Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory (original) (raw)
ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
ALEPH collaboration, Measurement of W-pair production in e+e−collisions at centre-of-mass energies from 183-GeV to 209-GeV, Eur. Phys. J. C38 (2004) 147 [INSPIRE].
L3 collaboration, Measurement of the cross section of W-boson pair production at LEP, Phys. Lett. B600 (2004) 22 [hep-ex/0409016] [INSPIRE].
OPAL collaboration, Measurement of the e+e− → W+W− cross section and W decay branching fractions at LEP, Eur. Phys. J. C52 (2007) 767 [arXiv:0708.1311] [INSPIRE].
ALEPH, DELPHI, L3, OPAL and LEP Electroweak collaborations, Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept.532 (2013) 119 [arXiv:1302.3415] [INSPIRE].
CDF and D0 collaborations, Combination of CDF and D0 W-Boson Mass Measurements, Phys. Rev. D88 (2013) 052018 [arXiv:1307.7627] [INSPIRE].
CDF and D0 collaborations, Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron, Phys. Rev. Lett.120 (2018) 042001 [arXiv:1709.04894] [INSPIRE].
ATLAS collaboration, Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at \( \sqrt{s} \) = 7 and 8 TeV in the ATLAS experiment, Eur. Phys. J. C76 (2016) 6 [arXiv:1507.04548] [INSPIRE].
ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
CMS collaboration, Measurements of properties of the Higgs boson in the four-lepton final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-HIG-19-001 (2019).
CMS collaboration, Measurements of differential Higgs boson production cross sections in the leptonic WW decay mode at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-HIG-19-002 (2019).
ATLAS collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb _−_1 of proton-proton collision data at \( \sqrt{s} \) = 13 TeV collected with the ATLAS experiment, Phys. Rev. D101 (2020) 012002 [arXiv:1909.02845] [INSPIRE].
CMS collaboration, Measurement of Higgs boson production and decay to the ττ final state, Tech. Rep. CMS-PAS-HIG-18-032 (2019).
CMS collaboration, Measurements of Higgs boson production via gluon fusion and vector boson fusion in the diphoton decay channel at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-HIG-18-029 (2019).
CMS collaboration, Combined Higgs boson production and decay measurements with up to 137 fb-1 of proton-proton collision data at sqrts = 13 TeV, Tech. Rep. CMS-PAS-HIG-19-005 (2020).
ATLAS collaboration, A search for the Zγ decay mode of the Higgs boson in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Lett. B809 (2020) 135754 [arXiv:2005.05382] [INSPIRE].
ATLAS collaboration, A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector, Phys. Lett. B812 (2021) 135980 [arXiv:2007.07830] [INSPIRE].
CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP02 (2014) 024 [Erratum ibid.02 (2014) 102] [arXiv:1312.7582] [INSPIRE].
CMS collaboration, Single top t-channel differential cross section at 8 TeV, Tech. Rep. CMS-PAS-TOP-14-004 (2014).
CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |Vtb| CKM matrix element in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP06 (2014) 090 [arXiv:1403.7366] [INSPIRE].
CMS collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Rev. Lett.112 (2014) 231802 [arXiv:1401.2942] [INSPIRE].
ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a W boson at 8 TeV with the ATLAS experiment, JHEP01 (2016) 064 [arXiv:1510.03752] [INSPIRE].
ATLAS collaboration, Measurement of the \( t\overline{t}W \) and \( t\overline{t}Z \) production cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP11 (2015) 172 [arXiv:1509.05276] [INSPIRE].
ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s} \) = 8 TeV using the ATLAS detector, Eur. Phys. J. C76 (2016) 538 [arXiv:1511.04716] [INSPIRE].
CMS collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at \( \sqrt{s} \) = 8 TeV, Eur. Phys. J. C75 (2015) 542 [arXiv:1505.04480] [INSPIRE].
CMS collaboration, Observation of top quark pairs produced in association with a vector boson in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP01 (2016) 096 [arXiv:1510.01131] [INSPIRE].
ATLAS collaboration, Evidence for single top-quark production in the s-channel in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector using the Matrix Element Method, Phys. Lett. B756 (2016) 228 [arXiv:1511.05980] [INSPIRE].
CMS collaboration, Search for s channel single top quark production in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP09 (2016) 027 [arXiv:1603.02555] [INSPIRE].
CMS collaboration, Measurement of the W boson helicity fractions in the decays of top quark pairs to lepton + jets final states produced in pp collisions at \( \sqrt{s} \) = 8_TeV_, Phys. Lett. B762 (2016) 512 [arXiv:1605.09047] [INSPIRE].
ATLAS collaboration, Measurement of the W boson polarisation in \( t\overline{t} \) events from pp collisions at \( \sqrt{s} \) = 8 TeV in the lepton + jets channel with ATLAS, Eur. Phys. J. C77 (2017) 264 [Erratum ibid.79 (2019) 19] [arXiv:1612.02577] [INSPIRE].
ATLAS collaboration, Measurement of top quark pair differential cross-sections in the dilepton channel in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV with ATLAS, Phys. Rev. D94 (2016) 092003 [Addendum ibid.101 (2020) 119901] [arXiv:1607.07281] [INSPIRE].
ATLAS collaboration, Measurements of the charge asymmetry in top-quark pair production in the dilepton final state at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Rev. D94 (2016) 032006 [arXiv:1604.05538] [INSPIRE].
CMS collaboration, Measurements of \( t\overline{t} \) charge asymmetry using dilepton final states in pp collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B760 (2016) 365 [arXiv:1603.06221] [INSPIRE].
CMS collaboration, Measurements of the \( \mathrm{t}\overline{\mathrm{t}} \) production cross section in lepton+jets final states in pp collisions at 8 TeV and ratio of 8 to 7 TeV cross sections, Eur. Phys. J. C77 (2017) 15 [arXiv:1602.09024] [INSPIRE].
CMS collaboration, Measurement of double-differential cross sections for top quark pair production in pp collisions at \( \sqrt{s} \) = 8 TeV and impact on parton distribution functions, Eur. Phys. J. C77 (2017) 459 [arXiv:1703.01630] [INSPIRE].
ATLAS collaboration, Measurement of the \( t\overline{t}\gamma \) production cross section in proton-proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP11 (2017) 086 [arXiv:1706.03046] [INSPIRE].
CMS collaboration, Measurement of the semileptonic \( \mathrm{t}\overline{\mathrm{t}} \) + γ production cross section in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP10 (2017) 006 [arXiv:1706.08128] [INSPIRE].
ATLAS and CMS collaborations, Combination of inclusive and differential \( \mathrm{t}\overline{\mathrm{t}} \) charge asymmetry measurements using ATLAS and CMS data at \( \sqrt{s} \) = 7 and 8 TeV, JHEP04 (2018) 033 [arXiv:1709.05327] [INSPIRE].
ATLAS collaboration, Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector, Eur. Phys. J. C77 (2017) 531 [arXiv:1702.02859] [INSPIRE].
CMS and ATLAS collaborations, Combination of the W boson polarization measurements in top quark decays using ATLAS and CMS data at \( \sqrt{s} \) = 8 TeV, JHEP08 (2020) 051 [arXiv:2005.03799] [INSPIRE].
ATLAS collaboration, Measurement of single top-quark production in association with a W boson in the single-lepton channel at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, arXiv:2007.01554 [INSPIRE].
CMS collaboration, Cross section measurement of t-channel single top quark production in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B772 (2017) 752 [arXiv:1610.00678] [INSPIRE].
ATLAS collaboration, Measurement of the cross-section for producing a W boson in association with a single top quark in pp collisions at \( \sqrt{s} \) = 13 TeV with ATLAS, JHEP01 (2018) 063 [arXiv:1612.07231] [INSPIRE].
CMS collaboration, Measurement of the differential cross section for t-channel single-top-quark production at \( \sqrt{s} \) = 13 TeV, Tech. Rep. CMS-PAS-TOP-16-004 (2016).
ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP04 (2017) 086 [arXiv:1609.03920] [INSPIRE].
CMS collaboration, Measurement of normalized differential \( \mathrm{t}\overline{\mathrm{t}} \) cross sections in the dilepton channel from pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP04 (2018) 060 [arXiv:1708.07638] [INSPIRE].
CMS collaboration, Measurement of the associated production of a single top quark and a Z boson in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B779 (2018) 358 [arXiv:1712.02825] [INSPIRE].
CMS collaboration, Measurement of the cross section for top quark pair production in association with a W or Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP08 (2018) 011 [arXiv:1711.02547] [INSPIRE].
ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a Z boson in proton-proton collisions at 13 TeV with the ATLAS detector, Phys. Lett. B780 (2018) 557 [arXiv:1710.03659] [INSPIRE].
CMS collaboration, Measurement of the \( \mathrm{t}\overline{\mathrm{t}} \) production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C79 (2019) 368 [arXiv:1812.10505] [INSPIRE].
ATLAS collaboration, Search for four-top-quark production in the single-lepton and opposite-sign dilepton final states in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D99 (2019) 052009 [arXiv:1811.02305] [INSPIRE].
CMS collaboration, Measurement of the production cross section for single top quarks in association with W bosons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP10 (2018) 117 [arXiv:1805.07399] [INSPIRE].
CMS collaboration, Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D97 (2018) 112003 [arXiv:1803.08856] [INSPIRE].
CMS collaboration, Observation of Single Top Quark Production in Association with a Z Boson in Proton-Proton Collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. Lett.122 (2019) 132003 [arXiv:1812.05900] [INSPIRE].
ATLAS collaboration, Inclusive and differential measurement of the charge asymmetry in \( t\overline{t} \) events at 13 TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2019-026 (2019).
CMS collaboration, Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C80 (2020) 370 [arXiv:1907.08330] [INSPIRE].
CMS collaboration, Measurement of the \( \mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}} \) production cross section in the all-jet final state in pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B803 (2020) 135285 [arXiv:1909.05306] [INSPIRE].
ATLAS collaboration, Measurement of the \( t\overline{t}Z \) and \( t\overline{t}W \) cross sections in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D99 (2019) 072009 [arXiv:1901.03584] [INSPIRE].
CMS collaboration, Search for the production of four top quarks in the single-lepton and opposite-sign dilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP11 (2019) 082 [arXiv:1906.02805] [INSPIRE].
CMS collaboration, Measurement of top quark pair production in association with a Z boson in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP03 (2020) 056 [arXiv:1907.11270] [INSPIRE].
CMS collaboration, Search for production of four top quarks in final states with same-sign or multiple leptons in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C80 (2020) 75 [arXiv:1908.06463] [INSPIRE].
ATLAS collaboration, Measurements of inclusive and differential cross-sections of combined \( t\overline{t}\gamma \) and tWγ production in the eμ channel at 13 TeV with the ATLAS detector, JHEP09 (2020) 049 [arXiv:2007.06946] [INSPIRE].
ATLAS collaboration, Evidence for \( t\overline{t}t\overline{t} \) production in the multilepton final state in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Tech. Rep. ATLAS-CONF-2020-013 (2020).
CMS collaboration, Measurement of the cross section for \( t\overline{t} \) production with additional jets and b jets in pp collisions at \( \sqrt{s} \) = 13 TeV, JHEP07 (2020) 125 [arXiv:2003.06467] [INSPIRE].
ATLAS collaboration, Measurement of the W-boson mass in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C78 (2018) 110 [Erratum ibid.78 (2018) 898] [arXiv:1701.07240] [INSPIRE].
ATLAS collaboration, Measurement of the W+W−production cross section in pp collisions at a centre-of-mass energy of \( \sqrt{s} \) = 13 TeV with the ATLAS experiment, Phys. Lett. B773 (2017) 354 [arXiv:1702.04519] [INSPIRE].
CMS collaboration, Measurements of the pp → WZ inclusive and differential production cross section and constraints on charged anomalous triple gauge couplings at \( \sqrt{s} \) = 13 TeV, JHEP04 (2019) 122 [arXiv:1901.03428] [INSPIRE].
CMS collaboration, Search for anomalous triple gauge couplings in WW and WZ production in lepton + jet events in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP12 (2019) 062 [arXiv:1907.08354] [INSPIRE].
ATLAS collaboration, Measurement of W±Z production cross sections and gauge boson polarisation in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C79 (2019) 535 [arXiv:1902.05759] [INSPIRE].
ATLAS collaboration, Measurement of fiducial and differential W+W–production cross-sections at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C79 (2019) 884 [arXiv:1905.04242] [INSPIRE].
ATLAS collaboration, Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton-proton collisions at ATLAS, Eur. Phys. J. C81 (2021) 163 [arXiv:2006.15458] [INSPIRE].
T. Appelquist and J. Carazzone, Infrared Singularities and Massive Fields, Phys. Rev. D11 (1975) 2856 [INSPIRE]. Article Google Scholar
S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett.43 (1979) 1566 [INSPIRE]. Article Google Scholar
W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys. B268 (1986) 621 [INSPIRE]. Article Google Scholar
I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC Run I, Eur. Phys. J. C76 (2016) 416 [arXiv:1604.06801] [INSPIRE]. Article Google Scholar
J. de Blas, O. Eberhardt and C. Krause, Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory, JHEP07 (2018) 048 [arXiv:1803.00939] [INSPIRE]. Article Google Scholar
R. Alonso, E.E. Jenkins and A.V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett. B754 (2016) 335 [arXiv:1511.00724] [INSPIRE]. ArticleMATH Google Scholar
L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev. D90 (2014) 125023 [arXiv:1410.4193] [INSPIRE]. Article Google Scholar
H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete Set of Dimension-8 Operators in the Standard Model Effective Field Theory, arXiv:2005.00008 [INSPIRE].
H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu and Y.-H. Zheng, Complete Set of Dimension-9 Operators in the Standard Model Effective Field Theory, arXiv:2007.07899 [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. ArticleMATH Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. Article Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. Article Google Scholar
Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev. D71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev. D87 (2013) 015022 [arXiv:1211.4580] [INSPIRE]. Article Google Scholar
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining Triple Gauge Boson Couplings from Higgs Data, Phys. Rev. Lett.111 (2013) 011801 [arXiv:1304.1151] [INSPIRE]. Article Google Scholar
W.-F. Chang, W.-P. Pan and F. Xu, Effective gauge-Higgs operators analysis of new physics associated with the Higgs boson, Phys. Rev. D88 (2013) 033004 [arXiv:1303.7035] [INSPIRE]. Article Google Scholar
J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP11 (2013) 066 [arXiv:1308.1879] [INSPIRE]. Article Google Scholar
E. Boos, V. Bunichev, M. Dubinin and Y. Kurihara, Higgs boson signal at complete tree level in the SM extension by dimension-six operators, Phys. Rev. D89 (2014) 035001 [arXiv:1309.5410] [INSPIRE]. Article Google Scholar
L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W±data in a global fit of SMEFT parameters to lift flat directions, JHEP09 (2016) 157 [arXiv:1606.06693] [INSPIRE]. Article Google Scholar
A. Biekötter, R. Gomez-Ambrosio, P. Gregg, F. Krauss and M. Schönherr, Constraining SMEFT operators with associated hγ production in weak boson fusion, Phys. Lett. B814 (2021) 136079 [arXiv:2003.06379] [INSPIRE]. Article Google Scholar
S. Banerjee, C. Englert, R.S. Gupta and M. Spannowsky, Probing Electroweak Precision Physics via boosted Higgs-strahlung at the LHC, Phys. Rev. D98 (2018) 095012 [arXiv:1807.01796] [INSPIRE]. Article Google Scholar
L. Silvestrini and M. Valli, Model-independent Bounds on the Standard Model Effective Theory from Flavour Physics, Phys. Lett. B799 (2019) 135062 [arXiv:1812.10913] [INSPIRE]. Article Google Scholar
J. Aebischer, J. Kumar, P. Stangl and D.M. Straub, A Global Likelihood for Precision Constraints and Flavour Anomalies, Eur. Phys. J. C79 (2019) 509 [arXiv:1810.07698] [INSPIRE]. Article Google Scholar
A. Falkowski, M. González-Alonso and K. Mimouni, Compilation of low-energy constraints on 4-fermion operators in the SMEFT, JHEP08 (2017) 123 [arXiv:1706.03783] [INSPIRE]. Article Google Scholar
A. Falkowski, M. González-Alonso and O. Naviliat-Cuncic, Comprehensive analysis of beta decays within and beyond the Standard Model, JHEP04 (2021) 126 [arXiv:2010.13797] [INSPIRE]. Article Google Scholar
S. Dawson and P.P. Giardino, Higgs decays to ZZ and Zγ in the standard model effective field theory: An NLO analysis, Phys. Rev. D97 (2018) 093003 [arXiv:1801.01136] [INSPIRE]. Article Google Scholar
P. Kozów, L. Merlo, S. Pokorski and M. Szleper, Same-sign WW Scattering in the HEFT: Discoverability vs. EFT Validity, JHEP07 (2019) 021 [arXiv:1905.03354] [INSPIRE].
J. Baglio, S. Dawson and S. Homiller, QCD corrections in Standard Model EFT fits to WZ and WW production, Phys. Rev. D100 (2019) 113010 [arXiv:1909.11576] [INSPIRE]. Article Google Scholar
J. Ellis, S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing the scale of new physics in the ZZγ coupling at e+e−colliders, Chin. Phys. C44 (2020) 063106 [arXiv:1902.06631] [INSPIRE]. Article Google Scholar
S. Alioli, R. Boughezal, E. Mereghetti and F. Petriello, Novel angular dependence in Drell-Yan lepton production via dimension-8 operators, Phys. Lett. B809 (2020) 135703 [arXiv:2003.11615] [INSPIRE]. Article Google Scholar
J. Ellis, H.-J. He and R.-Q. Xiao, Probing new physics in dimension-8 neutral gauge couplings at e+e−colliders, Sci. China Phys. Mech. Astron.64 (2021) 221062 [arXiv:2008.04298] [INSPIRE]. Article Google Scholar
B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous ZZ and Zγ processes, Phys. Rev. D98 (2018) 095021 [arXiv:1806.09640] [INSPIRE]. Article Google Scholar
B. Fuks, Y. Liu, C. Zhang and S.-Y. Zhou, Positivity in electron-positron scattering: testing the axiomatic quantum field theory principles and probing the existence of UV states, Chin. Phys. C45 (2021) 023108 [arXiv:2009.02212] [INSPIRE]. Article Google Scholar
J. de Blas, J.C. Criado, M. Pérez-Victoria and J. Santiago, Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP03 (2018) 109 [arXiv:1711.10391] [INSPIRE]. ArticleMathSciNetMATH Google Scholar
Anisha, S. Das Bakshi, J. Chakrabortty and S.K. Patra, A Step Toward Model Comparison: Connecting Electroweak-Scale Observables to BSM through EFT and Bayesian Statistics, arXiv:2010.04088 [INSPIRE].
D. Marzocca et al., BSM Benchmarks for Effective Field Theories in Higgs and Electroweak Physics, arXiv:2009.01249 [INSPIRE].
A. Drozd, J. Ellis, J. Quevillon and T. You, Comparing EFT and Exact One-Loop Analyses of Non-Degenerate Stops, JHEP06 (2015) 028 [arXiv:1504.02409] [INSPIRE]. Article Google Scholar
R. Huo, Effective Field Theory of Integrating out Sfermions in the MSSM: Complete One-Loop Analysis, Phys. Rev. D97 (2018) 075013 [arXiv:1509.05942] [INSPIRE]. Article Google Scholar
H. Han, R. Huo, M. Jiang and J. Shu, Standard Model Effective Field Theory: Integrating out Neutralinos and Charginos in the MSSM, Phys. Rev. D97 (2018) 095003 [arXiv:1712.07825] [INSPIRE]. Article Google Scholar
S. Das Bakshi, J. Chakrabortty and S.K. Patra, CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory, Eur. Phys. J. C79 (2019) 21 [arXiv:1808.04403] [INSPIRE]. Article Google Scholar
U. Haisch, M. Ruhdorfer, E. Salvioni, E. Venturini and A. Weiler, Singlet night in Feynman-ville: one-loop matching of a real scalar, JHEP04 (2020) 164 [Erratum ibid.07 (2020) 066] [arXiv:2003.05936] [INSPIRE].
V. Gherardi, D. Marzocca and E. Venturini, Matching scalar leptoquarks to the SMEFT at one loop, JHEP07 (2020) 225 [Erratum ibid.01 (2021) 006] [arXiv:2003.12525] [INSPIRE].
E. da Silva Almeida, A. Alves, N. Rosa Agostinho, O.J.P. Éboli and M.C. Gonzalez-Garcia, Electroweak Sector Under Scrutiny: A Combined Analysis of LHC and Electroweak Precision Data, Phys. Rev. D99 (2019) 033001 [arXiv:1812.01009] [INSPIRE]. Article Google Scholar
S. Bißmann, J. Erdmann, C. Grunwald, G. Hiller and K. Kröninger, Constraining top-quark couplings combining top-quark and B decay observables, Eur. Phys. J. C80 (2020) 136 [arXiv:1909.13632] [INSPIRE]. Article Google Scholar
N.P. Hartland et al., A Monte Carlo global analysis of the Standard Model Effective Field Theory: the top quark sector, JHEP04 (2019) 100 [arXiv:1901.05965] [INSPIRE]. Article Google Scholar
G. Durieux et al., The electro-weak couplings of the top and bottom quarks — Global fit and future prospects, JHEP12 (2019) 98 [Erratum ibid.01 (2021) 195] [arXiv:1907.10619] [INSPIRE].
CMS Collaboration, Using associated top quark production to probe for new physics within the framework of effective field theory, tech. rep. CMS-PAS-TOP-19-001 (2020).
C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Automated one-loop computations in the SMEFT, arXiv:2008.11743 [INSPIRE].
F. Krauss, S. Kuttimalai and T. Plehn, LHC multijet events as a probe for anomalous dimension-six gluon interactions, Phys. Rev. D95 (2017) 035024 [arXiv:1611.00767] [INSPIRE]. Article Google Scholar
V. Hirschi, F. Maltoni, I. Tsinikos and E. Vryonidou, Constraining anomalous gluon self-interactions at the LHC: a reappraisal, JHEP07 (2018) 093 [arXiv:1806.04696] [INSPIRE]. Article Google Scholar
R. Goldouzian and M.D. Hildreth, LHC dijet angular distributions as a probe for the dimension-six triple gluon vertex, Phys. Lett. B811 (2020) 135889 [arXiv:2001.02736] [INSPIRE]. Article Google Scholar
R.S. Chivukula and H. Georgi, Composite Technicolor Standard Model, Phys. Lett. B188 (1987) 99 [INSPIRE]. Article Google Scholar
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys. B645 (2002) 155 [hep-ph/0207036] [INSPIRE].
D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].
M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B772 (2017) 210 [arXiv:1609.08157] [INSPIRE]. Article Google Scholar
S. Dawson, P.P. Giardino and A. Ismail, Standard model EFT and the Drell-Yan process at high energy, Phys. Rev. D99 (2019) 035044 [arXiv:1811.12260] [INSPIRE]. Article Google Scholar
J. Fuentes-Martin, A. Greljo, J. Martin Camalich and J.D. Ruiz-Alvarez, Charm physics confronts high-pTlepton tails, JHEP11 (2020) 080 [arXiv:2003.12421] [INSPIRE]. Article Google Scholar
C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant New Physics in Top Pair Production at Hadron Colliders, JHEP03 (2011) 125 [arXiv:1010.6304] [INSPIRE]. Article Google Scholar
J. D’Hondt, A. Mariotti, K. Mimasu, S. Moortgat and C. Zhang, Learning to pinpoint effective operators at the LHC: a study of the \( \mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}} \) signature, JHEP11 (2018) 131 [arXiv:1807.02130] [INSPIRE]. Article Google Scholar
J. De Blas, G. Durieux, C. Grojean, J. Gu and A. Paul, On the future of Higgs, electroweak and diboson measurements at lepton colliders, JHEP12 (2019) 117 [arXiv:1907.04311] [INSPIRE]. Article Google Scholar
B. Henning, D. Lombardo, M. Riembau and F. Riva, Measuring Higgs Couplings without Higgs Bosons, Phys. Rev. Lett.123 (2019) 181801 [arXiv:1812.09299] [INSPIRE]. Article Google Scholar
S. Bißmann, J. Erdmann, C. Grunwald, G. Hiller and K. Kröninger, Correlating uncertainties in global analyses within SMEFT matters, Phys. Rev. D102 (2020) 115019 [arXiv:1912.06090] [INSPIRE]. Article Google Scholar
M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential distributions, arXiv:1704.08551 [INSPIRE].
M.L. Czakon et al., NNLO versus NLO multi-jet merging for top-pair production including electroweak corrections, in 11th International Workshop on Top Quark Physics, in 11th International Workshop on Top Quark Physics, (2019) [arXiv:1901.04442] [INSPIRE].
M. Czakon et al., An exploratory study of the impact of CMS double-differential top distributions on the gluon parton distribution function, J. Phys. G48 (2020) 015003 [arXiv:1912.08801] [INSPIRE]. Article Google Scholar
C. Hays, A. Helset, A. Martin and M. Trott, Exact SMEFT formulation and expansion to \( \mathcal{O} \)(v_4/_Λ4), JHEP11 (2020) 087 [arXiv:2007.00565] [INSPIRE]. Article Google Scholar
A. Horne, J. Pittman, M. Snedeker, W. Shepherd and J.W. Walker, Shift-Type SMEFT Effects in Dileptons at the LHC, JHEP03 (2021) 118 [arXiv:2007.12698] [INSPIRE]. Article Google Scholar
J. Baglio, S. Dawson, S. Homiller, S.D. Lane and I.M. Lewis, Validity of standard model EFT studies of VH and VV production at NLO, Phys. Rev. D101 (2020) 115004 [arXiv:2003.07862] [INSPIRE]. Article Google Scholar
V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev. D94 (2016) 034031 [arXiv:1605.04311] [INSPIRE]. Article Google Scholar
S. Carrazza, C. Degrande, S. Iranipour, J. Rojo and M. Ubiali, Can New Physics hide inside the proton?, Phys. Rev. Lett.123 (2019) 132001 [arXiv:1905.05215] [INSPIRE]. Article Google Scholar
ATLAS collaboration, Methodology for EFT interpretation of Higgs boson Simplified Template Cross-section results in ATLAS, Tech. Rep. ATL-PHYS-PUB-2019-042 (2019).
N. Berger et al., Simplified Template Cross Sections — Stage 1.1, arXiv:1906.02754 [INSPIRE].
O. Brein, A. Djouadi and R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders, Phys. Lett. B579 (2004) 149 [hep-ph/0307206] [INSPIRE].
K. Mimasu, V. Sanz and C. Williams, Higher Order QCD predictions for Associated Higgs production with anomalous couplings to gauge bosons, JHEP08 (2016) 039 [arXiv:1512.02572] [INSPIRE]. Article Google Scholar
O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP05 (2016) 052 [arXiv:1601.08193] [INSPIRE]. Article Google Scholar
C. Englert, R. Rosenfeld, M. Spannowsky and A. Tonero, New physics and signal-background interference in associated pp → HZ production, EPL114 (2016) 31001 [arXiv:1603.05304] [INSPIRE]. Article Google Scholar
A. Azatov, C. Grojean, A. Paul and E. Salvioni, Resolving gluon fusion loops at current and future hadron colliders, JHEP09 (2016) 123 [arXiv:1608.00977] [INSPIRE]. Article Google Scholar
ATLAS collaboration, Higgs boson production cross-section measurements and their EFT interpretation in the 4_ℓ decay channel at_ \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C80 (2020) 957 [Erratum ibid.81 (2021) 29] [arXiv:2004.03447] [INSPIRE].
M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-quark charge asymmetry at the LHC and Tevatron through NNLO QCD and NLO EW, Phys. Rev. D98 (2018) 014003 [arXiv:1711.03945] [INSPIRE]. Article Google Scholar
Particle Data Group collaboration, Review of Particle Physics, PTEP2020 (2020) 083C01 [INSPIRE].
A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev. D95 (2017) 065014 [arXiv:1607.05236] [INSPIRE]. Article Google Scholar
CMS collaboration, Inclusive search for a highly boosted Higgs boson decaying to a bottom quark-antiquark pair, Phys. Rev. Lett.120 (2018) 071802 [arXiv:1709.05543] [INSPIRE].
R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the Validity of the Effective Field Theory Approach to SM Precision Tests, JHEP07 (2016) 144 [arXiv:1604.06444] [INSPIRE]. Article Google Scholar
C. Degrande, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Single-top associated production with a Z or H boson at the LHC: the SMEFT interpretation, JHEP10 (2018) 005 [arXiv:1804.07773] [INSPIRE]. Article Google Scholar
M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP10 (2017) 186 [arXiv:1705.04105] [INSPIRE]. Article Google Scholar
D. Bardhan, D. Ghosh, P. Jain and A.M. Thalapillil, Towards constraining triple gluon operators through tops, arXiv:2010.13402 [INSPIRE].
A. Crivellin, F. Kirk, C.A. Manzari and M. Montull, Global Electroweak Fit and Vector-Like Leptons in Light of the Cabibbo Angle Anomaly, JHEP12 (2020) 166 [arXiv:2008.01113] [INSPIRE]. Article Google Scholar
A. Banfi, A. Bond, A. Martin and V. Sanz, Digging for Top Squarks from Higgs data: from signal strengths to differential distributions, JHEP11 (2018) 171 [arXiv:1806.05598] [INSPIRE]. Article Google Scholar
F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc.398 (2009) 1601 [arXiv:0809.3437] [INSPIRE]. Article Google Scholar
J. Buchner et al., X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue, Astron. Astrophys.564 (2014) A125 [arXiv:1402.0004] [INSPIRE]. Article Google Scholar
C. Hays, V. Sanz Gonzalez and G. Zemaityte, Constraining EFT parameters using simplified template cross sections, Tech. Rep. LHCHXSWG-2019-004 (2019).
A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J. C75 (2015) 583 [arXiv:1508.05895] [INSPIRE]. Article Google Scholar