–384 (2013). ArticleCASPubMedPubMed Central Google Scholar
Masica, D. L. & Karchin, R. Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Res.71, 4550–4561 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kristensen, V. N. et al. Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer14, 299–313 (2014). ArticleCASPubMed Google Scholar
Ramaswamy, S. et al. Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA98, 15149–15154 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell158, 929–944 (2014). ArticleCASPubMedPubMed Central Google Scholar
Torrente, A. et al. Identification of cancer related genes using a comprehensive map of human gene expression. PLoS ONE11, e0157484 (2016). ArticleCASPubMedPubMed Central Google Scholar
Anaya, J., Reon, B., Chen, W.-M., Bekiranov, S. & Dutta, A. A pan-cancer analysis of prognostic genes. PeerJ3, e1499 (2015). ArticleCASPubMed Google Scholar
Tang, K.-W., Alaei-Mahabadi, B., Samuelsson, T., Lindh, M. & Larsson, E. The landscape of viral expression and host gene fusion and adaptation in human cancer. Nat. Commun.4, 2513 (2013). ArticleCASPubMed Google Scholar
Yoshihara, K. et al. The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene34, 4845–4854 (2015). ArticleCASPubMed Google Scholar
Xia, Z. et al. Dynamic analyses of alternative polyadenylation from RNA-seq reveal a 3′-UTR landscape across seven tumour types. Nat. Commun.5, 5274 (2014). ArticleCASPubMed Google Scholar
Fehrmann, R. S. N. et al. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nat. Genet.47, 115–125 (2015). ArticleCASPubMed Google Scholar
Mody, R. J. et al. Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA314, 913–925 (2015). This is one of the first studies to demonstrate the feasibility and utility of RNA-seq in the real-time management of paediatric tumours. ArticleCASPubMedPubMed Central Google Scholar
Oberg, J. A. et al. Implementation of next generation sequencing into pediatric hematology-oncology practice: moving beyond actionable alterations. Genome Med.8, 133 (2016). ArticleCASPubMedPubMed Central Google Scholar
Robinson, D. R. et al. Integrative clinical genomics of metastatic cancer. Nature548, 297–303 (2017). This is the first study to demonstrate the broad utility of transcriptomic data in characterizing metastatic tumours. ArticleCASPubMedPubMed Central Google Scholar
Cheng, D. T. et al. Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn.17, 251–264 (2015). ArticleCASPubMedPubMed Central Google Scholar
Yang, L. et al. Analyzing somatic genome rearrangements in human cancers by using whole-exome sequencing. Am. J. Hum. Genet.98, 843–856 (2016). ArticleCASPubMedPubMed Central Google Scholar
Hutchins, G. et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J. Clin. Oncol.29, 1261–1270 (2011). ArticlePubMed Google Scholar
Meng, X., Huang, Z., Teng, F., Xing, L. & Yu, J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat. Rev.41, 868–876 (2015). ArticleCASPubMed Google Scholar
Gawad, C., Koh, W. & Quake, S. R. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet.17, 175–188 (2016). ArticleCASPubMed Google Scholar
Cardoso, F. et al. 70-gene signature as an aid to treatment decisions in early-stage breast cancer. N. Engl. J. Med.375, 717–729 (2016). This is a large-scale, multi-institutional study to evaluate the clinical utility of MammaPrint. ArticleCASPubMed Google Scholar
Wei, I. H., Shi, Y., Jiang, H., Kumar-Sinha, C. & Chinnaiyan, A. M. RNA-Seq accurately identifies cancer biomarker signatures to distinguish tissue of origin. Neoplasia16, 918–927 (2014). ArticleCASPubMedPubMed Central Google Scholar
Feng, H., Zhang, X. & Zhang, C. mRIN for direct assessment of genome-wide and gene-specific mRNA integrity from large-scale RNA-sequencing data. Nat. Commun.6, 7816 (2015). ArticleCASPubMed Google Scholar
Fernando, M. R., Norton, S. E., Luna, K. K., Lechner, J. M. & Qin, J. Stabilization of cell-free RNA in blood samples using a new collection device. Clin. Biochem.45, 1497–1502 (2012). ArticleCASPubMed Google Scholar
Li, Y. et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res.25, 981–984 (2015). ArticleCASPubMedPubMed Central Google Scholar
Arroyo, J. D. et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl Acad. Sci. USA108, 5003–5008 (2011). ArticlePubMedPubMed Central Google Scholar
Chen, X. Q. et al. Telomerase RNA as a detection marker in the serum of breast cancer patients. Clin. Cancer Res.6, 3823–3826 (2000). CASPubMed Google Scholar
Wu, A. R. et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods11, 41–46 (2014). ArticleCASPubMed Google Scholar
Kong-Beltran, M. et al. Somatic mutations lead to an oncogenic deletion of met in lung cancer. Cancer Res.66, 283–289 (2006). ArticleCASPubMed Google Scholar
Zhang, J., Mardis, E. R. & Maher, C. A. INTEGRATE-neo: a pipeline for personalized gene fusion neoantigen discovery. Bioinformatics33, 555–557 (2016). PubMed Central Google Scholar
Mehra, R. et al. Biallelic alteration and dysregulation of the Hippo pathway in mucinous tubular and spindle cell carcinoma of the kidney. Cancer Discov.6, 1258–1266 (2016). ArticleCASPubMedPubMed Central Google Scholar
van Rhee, F. et al. NY-ESO-1 is highly expressed in poor-prognosis multiple myeloma and induces spontaneous humoral and cellular immune responses. Blood105, 3939–3944 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ludwig, J. A. & Weinstein, J. N. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer5, 845–856 (2005). ArticleCASPubMed Google Scholar
Kulasingam, V. & Diamandis, E. P. Strategies for discovering novel cancer biomarkers through utilization of emerging technologies. Nat. Clin. Pract. Oncol.5, 588–599 (2008). ArticleCASPubMed Google Scholar
Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer16, 275–287 (2016). ArticleCASPubMedPubMed Central Google Scholar
Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med.21, 938–945 (2015). ArticleCASPubMedPubMed Central Google Scholar
Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep.18, 248–262 (2017). ArticleCASPubMed Google Scholar
Chen, P.-L. et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov.6, 827–837 (2016). This is one of the first longitudinal studies involving RNA-seq profiling. ArticleCASPubMedPubMed Central Google Scholar
Roh, W. et al. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci. Transl Med.9, eaah3560 (2017). ArticleCASPubMedPubMed Central Google Scholar
Paluch, B. E. et al. Robust detection of immune transcripts in FFPE samples using targeted RNA sequencing. Oncotarget8, 3197–3205 (2017). ArticlePubMed Google Scholar
Carreno, B. M. et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science348, 803–808 (2015). ArticleCASPubMedPubMed Central Google Scholar
Gong, T. & Szustakowski, J. D. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics29, 1083–1085 (2013). ArticleCASPubMed Google Scholar
Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods12, 380–381 (2015). ArticleCASPubMed Google Scholar
Mose, L. E. et al. Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V'DJer. Bioinformatics32, 3729–3734 (2016). ArticleCASPubMedPubMed Central Google Scholar
Seqc/Maqc-Iii Consortium. A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol.32, 903–914 (2014).
Fumagalli, D. et al. Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-Sequencing technology. BMC Genomics15, 1008 (2014). ArticleCASPubMedPubMed Central Google Scholar
Schurch, N. J. et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA22, 839–851 (2016). ArticleCASPubMedPubMed Central Google Scholar
Thierry-Mieg, D. & Thierry-Mieg, J. AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol.7 (Suppl. 1), S12 (2006). ArticlePubMedPubMed Central Google Scholar
Ermolaeva, O. et al. Data management and analysis for gene expression arrays. Nat. Genet.20, 19–23 (1998). ArticleCASPubMed Google Scholar
Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proc. Natl Acad. Sci. USA100, 15776–15781 (2003). ArticleCASPubMedPubMed Central Google Scholar
Subramanian, A., Kuehn, H., Gould, J., Tamayo, P. & Mesirov, J. P. GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics23, 3251–3253 (2007). ArticleCASPubMed Google Scholar
Frohman, M. A., Dush, M. K. & Martin, G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc. Natl Acad. Sci. USA85, 8998–9002 (1988). ArticleCASPubMedPubMed Central Google Scholar
Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn.14, 22–29 (2012). ArticleCASPubMedPubMed Central Google Scholar
Patro, R., Mount, S. M. & Kingsford, C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol.32, 462–464 (2014). ArticleCASPubMedPubMed Central Google Scholar
Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA98, 5116–5121 (2001). ArticleCASPubMedPubMed Central Google Scholar
Wu, C. et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol.10, R130 (2009). ArticleCASPubMedPubMed Central Google Scholar
Niknafs, Y. S., Pandian, B., Iyer, H. K., Chinnaiyan, A. M. & Iyer, M. K. TACO produces robust multisample transcriptome assemblies from RNA-seq. Nat. Methods14, 68–70 (2017). ArticleCASPubMed Google Scholar
Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods7, 909–912 (2010). ArticleCASPubMed Google Scholar
Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol.29, 644–652 (2011). ArticleCASPubMedPubMed Central Google Scholar
Goldman, M. et al. The UCSC Xena system for integrating and visualizing functional genomics [abstract]. Cancer Res.76 (Suppl.), 5270 (2016). Google Scholar
Mitelman, F., Johansson, B. & Mertens, F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat. Genet.36, 331–334 (2004). ArticleCASPubMed Google Scholar
Forbes, S. A. et al. The Catalogue of Somatic Mutations in Cancer (COSMIC). Curr. Protoc. Hum. Genet.57, 10.11 (2008). Google Scholar
Hartley, S. W. & Mullikin, J. C. QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments. BMC Bioinformatics16, 224 (2015). ArticlePubMedPubMed Central Google Scholar
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics30, 923–930 (2013). ArticleCASPubMed Google Scholar
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol.34, 525–527 (2016). ArticleCASPubMed Google Scholar
Grossman, R. L., Heath, A. P., Ferreti, V., Varmus, H. E., Lowy, D. R., Kibbe, W. A. & Staudt, L. M. Toward a shared vision for cancer genomic data. N. Engl. J. Med.375, 1109–1112 (2016). ArticlePubMedPubMed Central Google Scholar