Cantor's first set theory article (original) (raw)

About DBpedia

Cantors erster Überabzählbarkeitsbeweis ist Georg Cantors erster Beweis, dass die reellen Zahlen eine überabzählbare Menge bilden. Er kommt ohne das Dezimalsystem oder irgendein anderes Zahlensystem aus. Die Behauptung und der erste Beweis wurden von Cantor im Dezember 1873 entdeckt, und 1874 in Crelles Journal (Journal für die Reine und Angewandte Mathematik, Bd. 77, 1874) veröffentlicht. Viel bekannter wurde sein 1877 gefundener zweiter Beweis dafür, Cantors zweites Diagonalargument.

thumbnail

Property Value
dbo:abstract Cantors erster Überabzählbarkeitsbeweis ist Georg Cantors erster Beweis, dass die reellen Zahlen eine überabzählbare Menge bilden. Er kommt ohne das Dezimalsystem oder irgendein anderes Zahlensystem aus. Die Behauptung und der erste Beweis wurden von Cantor im Dezember 1873 entdeckt, und 1874 in Crelles Journal (Journal für die Reine und Angewandte Mathematik, Bd. 77, 1874) veröffentlicht. Viel bekannter wurde sein 1877 gefundener zweiter Beweis dafür, Cantors zweites Diagonalargument. (de) Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument. The title of the article, "On a Property of the Collection of All Real Algebraic Numbers" ("Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen"), refers to its first theorem: the set of real algebraic numbers is countable. Cantor's article was published in 1874. In 1879, he modified his uncountability proof by using the topological notion of a set being dense in an interval. Cantor's article also contains a proof of the existence of transcendental numbers. Both constructive and non-constructive proofs have been presented as "Cantor's proof." The popularity of presenting a non-constructive proof has led to a misconception that Cantor's arguments are non-constructive. Since the proof that Cantor published either constructs transcendental numbers or does not, an analysis of his article can determine whether or not this proof is constructive. Cantor's correspondence with Richard Dedekind shows the development of his ideas and reveals that he had a choice between two proofs: a non-constructive proof that uses the uncountability of the real numbers and a constructive proof that does not use uncountability. Historians of mathematics have examined Cantor's article and the circumstances in which it was written. For example, they have discovered that Cantor was advised to leave out his uncountability theorem in the article he submitted — he added it during proofreading. They have traced this and other facts about the article to the influence of Karl Weierstrass and Leopold Kronecker. Historians have also studied Dedekind's contributions to the article, including his contributions to the theorem on the countability of the real algebraic numbers. In addition, they have recognized the role played by the uncountability theorem and the concept of countability in the development of set theory, measure theory, and the Lebesgue integral. (en) Cantors eerste overaftelbaarheidsbewijs toont aan dat de verzameling van alle reële getallen overaftelbaar is. Dit bewijs verschilt van het meer bekende bewijs, waarin Cantor zijn diagonaalargument gebruikt. Het eerste overaftelbaarheidsbewijs van Cantor werd in 1874 gepubliceerd, in een artikel dat ook een bewijs bevat dat de verzameling van de reële algebraïsche getallen aftelbaar is en een bewijs van het bestaan van transcendente getallen. (nl)
dbo:thumbnail wiki-commons:Special:FilePath/Georg_Cantor3.jpg?width=300
dbo:wikiPageExternalLink http://acmsonline.org/home2/wp-content/uploads/2016/05/Dauben-Cantor.pdf http://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/Gray819-832.pdf http://math.bu.edu/people/aki/16.pdf http://www.digizeitschriften.de/dms/img/%3FPID=GDZPPN002156806 http://www.digizeitschriften.de/dms/img/%3FPID=GDZPPN002244853 http://www.digizeitschriften.de/main/dms/img/%3FPPN=GDZPPN002136651 http://www.digizeitschriften.de/main/dms/img/%3FPPN=GDZPPN002155583 http://www.digizeitschriften.de/main/dms/img/%3FPPN=PPN37721857X_0039&DMDID=dmdlog27 https://archive.org/details/Calculus_643 https://archive.org/details/historyofmodernm0000symp/page/67 https://archive.org/details/lebesguestheoryo0000hawk_p7z9 https://archive.org/details/topicsinnumberth0000leve https://archive.org/stream/irrationalzahlen00perruoft%23page/n5/mode/2up
dbo:wikiPageID 22697171 (xsd:integer)
dbo:wikiPageLength 102988 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1117927524 (xsd:integer)
dbo:wikiPageWikiLink dbr:Calculus dbr:Cantor's_theorem dbr:Proper_superset dbr:Saunders_Mac_Lane dbr:Model_theory dbr:Men_of_Mathematics dbr:Base_case_(recursion) dbr:Bounded_sequence dbr:Paul_Cohen dbr:Peter_Gustav_Lejeune_Dirichlet dbr:René-Louis_Baire dbr:Richard_Dedekind dbr:Riemann_integral dbr:Upper_and_lower_bounds dbr:Dedekind_cut dbr:Degree_of_a_polynomial dbr:∈ dbr:∉ dbr:E._M._Wright dbr:Independence_(mathematical_logic) dbr:Infinite_set dbr:Intersection dbr:Limit_of_a_sequence dbr:Consistent dbr:Continued_fractions dbr:Continuum_(set_theory) dbr:Convergent_(continued_fraction) dbr:Countable_set dbr:Mathematical_induction dbr:Measure_theory dbr:One-to-one_correspondence dbr:Garrett_Birkhoff dbr:Georg_Cantor dbr:Constructive_proof dbr:Crelle's_Journal dbr:Thoralf_Skolem dbr:Leopold_Kronecker dbr:Subsequence dbr:Computer_program dbr:Dense_set dbr:Émile_Borel dbr:Ideal_(ring_theory) dbr:Mathematische_Annalen dbr:Pairwise_disjoint dbr:Proceedings_of_the_National_Academy_of_Sciences_of_the_United_States_of_America dbr:Tangent_function dbc:Set_theory dbr:Transcendental_number dbr:Galley_proof dbr:Irrational_number dbr:Irreducible_polynomial dbr:Irving_Kaplansky dbr:Lebesgue_measure dbr:Liouville_number dbr:Abraham_Fraenkel dbr:Algebraic_number dbr:Algebraic_number_theory dbr:American_Mathematical_Monthly dbr:Akihiro_Kanamori dbr:E_(mathematical_constant) dbr:Eduard_Heine dbr:Eric_Temple_Bell dbr:First-order_logic dbr:Oskar_Perron dbr:Cardinality dbr:Dirichlet_function dbr:Farey_sequence dbr:Historia_Mathematica dbr:History_of_mathematics dbr:Joseph_Dauben dbr:Lemma_(mathematics) dbr:Closed_interval dbr:Proof_by_contradiction dbr:Henri_Lebesgue dbr:Hermann_Hankel dbr:Hermann_Schwarz dbr:Baire_function dbc:Real_analysis dbc:History_of_mathematics dbr:Karl_Weierstrass dbr:Lebesgue_integration dbr:Big_O_notation dbr:Coefficient dbr:Borel_measure dbr:Polynomial dbr:Godfrey_Hardy dbr:Polynomial_time dbr:Endpoints_(interval) dbr:Indexed_family dbr:Interior_(topology) dbr:Algebraic_numbers dbr:Michael_Spivak dbr:Open_interval dbr:Ordinal_number dbr:Cantor's_diagonal_argument dbc:Georg_Cantor dbr:Rational_number dbr:Real_number dbr:Recursive_step dbr:Sequence dbr:Set_(mathematics) dbr:Set_theory dbr:Mediant_(mathematics) dbr:Root_of_a_polynomial dbr:Union_(set_theory) dbr:Nested_intervals dbr:Sub-exponential_time dbr:Subset dbr:Skolem's_paradox dbr:Uncountable_set dbr:Least_upper_bound_property dbr:Cantor–Bendixson_theorem dbr:Proper_subinterval dbr:Topological dbr:Lebesgue_integral dbr:N-dimensional_Euclidean_space dbr:Recursively_define dbr:Reducible_fraction dbr:Integrable_function dbr:Journal_für_die_Reine_und_Angewandte_Mathematik dbr:Completely_reduced_fraction dbr:Modern_Algebra dbr:Monotonic_sequence dbr:Subinterval dbr:Theory_of_numbers dbr:File:Leopold_Kronecker_1865.jpg dbr:File:Adolf_Abraham_Halevi_Fraenkel.jpg dbr:File:Algebraicszoom.png dbr:File:Cantor's_first_uncountability_proof_Case_1_svg.svg dbr:File:Cantor's_first_uncountability_proof_Case_2_svg.svg dbr:File:Cantor's_first_uncountability_proof_Case_3_svg.svg dbr:File:Dedekind.jpeg dbr:File:Georg_Cantor3.jpg dbr:File:Karl_Weierstrass.jpg dbr:File:Oskar_Perron.jpg
dbp:wikiPageUsesTemplate dbt:= dbt:Anchor dbt:Circa dbt:Citation dbt:Efn-ua dbt:Good_article dbt:Notelist-ua dbt:Quote dbt:Radic dbt:Reflist dbt:Sfrac dbt:Short_description dbt:Space dbt:Spaces dbt:Sqrt dbt:Harvnb dbt:Mathematical_logic
dct:subject dbc:Set_theory dbc:Real_analysis dbc:History_of_mathematics dbc:Georg_Cantor
rdfs:comment Cantors erster Überabzählbarkeitsbeweis ist Georg Cantors erster Beweis, dass die reellen Zahlen eine überabzählbare Menge bilden. Er kommt ohne das Dezimalsystem oder irgendein anderes Zahlensystem aus. Die Behauptung und der erste Beweis wurden von Cantor im Dezember 1873 entdeckt, und 1874 in Crelles Journal (Journal für die Reine und Angewandte Mathematik, Bd. 77, 1874) veröffentlicht. Viel bekannter wurde sein 1877 gefundener zweiter Beweis dafür, Cantors zweites Diagonalargument. (de) Cantors eerste overaftelbaarheidsbewijs toont aan dat de verzameling van alle reële getallen overaftelbaar is. Dit bewijs verschilt van het meer bekende bewijs, waarin Cantor zijn diagonaalargument gebruikt. Het eerste overaftelbaarheidsbewijs van Cantor werd in 1874 gepubliceerd, in een artikel dat ook een bewijs bevat dat de verzameling van de reële algebraïsche getallen aftelbaar is en een bewijs van het bestaan van transcendente getallen. (nl) Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably, rather than countably, infinite. This theorem is proved using Cantor's first uncountability proof, which differs from the more familiar proof using his diagonal argument. The title of the article, "On a Property of the Collection of All Real Algebraic Numbers" ("Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen"), refers to its first theorem: the set of real algebraic numbers is countable. Cantor's article was published in 1874. In 1879, he modified his uncountability proof by using the topological notion of a set be (en)
rdfs:label Cantors erster Überabzählbarkeitsbeweis (de) Cantor's first set theory article (en) Cantors eerste overaftelbaarheidsbewijs (nl)
owl:sameAs wikidata:Cantor's first set theory article dbpedia-de:Cantor's first set theory article dbpedia-he:Cantor's first set theory article dbpedia-nl:Cantor's first set theory article https://global.dbpedia.org/id/3HhRU
prov:wasDerivedFrom wikipedia-en:Cantor's_first_set_theory_article?oldid=1117927524&ns=0
foaf:depiction wiki-commons:Special:FilePath/Dedekind.jpeg wiki-commons:Special:FilePath/Karl_Weierstrass.jpg wiki-commons:Special:FilePath/Algebraicszoom.png wiki-commons:Special:FilePath/Oskar_Perron.jpg wiki-commons:Special:FilePath/Georg_Cantor3.jpg wiki-commons:Special:FilePath/Adolf_Abraham_Halevi_Fraenkel.jpg wiki-commons:Special:FilePath/Leopold_Kronecker_1865.jpg wiki-commons:Special:FilePath/Cantor's_first_uncountability_proof_Case_1_svg.svg wiki-commons:Special:FilePath/Cantor's_first_uncountability_proof_Case_2_svg.svg wiki-commons:Special:FilePath/Cantor's_first_uncountability_proof_Case_3_svg.svg
foaf:isPrimaryTopicOf wikipedia-en:Cantor's_first_set_theory_article
is dbo:wikiPageRedirects of dbr:Cantor's_first_uncountability_proof dbr:Georg_Cantor's_first_set_theory_article dbr:Cantor's_1874_uncountability_proof dbr:Cantor_first_uncountability_proof dbr:Georg_Cantor's_first_paper_on_set_theory dbr:Georg_Cantor's_first_set_theory_paper dbr:Ueber_eine_Eigenschaft_des_Inbegriffes_aller_reellen_algebraischen_Zahlen dbr:Über_eine_Eigenschaft_des_Inbegriffes_aller_reellen_algebraischen_Zahlen dbr:On_a_Property_of_the_Collection_of_All_Real_Algebraic_Numbers
is dbo:wikiPageWikiLink of dbr:Cantor's_first_uncountability_proof dbr:Georg_Cantor dbr:Georg_Cantor's_first_set_theory_article dbr:Transcendental_number dbr:Almost_all dbr:Real_number dbr:List_of_things_named_after_Georg_Cantor dbr:Cantor's_1874_uncountability_proof dbr:Cantor_first_uncountability_proof dbr:Georg_Cantor's_first_paper_on_set_theory dbr:Georg_Cantor's_first_set_theory_paper dbr:Ueber_eine_Eigenschaft_des_Inbegriffes_aller_reellen_algebraischen_Zahlen dbr:Über_eine_Eigenschaft_des_Inbegriffes_aller_reellen_algebraischen_Zahlen dbr:On_a_Property_of_the_Collection_of_All_Real_Algebraic_Numbers
is foaf:primaryTopic of wikipedia-en:Cantor's_first_set_theory_article