Connection form (original) (raw)

About DBpedia

En géométrie différentielle, une 1-forme de connexion est une forme différentielle sur un -fibré principal qui vérifie certains axiomes.La donnée d'une forme de connexion permet de parler, entre autres, de courbure, de torsion, de dérivée covariante, de relevé horizontal, de transport parallèle, d'holonomie et de théorie de jauge.La notion de forme de connexion est intimement reliée à la notion de connexion d'Ehresmann.

Property Value
dbo:abstract In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Cartan in the first half of the 20th century as part of, and one of the principal motivations for, his method of moving frames. The connection form generally depends on a choice of a coordinate frame, and so is not a tensorial object. Various generalizations and reinterpretations of the connection form were formulated subsequent to Cartan's initial work. In particular, on a principal bundle, a principal connection is a natural reinterpretation of the connection form as a tensorial object. On the other hand, the connection form has the advantage that it is a differential form defined on the differentiable manifold, rather than on an abstract principal bundle over it. Hence, despite their lack of tensoriality, connection forms continue to be used because of the relative ease of performing calculations with them. In physics, connection forms are also used broadly in the context of gauge theory, through the gauge covariant derivative. A connection form associates to each basis of a vector bundle a matrix of differential forms. The connection form is not tensorial because under a change of basis, the connection form transforms in a manner that involves the exterior derivative of the transition functions, in much the same way as the Christoffel symbols for the Levi-Civita connection. The main tensorial invariant of a connection form is its curvature form. In the presence of a solder form identifying the vector bundle with the tangent bundle, there is an additional invariant: the torsion form. In many cases, connection forms are considered on vector bundles with additional structure: that of a fiber bundle with a structure group. (en) En géométrie différentielle, une 1-forme de connexion est une forme différentielle sur un -fibré principal qui vérifie certains axiomes.La donnée d'une forme de connexion permet de parler, entre autres, de courbure, de torsion, de dérivée covariante, de relevé horizontal, de transport parallèle, d'holonomie et de théorie de jauge.La notion de forme de connexion est intimement reliée à la notion de connexion d'Ehresmann. (fr) 接続形式(せつぞくけいしき、connection form)は、数学、特に微分幾何学における概念の1つで、微分形式や(moving frame)のことばを使うことにより、接続のデータを構成する方法である。 (ja) 在数学,特别是微分几何中,一个联络形式(connection form)是用活动标架与微分形式的语言处理联络数据的一种方式。 历史上联络形式由埃利·嘉当在二十世纪上半叶引入,作为他活动标架方法的一部分,也是其主要促进因素之一。联络形式一般取决于标架的选取,从而不是一个张量性对象。在嘉当最初的工作之后,涌现出联络形式的各种推广与重新解释。特别地,在一个主丛上,一个主联络是将联络形式自然重新解释为一个张量性对象。另一方面,联络形式作为定义在微分流形上的微分形式与在一个抽象的主丛上相比,有其优越性。从而,尽管它们不满足张量性,联络形式依然被使用,因为利用它们计算相对简单。在物理学中,联络形式在规范理论中通过也广泛应用。 与向量丛的每个基相伴的联络形式是微分 1-形式矩阵。联络形式没有张量性因为在基变化下,联络形式的变换涉及到转移函数的外微分,与列维-奇维塔联络的克里斯托费尔符号非常类似。一个联络形式的主要张量性不变量是其曲率形式。如果有将向量丛与切丛等价的一个,则有另一个不变量:挠率形式。在许多情形,考虑有附加结构的向量丛上的联络形式:即带有结构群的纤维丛。 (zh)
dbo:wikiPageExternalLink http://cds.cern.ch/record/1666885/files/9783540773405_TOC.pdf
dbo:wikiPageID 706412 (xsd:integer)
dbo:wikiPageLength 27114 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1122494053 (xsd:integer)
dbo:wikiPageWikiLink dbr:Canonical_one-form dbr:Pushforward_(differential) dbr:Endomorphism_ring dbr:Metric_connection dbr:Vector-valued_differential_form dbr:Torsion_(differential_geometry) dbr:Bianchi_identities dbr:De_Rham_cohomology dbr:Almost_complex_manifold dbr:Holonomic_basis dbr:Curvature_form dbr:Lie_group dbr:Metric_(vector_bundle) dbc:Differential_geometry dbr:Connection_(mathematics) dbr:Covariance_and_contravariance_of_vectors dbr:Mathematics dbr:Matrix_(mathematics) dbr:Gauge_covariant_derivative dbr:Gauge_theory dbr:Tangent_bundle dbr:Pullback_(differential_geometry) dbr:Christoffel_symbols dbr:Classical_mechanics dbr:Ehresmann_connection dbr:General_relativity dbr:Connection_(principal_bundle) dbr:Connection_(vector_bundle) dbr:Contorsion_tensor dbr:Levi-Civita_connection dbr:Lie_algebra dbr:Complex_manifold dbr:Élie_Cartan dbr:Derivation_(abstract_algebra) dbr:Orthonormal_basis dbr:Physics dbr:Spin_group dbr:Dual_basis dbr:Adjoint_representation dbr:Affine_connection dbr:Equivalence_relation dbr:Exterior_algebra dbr:Exterior_derivative dbr:Fiber_bundle dbr:Fibre_bundle dbr:Parallel_transport dbr:Differential_operator dbr:Frame_bundle dbr:Riemann_curvature_tensor dbr:Moving_frame dbr:Riemannian_connection dbr:Riemannian_metric dbr:Cotangent_bundle dbr:Tensor dbr:Atlas_(topology) dbc:Connection_(mathematics) dbc:Fiber_bundles dbc:Maps_of_manifolds dbc:Smooth_functions dbr:Change_of_basis dbr:Charles_Ehresmann dbr:Tetrad_formalism dbr:Torsion_tensor dbr:Differentiable_manifold dbr:Differential_form dbr:Differential_geometry dbr:Associated_bundle dbr:Bundle_metric dbr:CR_manifold dbr:Spinor dbr:Kronecker_delta dbr:One-form dbr:Orthogonal_group dbr:Cartan_connection dbr:Chain_complex dbr:Section_(fiber_bundle) dbr:Sheaf_(mathematics) dbr:Unitary_group dbr:Vector_bundle dbr:Principal_bundle dbr:Hermitian_metric dbr:Solder_form dbr:Metric_compatible dbr:Maurer-Cartan_form dbr:Poincaré_lemma dbr:Spin_structure dbr:Basis_of_a_vector_space dbr:Vector-valued_form dbr:Summation_convention dbr:Section_(fibre_bundle) dbr:Local_trivialization
dbp:wikiPageUsesTemplate dbt:! dbt:Citation dbt:Main dbt:Prime dbt:See_also dbt:Mset dbt:Tensors dbt:Manifolds
dct:subject dbc:Differential_geometry dbc:Connection_(mathematics) dbc:Fiber_bundles dbc:Maps_of_manifolds dbc:Smooth_functions
gold:hypernym dbr:Manner
rdf:type owl:Thing yago:AnimalTissue105267548 yago:BodyPart105220461 yago:FiberBundle105475681 yago:NervousTissue105296775 yago:Part109385911 yago:PhysicalEntity100001930 yago:Thing100002452 yago:Tissue105267345 yago:WikicatFiberBundles
rdfs:comment En géométrie différentielle, une 1-forme de connexion est une forme différentielle sur un -fibré principal qui vérifie certains axiomes.La donnée d'une forme de connexion permet de parler, entre autres, de courbure, de torsion, de dérivée covariante, de relevé horizontal, de transport parallèle, d'holonomie et de théorie de jauge.La notion de forme de connexion est intimement reliée à la notion de connexion d'Ehresmann. (fr) 接続形式(せつぞくけいしき、connection form)は、数学、特に微分幾何学における概念の1つで、微分形式や(moving frame)のことばを使うことにより、接続のデータを構成する方法である。 (ja) 在数学,特别是微分几何中,一个联络形式(connection form)是用活动标架与微分形式的语言处理联络数据的一种方式。 历史上联络形式由埃利·嘉当在二十世纪上半叶引入,作为他活动标架方法的一部分,也是其主要促进因素之一。联络形式一般取决于标架的选取,从而不是一个张量性对象。在嘉当最初的工作之后,涌现出联络形式的各种推广与重新解释。特别地,在一个主丛上,一个主联络是将联络形式自然重新解释为一个张量性对象。另一方面,联络形式作为定义在微分流形上的微分形式与在一个抽象的主丛上相比,有其优越性。从而,尽管它们不满足张量性,联络形式依然被使用,因为利用它们计算相对简单。在物理学中,联络形式在规范理论中通过也广泛应用。 与向量丛的每个基相伴的联络形式是微分 1-形式矩阵。联络形式没有张量性因为在基变化下,联络形式的变换涉及到转移函数的外微分,与列维-奇维塔联络的克里斯托费尔符号非常类似。一个联络形式的主要张量性不变量是其曲率形式。如果有将向量丛与切丛等价的一个,则有另一个不变量:挠率形式。在许多情形,考虑有附加结构的向量丛上的联络形式:即带有结构群的纤维丛。 (zh) In mathematics, and specifically differential geometry, a connection form is a manner of organizing the data of a connection using the language of moving frames and differential forms. Historically, connection forms were introduced by Élie Cartan in the first half of the 20th century as part of, and one of the principal motivations for, his method of moving frames. The connection form generally depends on a choice of a coordinate frame, and so is not a tensorial object. Various generalizations and reinterpretations of the connection form were formulated subsequent to Cartan's initial work. In particular, on a principal bundle, a principal connection is a natural reinterpretation of the connection form as a tensorial object. On the other hand, the connection form has the advantage that it i (en)
rdfs:label Connection form (en) Forme de connexion (fr) 接続形式 (ja) Форма связности (ru) 联络形式 (zh)
rdfs:seeAlso dbr:Connection_(vector_bundle)
owl:sameAs freebase:Connection form yago-res:Connection form wikidata:Connection form dbpedia-fr:Connection form dbpedia-ja:Connection form dbpedia-ru:Connection form dbpedia-zh:Connection form https://global.dbpedia.org/id/4iKEW
prov:wasDerivedFrom wikipedia-en:Connection_form?oldid=1122494053&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Connection_form
is dbo:wikiPageRedirects of dbr:Connection_1-form dbr:Connection_one-form dbr:Exterior_connection
is dbo:wikiPageWikiLink of dbr:List_of_differential_geometry_topics dbr:Metric_connection dbr:Vector-valued_differential_form dbr:Holomorphic_vector_bundle dbr:Curvature_form dbr:Curvature_of_Riemannian_manifolds dbr:Lie_algebra-valued_differential_form dbr:Lie_derivative dbr:Connection_(mathematics) dbr:Maurer–Cartan_form dbr:Chern–Weil_homomorphism dbr:Gauge_theory dbr:Reissner–Nordström_metric dbr:Ehresmann_connection dbr:Grand_Unified_Theory dbr:Connection_(principal_bundle) dbr:Magnetic_monopole dbr:Fujikawa_method dbr:Spin_connection dbr:G-structure_on_a_manifold dbr:Pontryagin_class dbr:Affine_connection dbr:First_class_constraint dbr:Darboux_frame dbr:Riemannian_connection_on_a_surface dbr:BRST_quantization dbr:Teleparallelism dbr:Covariant_derivative dbr:Chern_class dbr:Holonomy dbr:Tetrad_formalism dbr:Torsion_tensor dbr:Differential_form dbr:Differential_geometry_of_surfaces dbr:BF_model dbr:Bundle_metric dbr:Polar_coordinate_system dbr:Cartan_connection dbr:Vertical_and_horizontal_bundles dbr:Flat_vector_bundle dbr:Ward's_conjecture dbr:Spin_network dbr:Spherically_symmetric_spacetime dbr:Two-dimensional_Yang–Mills_theory dbr:Connection_1-form dbr:Connection_one-form dbr:Exterior_connection
is rdfs:seeAlso of dbr:Riemannian_connection_on_a_surface dbr:Torsion_tensor
is foaf:primaryTopic of wikipedia-en:Connection_form