Adjoint representation (original) (raw)
In der Mathematik spielen die adjungierten Darstellungen von Lie-Gruppen und Lie-Algebren eine wichtige Rolle in Differentialgeometrie, Darstellungstheorie und Mathematischer Physik.
Property | Value |
---|---|
dbo:abstract | In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: . For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields. (en) In der Mathematik spielen die adjungierten Darstellungen von Lie-Gruppen und Lie-Algebren eine wichtige Rolle in Differentialgeometrie, Darstellungstheorie und Mathematischer Physik. (de) En mathématiques, il existe deux notions de représentations adjointes : * la représentation adjointe d'un groupe de Lie sur son algèbre de Lie, * la représentation adjointe d'une algèbre de Lie sur elle-même. Alors que la première est une représentation de groupe, la seconde est une représentation d'algèbre. (fr) 리 군론에서 딸림표현(-表現, 영어: adjoint representation)은 어떤 리 군이 스스로의 리 대수 위에 가지는 표준적인 표현이다. (ko) リー群のリー環上への随伴表現(ずいはんひょうげん、英: adjoint representation)とは、リー群の元をリー環のある種の線型変換として表したものをいう。 (ja) In matematica, la rappresentazione aggiunta (o azione aggiunta) di un gruppo di Lie è un modo di rappresentare gli elementi del gruppo come trasformazioni lineari dell'algebra di Lie del gruppo, considerata come uno spazio vettoriale. Ad esempio, dato il gruppo , il gruppo di Lie di matrici invertibili reali n per n, allora la rappresentazione aggiunta è l'omomorfismo di gruppo che manda una matrice n-per-n invertibile a un endomorfismo dello spazio vettoriale di tutte le trasformazioni lineari di definito da . Per ogni gruppo di Lie, questa rappresentazione naturale si ottiene linearizzando (cioè prendendo il differenziale) l'azione del gruppo su se stesso per coniugazione. La rappresentazione aggiunta può essere definita per gruppi algebrici lineari su campi arbitrari. (it) Em matemática, a representação adjunta (ou ação adjunta) de um grupo de Lie G é uma forma de representar os elementos do grupo como transformações lineares do grupo de álgebra de Lie, considerado como um espaço vetorial. Por exemplo, no caso em que G é o grupo de Lie de matrizes inversíveis de tamanho n, GL(n), a álgebra de Lie é o espaço vetorial de todas (não necessariamente inversível) matrizes n-por-n. Portanto, neste caso, a representação adjunta é o espaço vetorial de matrizes n-por-n, e qualquer elemento g em GL(n) que atua como uma transformação linear deste espaço vetorial dada pela conjugação: . (pt) Присоединённое представление группы Ли — линейное представление группы Ли на своей алгебре Ли.Обычно обозначается . (ru) У теорії груп Лі приєднаним представленням групи Лі G називається представлення елементів групи, як лінійних відображень на відповідній алгебрі Лі. Дане представлення є гомоморфізмом груп Лі. Його диференціал є представленням алгебри Лі, що називається приєднаним представленням алгебри Лі. (uk) 在數學中,一個李群 G 的伴隨表示(adjoint representation)或伴隨作用(adjoint action)是 G 在它自身的李代數上的自然表示。這個表示是群 G 在自身上的共軛作用的線性化形式。 (zh) |
dbo:wikiPageID | 302188 (xsd:integer) |
dbo:wikiPageLength | 20832 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1101102744 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Representation_theory dbr:Derivative_of_the_exponential_map dbr:Determinant dbr:Algebraic_group dbr:Vector_field dbr:Vector_space dbr:Jacobi_identity dbr:Lie's_third_theorem dbr:Lie_derivative dbr:Lie_group dbr:Lie_group–Lie_algebra_correspondence dbc:Representation_theory_of_Lie_groups dbr:Mathematics dbr:Matrix_multiplication dbr:General_Leibniz_rule dbr:SL2(R) dbr:Endomorphism dbr:Connected_space dbr:Lie_algebra dbr:Lie_algebra_extension dbr:Identity_component dbr:Structure_constants dbr:Symplectic_manifold dbr:Tangent_space dbr:Center_(group_theory) dbr:Trace_(linear_algebra) dbr:Linear_algebraic_group dbr:Linear_map dbr:Alexandre_Kirillov dbc:Lie_groups dbr:Field_(mathematics) dbr:Flow_(mathematics) dbr:Center_(algebra) dbr:Differential_of_a_function dbr:Faithful_representation dbr:Isotropy_representation dbr:Conjugation_(group_theory) dbr:First_isomorphism_theorem dbr:Quadratic_form dbr:Group_action_(mathematics) dbr:Invertible_matrix dbr:Abelian_group dbr:Chain_rule dbr:Kernel_(group_theory) dbr:Coadjoint_representation dbr:Maximal_torus dbr:Weight_(representation_theory) dbr:Differential_algebra dbr:Automorphism_group dbr:Manifold dbr:Group_representation dbr:Inner_automorphism dbr:Orbit_(group_theory) dbr:Kirillov_character_formula dbr:Lie_bracket_of_vector_fields dbr:Root_system dbr:Exponential_map_(Lie_theory) dbr:Image_(mathematics) dbr:Linear_transformation dbr:Basis_vectors dbr:Centralizer dbr:Lie_algebra_automorphism dbr:Matrix_Lie_group dbr:Representation_of_a_Lie_algebra dbr:Contragredient_representation dbr:Semisimple_group dbr:Nilpotent_Lie_group |
dbp:wikiPageUsesTemplate | dbt:' dbt:= dbt:Annotated_link dbt:Citation dbt:Cite_book dbt:Clarify dbt:Math dbt:Mvar dbt:Reflist dbt:Section_link dbt:See_also dbt:Fulton-Harris dbt:Lie_groups |
dct:subject | dbc:Representation_theory_of_Lie_groups dbc:Lie_groups |
rdf:type | owl:Thing |
rdfs:comment | In der Mathematik spielen die adjungierten Darstellungen von Lie-Gruppen und Lie-Algebren eine wichtige Rolle in Differentialgeometrie, Darstellungstheorie und Mathematischer Physik. (de) En mathématiques, il existe deux notions de représentations adjointes : * la représentation adjointe d'un groupe de Lie sur son algèbre de Lie, * la représentation adjointe d'une algèbre de Lie sur elle-même. Alors que la première est une représentation de groupe, la seconde est une représentation d'algèbre. (fr) 리 군론에서 딸림표현(-表現, 영어: adjoint representation)은 어떤 리 군이 스스로의 리 대수 위에 가지는 표준적인 표현이다. (ko) リー群のリー環上への随伴表現(ずいはんひょうげん、英: adjoint representation)とは、リー群の元をリー環のある種の線型変換として表したものをいう。 (ja) Em matemática, a representação adjunta (ou ação adjunta) de um grupo de Lie G é uma forma de representar os elementos do grupo como transformações lineares do grupo de álgebra de Lie, considerado como um espaço vetorial. Por exemplo, no caso em que G é o grupo de Lie de matrizes inversíveis de tamanho n, GL(n), a álgebra de Lie é o espaço vetorial de todas (não necessariamente inversível) matrizes n-por-n. Portanto, neste caso, a representação adjunta é o espaço vetorial de matrizes n-por-n, e qualquer elemento g em GL(n) que atua como uma transformação linear deste espaço vetorial dada pela conjugação: . (pt) Присоединённое представление группы Ли — линейное представление группы Ли на своей алгебре Ли.Обычно обозначается . (ru) У теорії груп Лі приєднаним представленням групи Лі G називається представлення елементів групи, як лінійних відображень на відповідній алгебрі Лі. Дане представлення є гомоморфізмом груп Лі. Його диференціал є представленням алгебри Лі, що називається приєднаним представленням алгебри Лі. (uk) 在數學中,一個李群 G 的伴隨表示(adjoint representation)或伴隨作用(adjoint action)是 G 在它自身的李代數上的自然表示。這個表示是群 G 在自身上的共軛作用的線性化形式。 (zh) In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: . (en) In matematica, la rappresentazione aggiunta (o azione aggiunta) di un gruppo di Lie è un modo di rappresentare gli elementi del gruppo come trasformazioni lineari dell'algebra di Lie del gruppo, considerata come uno spazio vettoriale. Ad esempio, dato il gruppo , il gruppo di Lie di matrici invertibili reali n per n, allora la rappresentazione aggiunta è l'omomorfismo di gruppo che manda una matrice n-per-n invertibile a un endomorfismo dello spazio vettoriale di tutte le trasformazioni lineari di definito da . (it) |
rdfs:label | Adjungierte Darstellung (de) Adjoint representation (en) Rappresentazione aggiunta (it) Représentation adjointe (fr) 随伴表現 (ja) 딸림표현 (ko) Representação adjunta (grupo de Lie) (pt) Присоединённое представление группы Ли (ru) Приєднане представлення групи Лі (uk) 伴随表示 (zh) |
rdfs:seeAlso | dbr:Representation_theory |
owl:sameAs | freebase:Adjoint representation yago-res:Adjoint representation wikidata:Adjoint representation dbpedia-de:Adjoint representation dbpedia-fr:Adjoint representation dbpedia-it:Adjoint representation dbpedia-ja:Adjoint representation dbpedia-ko:Adjoint representation dbpedia-pt:Adjoint representation dbpedia-ru:Adjoint representation dbpedia-uk:Adjoint representation dbpedia-zh:Adjoint representation https://global.dbpedia.org/id/71kP |
prov:wasDerivedFrom | wikipedia-en:Adjoint_representation?oldid=1101102744&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Adjoint_representation |
is dbo:wikiPageDisambiguates of | dbr:AD_(disambiguation) |
is dbo:wikiPageRedirects of | dbr:Adjoint_Representation dbr:Adjoint_representation_of_a_Lie_algebra dbr:Adjoint_representation_of_a_Lie_group dbr:Adjoint_action dbr:Adjoint_endomorphism dbr:Adjoint_group dbr:Adjoint_map |
is dbo:wikiPageWikiLink of | dbr:Product_operator_formalism dbr:Scalar_chromodynamics dbr:Vector-valued_differential_form dbr:Derivative_of_the_exponential_map dbr:Representation_theory_of_the_Lorentz_group dbr:Invariant_convex_cone dbr:Jacobson–Morozov_theorem dbr:Lie_algebroid dbr:Lie_algebra-valued_differential_form dbr:Lie_algebra_representation dbr:Lie_group–Lie_algebra_correspondence dbr:List_of_mathematical_abbreviations dbr:List_of_representation_theory_topics dbr:'t_Hooft_loop dbr:1/N_expansion dbr:Connection_(fibred_manifold) dbr:Connection_form dbr:Gauge_covariant_derivative dbr:Gauge_group_(mathematics) dbr:Gauge_theory_(mathematics) dbr:Ehresmann_connection dbr:Georgi–Glashow_model dbr:Glossary_of_representation_theory dbr:Gluon_field_strength_tensor dbr:Connection_(principal_bundle) dbr:Representation_theory_of_SU(2) dbr:Lie_algebra dbr:Lie_algebra_extension dbr:Bogomol'nyi–Prasad–Sommerfield_bound dbr:Pincherle_derivative dbr:Structure_constants dbr:Adjoint_bundle dbr:Linear_algebraic_group dbr:Linear_group dbr:Super-Poincaré_algebra dbr:3D_rotation_group dbr:Isoparametric_manifold dbr:Isotropy_representation dbr:Quantum_chromodynamics dbr:Universal_enveloping_algebra dbr:Regular_element_of_a_Lie_algebra dbr:AD_(disambiguation) dbr:Adjoint_Representation dbr:Adjoint_representation_of_a_Lie_algebra dbr:Adjoint_representation_of_a_Lie_group dbr:ADHM_construction dbr:Symmetry_in_quantum_mechanics dbr:Coadjoint_representation dbr:Hermitian_symmetric_space dbr:Higgs_phase dbr:Torsion_tensor dbr:Reductive_group dbr:Automorphism_of_a_Lie_algebra dbr:Borel–de_Siebenthal_theory dbr:Yang–Mills_equations dbr:Vertical_and_horizontal_bundles dbr:Poincaré_group dbr:W-algebra dbr:Stable_principal_bundle dbr:Trace_field_of_a_representation dbr:Fixed-point_subring dbr:Multiplet dbr:Yang–Mills–Higgs_equations dbr:Tangloids dbr:Virasoro_group dbr:Adjoint_action dbr:Adjoint_endomorphism dbr:Adjoint_group dbr:Adjoint_map |
is foaf:primaryTopic of | wikipedia-en:Adjoint_representation |