Strategies for designing and optimizing new generation vaccines (original) (raw)
Berzofsky, J. A. et al. Approaches to improve engineered vaccines for human immunodeficiency virus (HIV) and other viruses that cause chronic infections. Immunol. Rev.170, 151–172 (1999). ArticleCASPubMed Google Scholar
Berzofsky, J. A. Epitope selection and design of synthetic vaccines: molecular approaches to enhancing immunogenicity and crossreactivity of engineered vaccines. Ann. NY Acad. Sci.690, 256–264 (1993). ArticleCASPubMed Google Scholar
Morgan, D. J., Kreuwel, H. T. & Sherman, L. A. Antigen concentration and precursor frequency determine the rate of CD8+ T cell tolerance to peripherally expressed antigens. J. Immunol.163, 723–727 (1999). CASPubMed Google Scholar
Sandberg, J. K. et al. T cell tolerance based on avidity thresholds rather than complete deletion allows maintenance of maximal repertoire diversity. J. Immunol.165, 25–33 (2000). ArticleCASPubMed Google Scholar
Pogue, R. R., Eron, J., Frelinger, J. A. & Matsui, M. Amino-terminal alteration of the HLA-A*0201-restricted human immunodeficiency virus pol peptide increases complex stability and in vitro immunogenicity. Proc. Natl Acad. Sci. USA92, 8166–8170 (1995). ArticleCASPubMedPubMed Central Google Scholar
Sarobe, P. et al. Enhanced in vitro potency and in vivo immunogenicity of a CTL epitope from hepatitis C virus core protein following amino acid replacement at secondary HLA-A2.1 binding positions. J. Clin. Invest.102, 1239–1248 (1998). ArticleCASPubMedPubMed Central Google Scholar
Parkhurst, M. R. et al. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J. Immunol.157, 2539–2548 (1996). CASPubMed Google Scholar
Rosenberg, S. A. et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nature Med.4, 321–327 (1998). ArticleCASPubMed Google Scholar
Irvine, K. R. et al. Recombinant virus vaccination against 'self' antigens using anchor-fixed immunogens. Cancer Res.59, 2536–2540 (1999). CASPubMedPubMed Central Google Scholar
Ahlers, J. D., Takeshita, T., Pendleton, C. D. & Berzofsky, J. A. Enhanced immunogenicity of HIV-1 vaccine construct by modification of the native peptide sequence. Proc. Natl Acad. Sci. USA94, 10856–10861 (1997). ArticleCASPubMedPubMed Central Google Scholar
Ahlers, J. D., Belyakov, I. M., Thomas, E. K. & Berzofsky, J. A. High affinity T-helper epitope induces complementary helper and APC polarization, increased CTL and protection against viral infection. J. Clin. Invest.108, 1677–1685 (2001). ArticleCASPubMedPubMed Central Google Scholar
Rammensee, H.-G., Friede, T. & Stevanovíc, S. MHC ligands and peptide motifs: first listing. Immunogenetics41, 178–228 (1995). ArticleCASPubMed Google Scholar
Ruppert, J. et al. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell74, 929–937 (1993). ArticleCASPubMed Google Scholar
Alexander, J. et al. Development of high potency universal DR-restricted helper epitopes by modification of high affinity DR-blocking peptides. Immunity1, 751–761 (1994). ArticleCASPubMed Google Scholar
La Rosa, C. et al. Enhanced immune activity of cytotoxic T-lymphocyte epitope analogs derived from positional scanning synthetic combinatorial libraries. Blood97, 1776–1786 (2001). ArticleCASPubMed Google Scholar
Slansky, J. E. et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC–peptide–TCR complex. Immunity13, 529–538 (2000). ArticleCASPubMed Google Scholar
Zaremba, S. et al. Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res.57, 4570–4577 (1997). CASPubMed Google Scholar
Fong, L. et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc. Natl Acad. Sci. USA98, 8809–8814 (2001). ArticleCASPubMedPubMed Central Google Scholar
Tangri, S. et al. Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J. Exp. Med.194, 833–846 (2001). ArticleCASPubMedPubMed Central Google Scholar
Takahashi, H. et al. Induction of broadly cross-reactive cytotoxic T cells recognizing an HIV-1 envelope determinant. Science255, 333–336 (1992). ArticleCASPubMed Google Scholar
Alexander-Miller, M. A., Leggatt, G. R. & Berzofsky, J. A. Selective expansion of high or low avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl Acad. Sci. USA93, 4102–4107 (1996). ArticleCASPubMedPubMed Central Google Scholar
Gallimore, A., Dumrese, T., Hengartner, H., Zinkernagel, R. M. & Rammensee, H. G. Protective immunity does not correlate with the hierarchy of virus-specific cytotoxic T cell responses to naturally processed peptides. J. Exp. Med.187, 1647–1657 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zeh, H. J. III, Perry-Lalley, D., Dudley, M. E., Rosenberg, S. A. & Yang, J. C. High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J. Immunol.162, 989–994 (1999). CASPubMed Google Scholar
Yee, C., Savage, P. A., Lee, P. P., Davis, M. M. & Greenberg, P. D. Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. J. Immunol.162, 2227–2234 (1999). CASPubMed Google Scholar
Derby, M. A., Wang, J., Margulies, D. H. & Berzofsky, J. A. Two intermediate avidity CTL clones with a disparity between functional avidity and MHC tetramer staining. Int. Immunol.13, 817–824 (2001). ArticleCASPubMed Google Scholar
Slifka, M. K. & Whitton, J. L. Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR. Nature Immunol.2, 711–717 (2001). ArticleCAS Google Scholar
Margulies, D. H. TCR avidity: it's not how strong you make it, it's how you make it strong. Nature Immunol.2, 669–670 (2001). ArticleCAS Google Scholar
Cawthon, A. G., Lu, H. & Alexander-Miller, M. A. Peptide requirement for CTL activation reflects the sensitivity to CD3 engagement: correlation with CD8αβ versus CD8αα expression. J. Immunol.167, 2577–2584 (2001). ArticleCASPubMed Google Scholar
Fahmy, T. M., Bieler, J. G., Edidin, M. & Schneck, J. P. Increased TCR avidity after T cell activation. A mechanism for sensing low-density antigen. Immunity14, 135–143 (2001). CASPubMed Google Scholar
Alexander-Miller, M. A., Leggatt, G. R., Sarin, A. & Berzofsky, J. A. Role of antigen, CD8, and cytotoxic T lymphocyte avidity in high dose antigen induction of apoptosis of effector CTL. J. Exp. Med.184, 485–492 (1996). ArticleCASPubMed Google Scholar
Alexander-Miller, M. A., Derby, M. A., Sarin, A., Henkart, P. A. & Berzofsky, J. A. Supra-optimal peptide/MHC causes a decrease in Bcl-2 and allows TNF-α receptor II-mediated apoptosis of CTL. J. Exp. Med.188, 1391–1399 (1998). ArticleCASPubMedPubMed Central Google Scholar
Zheng, L. et al. Induction of apoptosis in mature T cells by tumour necrosis factor. Nature377, 348–351 (1995). ArticleCASPubMed Google Scholar
Derby, M. A., Alexander-Miller, M. A., Tse, R. & Berzofsky, J. A. High avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low avidity CTL. J. Immunol.166, 1690–1697 (2001). ArticleCASPubMed Google Scholar
Kawamura, H., Rosenberg, S. A. & Berzofsky, J. A. Immunization with antigen and interleukin-2 in vivo overcomes Ir gene low responsiveness. J. Exp. Med.162, 381–386 (1985). ArticleCASPubMed Google Scholar
Good, M. F. et al. Recombinant human interleukin-2 (IL-2) overcomes genetic nonresponsiveness to malaria sporozoite peptides. Correlation of effect with biological activity of IL-2. J. Immunol.141, 972–977 (1988). CASPubMed Google Scholar
Ahlers, J. D., Dunlop, N., Alling, D. W., Nara, P. L. & Berzofsky, J. A. Cytokine-in-adjuvant steering of the immune response phenotype to HIV-1 vaccine constructs: GM-CSF and TNFα synergize with IL-12 to enhance induction of CTL. J. Immunol.158, 3947–3958 (1997). CASPubMed Google Scholar
Disis, M. L. et al. Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines. Blood88, 202–210 (1996). ArticleCASPubMed Google Scholar
Belyakov, I. M., Ahlers, J. D., Clements, J. D., Strober, W. & Berzofsky, J. A. Interplay of cytokines and adjuvants in the regulation of mucosal and systemic HIV-specific cytotoxic T lymphocytes. J. Immunol.165, 6454–6462 (2000). ArticleCASPubMed Google Scholar
Xiang, Z. & Ertl, H. C. J. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity2, 129–135 (1995). ArticleCASPubMed Google Scholar
Kim, J. J. et al. Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. Eur. J. Immunol.28, 1089–1103 (1998). ArticleCASPubMed Google Scholar
Iwasaki, A., Stiernholm, B. J. N., Chan, A. K., Berinstein, N. L. & Barber, B. H. Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J. Immunol.158, 4591–4601 (1997). CASPubMed Google Scholar
Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl Acad. Sci. USA90, 3539–3543 (1993). ArticleCASPubMedPubMed Central Google Scholar
Flexner, C., Hügin, A. & Moss, B. Prevention of vaccinia virus infection in immunodeficient mice by vector-directed IL-2 expression. Nature330, 259–262 (1987). ArticleCASPubMed Google Scholar
Ramshaw, I. A., Andrew, M. E., Phillips, S. M., Boyle, D. B. & Coupar, B. E. Recovery of immunodeficient mice from a vaccinia virus/IL-2 recombinant infection. Nature329, 545–546 (1987). ArticleCASPubMed Google Scholar
Barouch, D. H. et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science290, 486–492 (2000). ArticleCASPubMed Google Scholar
Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity8, 591–599 (1998). ArticleCASPubMed Google Scholar
Ku, C. C., Murakami, M., Sakamoto, A., Kappler, J. & Marrack, P. Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science288, 675–678 (2000). ArticleCASPubMed Google Scholar
Waldmann, T. A., Dubois, S. & Tagaya, Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity14, 105–110 (2001). CASPubMed Google Scholar
Xin, K. Q. et al. IL-15 expression plasmid enhances cell-mediated immunity induced by an HIV-1 DNA vaccine. Vaccine17, 858–866 (1999). ArticleCASPubMed Google Scholar
Ahlers, J. D., Belyakov, I. M., Matsui, S. & Berzofsky, J. A. Mechanisms of cytokine synergy essential for vaccine protection against viral challenge. Int. Immunol.13, 897–908 (2001). ArticleCASPubMed Google Scholar
Ahlers, J. D., Belyakov, I. M., Matsui, S. & Berzofsky, J. A. Signals delivered through TCR instruct IL-12R expression: IL-12 and TNFα synergize for IL-12R expression at low antigen dose. Int. Immunol.13, 1433–1442 (2001). ArticleCASPubMed Google Scholar
Chamberlain, R. S. et al. Costimulation enhances the active immunotherapy effect of recombinant anticancer vaccines. Cancer Res.56, 2832–2836 (1996). CASPubMedPubMed Central Google Scholar
Freund, Y. R. et al. Vaccination with recombinant vaccinia vaccine containing the B7-1 co-stimulatory molecule causes no significant toxicity and enhances T cell-mediated cytotoxicity. Int. J. Cancer85, 508–517 (2000). ArticleCASPubMed Google Scholar
Kim, J. J. et al. Development of a multicomponent candidate vaccine for HIV-1. Vaccine15, 879–883 (1997). ArticleCASPubMed Google Scholar
Rao, J. B. et al. IL-12 is an effective adjuvant to recombinant vaccinia virus-based tumor vaccines: enhancement by simultaneous B7-1 expression. J. Immunol.156, 3357–3365 (1996). CASPubMed Google Scholar
Gurunathan, S. et al. CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J. Immunol.161, 4563–4571 (1998). CASPubMed Google Scholar
Sin, J. I., Kim, J. J., Zhang, D. & Weiner, D. B. Modulation of cellular responses by plasmid CD40L: CD40L plasmid vectors enhance antigen-specific helper T cell type 1 CD4+ T cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Hum. Gene Ther.12, 1091–1102 (2001). ArticleCASPubMed Google Scholar
Hodge, J. W. et al. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res.59, 5800–5807 (1999). CASPubMed Google Scholar
Zhu, M. et al. Enhanced activation of human T cells via avipox vector-mediated hyperexpression of a triad of costimulatory molecules in human dendritic cells. Cancer Res.61, 3725–3734 (2001). CASPubMed Google Scholar
Veazey, R. S. & Lackner, A. A. The gastrointestinal tract and the pathogenesis of AIDS. AIDS12, S35–S42 (1998). ArticlePubMed Google Scholar
Baba, T. W. et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nature Med.6, 200–206 (2000). ArticleCASPubMed Google Scholar
Mascola, J. R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nature Med.6, 207–210 (2000). ArticleCASPubMed Google Scholar
Schmitz, J. E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science283, 857–860 (1999). ArticleCASPubMed Google Scholar
Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med.189, 991–998 (1999). ArticleCASPubMedPubMed Central Google Scholar
Kaul, R. et al. HIV-1-specific mucosal CD8+ lymphocyte responses in the cervix of HIV-1-resistant prostitutes in nairobi. J. Immunol.164, 1602–1611 (2000). ArticleCASPubMed Google Scholar
Belyakov, I. M. et al. Mucosal immunization with HIV-1 peptide vaccine induces mucosal and systemic cytotoxic T lymphocytes and protective immunity in mice against intrarectal recombinant HIV-vaccinia challenge. Proc. Natl Acad. Sci. USA95, 1709–1714 (1998). ArticleCASPubMedPubMed Central Google Scholar
Belyakov, I. M. et al. Induction of mucosal CTL response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing HIV 89.6 envelope protein. J. Virol.72, 8264–8272 (1998). ArticleCASPubMedPubMed Central Google Scholar
Belyakov, I. M. et al. The importance of local mucosal HIV-specific CD8+ cytotoxic T lymphocytes for resistance to mucosal-viral transmission in mice and enhancement of resistance by local administration of IL-12. J. Clin. Invest.102, 2072–2081 (1998). ArticleCASPubMedPubMed Central Google Scholar
Murphey-Corb, M. et al. Selective induction of protective MHC class I restricted CTL in the intestinal lamina propria of rhesus monkeys by transient SIV infection of the colonic mucosa. J. Immunol.162, 540–549 (1999). CASPubMed Google Scholar
Eo, S. K., Gierynska, M., Kamar, A. A. & Rouse, B. T. Prime–boost immunization with DNA vaccine: mucosal route of administration changes the rules. J. Immunol.166, 5473–5479 (2001). ArticleCASPubMed Google Scholar
Cromwell, M. A. et al. Induction of mucosal homing virus-specific CD8+ T lymphocytes by attenuated simian immunodeficiency virus. J. Virol.74, 8762–8766 (2000). ArticleCASPubMedPubMed Central Google Scholar
Belyakov, I. M., Moss, B., Strober, W. & Berzofsky, J. A. Mucosal vaccination overcomes the barrier to recombinant vaccinia immunization caused by preexisting poxvirus immunity. Proc. Natl Acad. Sci. USA96, 4512–4517 (1999). ArticleCASPubMedPubMed Central Google Scholar
Veazey, R. S. et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science280, 427–431 (1998). ArticleCASPubMed Google Scholar
Belyakov, I. M. et al. Mucosal AIDS vaccine reduces disease and viral load in gut reservoir and blood after mucosal infection of macaques. Nature Med.7, 1320–1326 (2001). ArticleCASPubMed Google Scholar
Lehner, T. et al. Protective mucosal immunity elicited by targeted iliac lymph node immunization with a subunit SIV envelope and core vaccine in macaques. Nature Med.2, 767–775 (1996). ArticleCASPubMed Google Scholar
Lehner, T., Bergmeier, L., Wang, Y., Tao, L. & Mitchell, E. A rational basis for mucosal vaccination against HIV infection. Immunol. Rev.170, 183–196 (1999). ArticleCASPubMed Google Scholar
Mestecky, J. & Fultz, P. N. Mucosal immune system of the human genital tract. J. Infect. Dis.179 (Suppl. 3), S470–S474 (1999). ArticlePubMed Google Scholar
Kozlowski, P. A., Cu-Uvin, S., Neutra, M. R. & Flanigan, T. P. Comparison of the oral, rectal, and vaginal immunization routes for induction of antibodies in rectal and genital tract secretions of women. Infect. Immun.65, 1387–1394 (1997). ArticleCASPubMedPubMed Central Google Scholar
Lehner, T. et al. The effect of route of immunization on mucosal immunity and protection. J. Infect. Dis.179 (Suppl. 3), S489–S492 (1999). ArticlePubMed Google Scholar
Scharton-Kersten, T. et al. Transcutaneous immunization with bacterial ADP-ribosylating exotoxins, subunits, and unrelated adjuvants. Infect. Immun.68, 5306–5313 (2000). ArticleCASPubMedPubMed Central Google Scholar
Dickinson, B. L. & Clements, J. D. Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect. Immun.63, 1617–1623 (1995). ArticleCASPubMedPubMed Central Google Scholar
Oliver, A. R. & Elson, C. O. Role of mucosal adjuvants in mucosal immunization. Curr. Opin. Gastroenterol.14, 438–487 (1998). Google Scholar
Pizza, M. et al. Mucosal vaccines: non toxic derivatives of LT and CT as mucosal adjuvants. Vaccine19, 2534–2541 (2001). ArticleCASPubMed Google Scholar
Cheng, E., Cardenas-Freytag, L. & Clements, J. D. The role of cAMP in mucosal adjuvanticity of Escherichia coli heat-labile enterotoxin (LT). Vaccine18, 38–49 (1999). ArticleCASPubMed Google Scholar
Braun, M. C., He, J., Wu, C.-Y. & Kelsall, B. L. Cholera toxin suppresses interleukin (IL)-12 production and IL-12 receptor B1 and B2 chain expression. J. Exp. Med.189, 541–552 (1999). ArticleCASPubMedPubMed Central Google Scholar
Lehner, T. et al. The role of γδ T cells in generating antiviral factors and β-chemokines in protection against mucosal simian immunodeficiency virus infection. Eur. J. Immunol.30, 2245–2256 (2000). ArticleCASPubMed Google Scholar
Gallichan, W. S. et al. Intranasal immunization with CpG oligodeoxynucleotides an as adjuvant dramatically increases IgA and protection against herpes simplex virus-2 in the genital tract. J. Immunol.166, 3451–3457 (2001). ArticleCASPubMed Google Scholar
Horner, A. A. et al. Immunostimulatory DNA-based vaccines elicit multifaceted immune responses against HIV at systemic and mucosal sites. J. Immunol.167, 1584–1591 (2001). ArticleCASPubMed Google Scholar
Marinaro, M. et al. Oral but not parenteral interleukin (IL)-12 redirects T helper 2 (TH2)-type responses to an oral vaccine without altering mucosal IgA responses. J. Exp. Med.185, 415–427 (1997). ArticleCASPubMedPubMed Central Google Scholar
Thornton, A. M. & Shevach, E. M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med.188, 287–296 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol.163, 5211–5218 (1999). CASPubMed Google Scholar
Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity12, 431–440 (2000). ArticleCASPubMed Google Scholar
Waldmann, H. & Cobbold, S. Regulating the immune response to transplants: a role for CD4+ regulatory cells? Immunity14, 399–406 (2001). ArticleCASPubMed Google Scholar
Thornton, A. M. & Shevach, E. M. Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific. J. Immunol.164, 183–190 (2000). ArticleCASPubMed Google Scholar
Terabe, M. et al. Negative regulation of CTL-mediated tumour immunosurveillance through NKT cell induced IL-13 production and the IL-4R-STAT6 signal pathway. Nature Immunol.1, 515–520 (2000). ArticleCAS Google Scholar
Ostrand-Rosenberg, S., Grusby, M. J. & Clements, V. K. STAT6-deficient mice have enhanced tumor immunity to primary and metastatic mammary carcinoma. J. Immunol.165, 6015–6019 (2000). ArticleCASPubMed Google Scholar
Kacha, A. K., Fallarino, F., Markiewicz, M. A. & Gajewski, T. F. Spontaneous rejection of poorly immunogenic P1.HTR tumors by Stat6-deficient mice. J. Immunol.165, 6024–6028 (2000). ArticleCASPubMed Google Scholar
Krummel, M. F. & Allison, J. P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med.182, 459–465 (1995). ArticleCASPubMed Google Scholar
Lee, K. M. et al. Molecular basis of T cell inactivation by CTLA-4. Science282, 2263–2266 (1998). ArticleCASPubMed Google Scholar
Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. H. CTLA-4 regulates induction of anergy in vivo. Immunity14, 145–155 (2001). ArticleCASPubMed Google Scholar
Shrikant, P., Khoruts, A. & Mescher, M. F. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell-and IL-2-dependent mechanism. Immunity11, 483–493 (1999). ArticleCASPubMed Google Scholar
Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of anitumor immunity by CTLA-4 blockade. Science271, 1734–1736 (1996). ArticleCASPubMed Google Scholar
Sutmuller, R. P. M. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative cytotoxic T lymphocyte responses. J. Exp. Med.194, 823–832 (2001). ArticleCASPubMedPubMed Central Google Scholar
Gurunathan, S., Klinman, D. M. & Seder, R. A. DNA vaccines: immunology, application, and optimization. Annu. Rev. Immunol.18, 927–974 (2000). ArticleCASPubMed Google Scholar
Caley, I. J. et al. Venezuelan equine encephalitis virus vectors expressing HIV-1 proteins: vector design strategies for improved vaccine efficacy. Vaccine17, 3124–3135 (1999). ArticleCASPubMed Google Scholar
Leitner, W. W., Ying, H., Driver, D. A., Dubensky, T. W. & Restifo, N. P. Enhancement of tumor-specific immune response with plasmid DNA replicon vectors. Cancer Res.60, 51–55 (2000). CASPubMedPubMed Central Google Scholar
Huang, Y., Kong, W. P. & Nabel, G. J. Human immunodeficiency virus type 1-specific immunity after genetic immunization is enhanced by modification of Gag and Pol expression. J. Virol.75, 4947–4951 (2001). ArticleCASPubMedPubMed Central Google Scholar
Widera, G. et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J. Immunol.164, 4635–4640 (2000). ArticleCASPubMed Google Scholar
Iwasaki, A., Torres, C. A. T., Ohashi, P. S., Robinson, H. L. & Barber, B. H. The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J. Immunol.159, 11–14 (1997). CASPubMed Google Scholar
Porgador, A. et al. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J. Exp. Med.188, 1075–1082 (1998). ArticleCASPubMedPubMed Central Google Scholar
Fu, T. M. et al. Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol. Med.3, 362–371 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tang, D., DeVit, M. & Johnston, S. A. Genetic immunization is a simple method for eliciting an immune response. Nature356, 152–154 (1992). ArticleCASPubMed Google Scholar
Darji, A. et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell91, 765–775 (1997). ArticleCASPubMed Google Scholar
Woo, P. C., Wong, L. P., Zheng, B. J. & Yuen, K. Y. Unique immunogenicity of hepatitis B virus DNA vaccine presented by live-attenuated Salmonella typhimurium. Vaccine19, 2945–2954 (2001). ArticleCASPubMed Google Scholar
Torres, C. A. T., Iwasaki, A., Barber, B. H. & Robinson, H. L. Differential dependence on target site tissue for gene gun and intramuscular DNA immunizations. J. Immunol.158, 4529–4532 (1997). CASPubMed Google Scholar
Biragyn, A., Tani, K., Grimm, M. C., Weeks, S. & Kwak, L. W. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nature Biotechnol.17, 253–258 (1999). ArticleCAS Google Scholar
Klinman, D. M., Yi, A. K., Beaucage, S. L., Conover, J. & Krieg, A. M. CpG motifs present in bacterial DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc. Natl Acad. Sci. USA93, 2879–2883 (1996). ArticleCASPubMedPubMed Central Google Scholar
Wang, R. et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science282, 476–480 (1998). ArticleCASPubMed Google Scholar
Hanke, T., Schneider, J., Gilbert, S. C., Hill, A. V. S. & McMichael, A. DNA multi-CTL epitope vaccines for HIV and Plasmodium falciparum: immunogenicity in mice. Vaccine16, 426–435 (1998). ArticleCASPubMed Google Scholar
Thomson, S. A. et al. Targeting a polyepitope protein incorporating multiple class II-restricted viral epitopes to the secretory/endocytic pathway facilitates immune recognition by CD4+ cytotoxic T lymphocytes: a novel approach to vaccine design. J. Virol.72, 2246–2252 (1998). ArticleCASPubMedPubMed Central Google Scholar
Velders, M. P. et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J. Immunol.166, 5366–5373 (2001). ArticleCASPubMed Google Scholar
Moss, B. Vaccinia virus: a tool for research and vaccine development. Science252, 1662–1667 (1991). ArticleCASPubMed Google Scholar
Sullivan, N. J., Sanchez, A., Rollin, P. E., Yang, Z. Y. & Nabel, G. J. Development of a preventive vaccine for Ebola virus infection in primates. Nature408, 605–609 (2000). ArticleCASPubMed Google Scholar
Hanke, T. et al. Enhancement of MHC class I-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime. Vaccine16, 439–445 (1998). ArticleCASPubMed Google Scholar
Kent, S. J. et al. Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J. Virol.72, 10180–10188 (1998). ArticleCASPubMedPubMed Central Google Scholar
Amara, R. R. et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science292, 69–74 (2001). ArticleCASPubMed Google Scholar
Scheerlinck, J. Y. et al. The immune response to a DNA vaccine can be modulated by co-delivery of cytokine genes using a DNA prime-protein boost strategy. Vaccine19, 4053–4060 (2001). ArticleCASPubMed Google Scholar
Billaut-Mulot, O., Idziorek, T., Loyens, M., Capron, A. & Bahr, G. M. Modulation of cellular and humoral immune responses to a multiepitopic HIV-1 DNA vaccine by interleukin-18 DNA immunization/viral protein boost. Vaccine19, 2803–2811 (2001). ArticleCASPubMed Google Scholar
Boyer, J. D. et al. Vaccination of seronegative volunteers with a human immunodeficiency virus type 1 env/rev DNA vaccine induces antigen-specific proliferation and lymphocyte production of β-chemokines. J. Infect. Dis.181, 476–483 (2000). ArticleCASPubMed Google Scholar
Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature392, 245–252 (1998). ArticleCASPubMed Google Scholar
Sigal, L. J. & Rock, K. L. Bone marrow-derived antigen-presenting cells are required for the generation of cytotoxic T lymphocyte responses to viruses and use transporter associated with antigen presentation (TAP)-dependent and- independent pathways of antigen presentation. J. Exp. Med.192, 1143–1150 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lenz, L. L., Butz, E. A. & Bevan, M. J. Requirements for bone marrow-derived antigen-presenting cells in priming cytotoxic T cell responses to intracellular pathogens. J. Exp. Med.192, 1135–1142 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med2, 1096–1103 (1996); erratum2, 1267 (1996). | PubMed | ArticleCASPubMed Google Scholar
Harty, J. T. & Bevan, M. J. CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo. J. Exp. Med.175, 1531–1538 (1992). ArticleCASPubMed Google Scholar
Takahashi, H., Nakagawa, Y., Yokomuro, K. & Berzofsky, J. A. Induction of CD8+ CTL by immunization with syngeneic irradiated HIV-1 envelope derived peptide-pulsed dendritic cells. Int. Immunol.5, 849–857 (1993). ArticleCASPubMed Google Scholar
Gabrilovich, D. I., Nadaf, S., Corak, J., Berzofsky, J. A. & Carbone, D. P. Dendritic cells in anti-tumor immune reponses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice are effective antigen carriers in the therapy of established tumors. Cell. Immunol.170, 111–119 (1996). ArticleCASPubMed Google Scholar
Zitvogel, L. et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J. Exp. Med.183, 87–97 (1996). ArticleCASPubMed Google Scholar
Paglia, P., Chiodoni, C., Rodolfo, M. & Colombo, M. P. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J. Exp. Med.183, 317–322 (1996). ArticleCASPubMed Google Scholar
Labeur, M. S. et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J. Immunol.162, 168–175 (1999). CASPubMed Google Scholar
Mackey, M. F. et al. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J. Immunol.161, 2094–2098 (1998). CASPubMed Google Scholar
Diehl, L. et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nature Med.5, 774–779 (1999). ArticleCASPubMed Google Scholar
Dhodapkar, M. V. et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest.104, 173–180 (1999). ArticleCASPubMedPubMed Central Google Scholar
Dhodapkar, M. V., Krasovsky, J., Steinman, R. M. & Bhardwaj, N. Mature dendritic cells boost functionally superior CD8+ T-cell in humans without foreign helper epitopes. J. Clin. Invest.105, R9–R14 (2000). ArticleCASPubMedPubMed Central Google Scholar
Mueller, D. L., Jenkins, M. K. & Schwartz, R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol.7, 445–480 (1989). ArticleCASPubMed Google Scholar
Roncarolo, M. G., Levings, M. K. & Traversari, C. Differentiation of T regulatory cells by immature dendritic cells. J. Exp. Med.193, F5–F9 (2001). ArticleCASPubMedPubMed Central Google Scholar
Shirai, M. et al. Helper–CTL determinant linkage required for priming of anti-HIV CD8+ CTL in vivo with peptide vaccine constructs. J. Immunol.152, 549–556 (1994). CASPubMed Google Scholar
Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature393, 474–478 (1998). ArticleCASPubMed Google Scholar
Bennett, S. R. M. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature393, 478–480 (1998). ArticleCASPubMed Google Scholar
Schoenberger, S. P., Toes, R. E. M., van der Voort, E. I. H., Offringa, R. & Melief, C. J. M. T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature393, 480–483 (1998). ArticleCASPubMed Google Scholar
Pulendran, B., Banchereau, J., Maraskovsky, E. & Maliszewski, C. Modulating the immune response with dendritic cells and their growth factors. Trends Immunol.22, 41–47 (2001). ArticleCASPubMed Google Scholar
Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol.18, 767–811 (2000). ArticleCASPubMed Google Scholar
Moser, M. & Murphy, K. M. Dendritic cell regulation of TH1-TH2 development. Nature Immunol.1, 199–205 (2000). ArticleCAS Google Scholar
Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature392, 86–89 (1998). ArticleCASPubMed Google Scholar
Berard, F. et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J. Exp. Med.192, 1535–1544 (2000). ArticleCASPubMedPubMed Central Google Scholar
Engelmayer, J. et al. Mature dendritic cells infected with canarypox virus elicit strong anti- human immunodeficiency virus CD8+ and CD4+ T-cell responses from chronically infected individuals. J. Virol.75, 2142–2153 (2001). ArticleCASPubMedPubMed Central Google Scholar
Boczkowski, D., Nair, S. K., Nam, J. H., Lyerly, H. K. & Gilboa, E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res.60, 1028–1034 (2000). CASPubMed Google Scholar
Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med.179, 1109–1118 (1994). ArticleCASPubMed Google Scholar
Thurner, B. et al. Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J. Immunol. Methods223, 1–15 (1999). ArticleCASPubMed Google Scholar
Mosca, P. J. et al. A subset of human monocyte-derived dendritic cells expresses high levels of interleukin-12 in response to combined CD40 ligand and interferon-γ treatment. Blood96, 3499–3504 (2000). ArticleCASPubMed Google Scholar
Fong, L. & Engleman, E. G. Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol.18, 245–273 (2000). ArticleCASPubMed Google Scholar
Wong, E. C. C. et al. Development of a clinical-scale method for generation of dendritic cells from PBMC for use in cancer immunotherapy. Cytotherapy3, 19–29 (2001). ArticleCASPubMed Google Scholar
Dallal, R. M. & Lotze, M. T. The dendritic cell and human cancer vaccines. Curr. Opin. Immunol.12, 583–588 (2000). ArticleCASPubMed Google Scholar
Thurner, B. et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med.190, 1669–1678 (1999). ArticleCASPubMedPubMed Central Google Scholar
Nestle, F. O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med.4, 328–332 (1998). ArticleCASPubMed Google Scholar
Weber, J. S. & Aparicio, A. Novel immunologic approaches to the management of malignant melanoma. Curr. Opin. Oncol.13, 124–128 (2001). ArticleCASPubMed Google Scholar
Hsu, F. J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med.2, 52–58 (1996). ArticleCASPubMed Google Scholar
Liso, A. et al. Idiotype vaccination using dendritic cells after autologous peripheral blood progenitor cell transplantation for multiple myeloma. Biol. Blood Marrow Transplant.6, 621–627 (2000). ArticleCASPubMed Google Scholar
Pulendran, B. et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol.165, 566–572 (2000). ArticleCASPubMed Google Scholar
Boyer, J. D. et al. HIV-1 DNA vaccines and chemokines. Vaccine17 (Suppl. 2), S53–S64 (1999). ArticleCASPubMed Google Scholar
Matsui, S. et al. A model for CD8+ CTL tumor immunosurveillance and regulation of tumor escape by CD4 T cells through an effect on quality of CTL. J. Immunol.163, 184–193 (1999). CASPubMed Google Scholar
Ohodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med.193, 233–238 (2001). Article Google Scholar