Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nature Rev. Mol. Cell Biol.11, 208–219 (2010). ArticleCAS Google Scholar
Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Rev. Genet.13, 189–203 (2012). ArticleCASPubMed Google Scholar
Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet.45, 247–271 (2011). ArticleCASPubMed Google Scholar
Kent, N. A., Chambers, A. L. & Downs, J. A. Dual chromatin remodeling roles for RSC during DNA double strand break induction and repair at the yeast MAT locus. J. Biol. Chem.282, 27693–27701 (2007). ArticleCASPubMed Google Scholar
Shim, E. Y. et al. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell. Biol.27, 1602–1613 (2007). This work demonstrates a role for the RSC complex in chromatin-remodelling nucleosomes that are proximal to a DSB. ArticleCASPubMed Google Scholar
Berkovich, E., Monnat, R. J. Jr & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nature Cell Biol.9, 683–690 (2007). ArticleCASPubMed Google Scholar
Tsukuda, T. et al. INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair8, 360–369 (2009). ArticleCASPubMed Google Scholar
Shim, E. Y., Ma, J. L., Oum, J. H., Yanez, Y. & Lee, S. E. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol. Cell. Biol.25, 3934–3944 (2005). ArticleCASPubMedPubMed Central Google Scholar
Chai, B., Huang, J., Cairns, B. R. & Laurent, B. C. Distinct roles for the RSC and SWI/SNF ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev.19, 1656–1661 (2005). In this paper, it is shown that the SWI/SNF complex is essential for homologous recombination in heterochromatinin vivo, and a late role for the RSC enzyme during homologous recombination is suggested. ArticleCASPubMedPubMed Central Google Scholar
Papamichos-Chronakis, M., Krebs, J. E. & Peterson, C. L. Interplay between INO80 and SWR1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev.20, 2437–2449 (2006). ArticleCASPubMedPubMed Central Google Scholar
Neumann, F. R. et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev.26, 369–383 (2012). In this intriguing work, it is indicated that the INO80 chromatin-remodelling enzyme can promote large-scale chromosome movements when tethered to a DNA locus. ArticleCASPubMedPubMed Central Google Scholar
van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell119, 777–788 (2004). ArticleCASPubMed Google Scholar
Eapen, V. V., Sugawara, N., Tsabar, M., Wu, W. H. & Haber, J. E. The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end-resection and checkpoint deactivation. Mol. Cell. Biol.32, 4727–4740 (2012). ArticleCASPubMedPubMed Central Google Scholar
Fritsch, O., Benvenuto, G., Bowler, C., Molinier, J. & Hohn, B. The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol. Cell16, 479–485 (2004). ArticleCASPubMed Google Scholar
van Attikum, H., Fritsch, O. & Gasser, S. M. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J.26, 4113–4125 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell33, 335–343 (2009). ArticleCASPubMed Google Scholar
Xu, Y. et al. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J. Cell Biol.191, 31–43 (2010). ArticleCASPubMedPubMed Central Google Scholar
Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol.172, 823–834 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nakamura, K. et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol. Cell41, 515–528 (2011). ArticleCASPubMed Google Scholar
Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nature Chem. Biol.7, 113–119 (2011). This elegant biochemical study demonstrates that H2Bub disrupts chromatin higher-order folding. ArticleCAS Google Scholar
Ogiwara, H. et al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene30, 2135–2146 (2011). ArticleCASPubMed Google Scholar
Moyal, L. et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol. Cell41, 529–542 (2011). ArticleCASPubMedPubMed Central Google Scholar
Richardson, C., Moynahan, M. E. & Jasin, M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev.12, 3831–3842 (1998). ArticleCASPubMedPubMed Central Google Scholar
Inbar, O. & Kupiec, M. Homology search and choice of homologous partner during mitotic recombination. Mol. Cell. Biol.19, 4134–4142 (1999). ArticleCASPubMedPubMed Central Google Scholar
Sinha, M. & Peterson, C. L. Chromatin dynamics during repair of chromosomal DNA double-strand breaks. Epigenomics1, 371–385 (2009). ArticleCASPubMed Google Scholar
Sinha, M., Watanabe, S., Johnson, A., Moazed, D. & Peterson, C. L. Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell138, 1109–1121 (2009). In this paper, a reconstitution of a homologous recombination reaction with heterochromatin arrays defines a new role for the SWI/SNF complex. ArticleCASPubMedPubMed Central Google Scholar
Mine-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nature Cell Biol.14, 510–517 (2012). This outstanding study is the first to demonstrate DSB-induced chromosome mobility and its role in the homology search process. ArticleCASPubMed Google Scholar
Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nature Cell Biol.14, 502–509 (2012). ArticleCASPubMed Google Scholar
Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nature Cell Biol.9, 675–682 (2007). ArticleCASPubMed Google Scholar
Hewitt, S. L. et al. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunol.10, 655–664 (2009). ArticleCAS Google Scholar
Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell144, 732–744 (2011). In this study, regulated DSB mobilization suggests a new level of regulation for recombinational repair in heterochromatin domains. ArticleCASPubMedPubMed Central Google Scholar
Torres-Rosell, J. et al. The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biol.9, 923–931 (2007). ArticleCASPubMed Google Scholar
Abraham, R. T. Cell cycle checkpoint signaling through the ATM & ATR kinases. Genes Dev.15, 2177–2196 (2001). ArticleCASPubMed Google Scholar
Durocher, D. in The DNA Damage Response: Implications on Cancer Formation and Treatment Ch. 1 (ed. Khanna, K. K., Yosef, S.) 1–24 (Springer, 2009). Book Google Scholar
Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science300, 1542–1548 (2003). ArticleCASPubMed Google Scholar
Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol.19, 238–245 (2007). ArticleCASPubMed Google Scholar
West, M. H. & Bonner, W. M. Histone 2A, a heteromorphous family of eight protein species. Biochemistry19, 3238–3245 (1980). ArticleCASPubMed Google Scholar
Lee, H. S., Park, J. H., Kim, S. J., Kwon, S. J. & Kwon, J. A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J.29, 1434–1445 (2010). ArticleCASPubMedPubMed Central Google Scholar
Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science311, 844–847 (2006). ArticleCASPubMed Google Scholar
Li, X. et al. MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol. Cell. Biol.30, 5335–5347 (2010). ArticleCASPubMedPubMed Central Google Scholar
Sharma, G. G. et al. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol. Cell. Biol.30, 3582–3595 (2010). ArticleCASPubMedPubMed Central Google Scholar
Miller, K. M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Struct. Mol. Biol.17, 1144–1151 (2010). ArticleCAS Google Scholar
Hammet, A., Magill, C., Heierhorst, J. & Jackson, S. P. Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. EMBO Rep.8, 851–857 (2007). ArticleCASPubMedPubMed Central Google Scholar
Javaheri, A. et al. Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling. Proc. Natl Acad. Sci. USA103, 13771–13776 (2006). ArticleCASPubMedPubMed Central Google Scholar
Xie, A. et al. Control of sister chromatid recombination by histone H2AX. Mol. Cell16, 1017–1025 (2004). ArticleCASPubMed Google Scholar
Helmink, B. A. et al. H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature469, 245–249 (2011). ArticleCASPubMed Google Scholar
Huen, M. S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell131, 901–914 (2007). ArticleCASPubMedPubMed Central Google Scholar
Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell131, 887–900 (2007). ArticleCASPubMed Google Scholar
Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell136, 435–446 (2009). ArticleCASPubMed Google Scholar
Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell136, 420–434 (2009). ArticleCASPubMed Google Scholar
Luijsterburg, M. S. et al. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO J.31, 2511–2527 (2012). ArticleCASPubMedPubMed Central Google Scholar
Chou, D. M. et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl Acad. Sci. USA107, 18475–18480 (2010). ArticleCASPubMedPubMed Central Google Scholar
Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell127, 1361–1373 (2006). ArticleCASPubMedPubMed Central Google Scholar
Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature432, 406–411 (2004). ArticleCASPubMed Google Scholar
Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell119, 603–614 (2004). ArticleCASPubMed Google Scholar
Singh, N. et al. Dual recognition of phosphoserine and phosphotyrosine in histone variant H2A.X by DNA damage response protein MCPH1. Proc. Natl Acad. Sci. USA109, 14381–14386 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell141, 970–981 (2010). The elegant approach used here provides molecular insight into the crosstalk between DDR and transcription. ArticleCASPubMedPubMed Central Google Scholar
Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature431, 873–878 (2004). ArticleCASPubMed Google Scholar
Iacovoni, J. S. et al. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J.29, 1446–1457 (2010). ArticleCASPubMedPubMed Central Google Scholar
Papamichos-Chronakis, M., Watanabe, S., Rando, O. J. & Peterson, C. L. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell144, 200–213 (2011). This paper defines a new histone variant exchange activity for INO80 and provides evidence that aberrant distribution of H2A.Z has a negative impact on genome stability. ArticleCASPubMedPubMed Central Google Scholar
Chowdhury, D. et al. Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol. Cell20, 801–809 (2005). ArticleCASPubMed Google Scholar
Nakada, S., Chen, G. I., Gingras, A. C. & Durocher, D. PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep.9, 1019–1026 (2008). ArticleCASPubMedPubMed Central Google Scholar
Keogh, M. C. et al. A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery. Nature439, 497–501 (2006). ArticleCASPubMed Google Scholar
Chen, C. C. et al. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell134, 231–243 (2008). ArticleCASPubMedPubMed Central Google Scholar
Branzei, D. & Foiani, M. The checkpoint response to replication stress. DNA Repair8, 1038–1046 (2009). ArticleCASPubMed Google Scholar
De Piccoli, G. et al. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol. Cell45, 696–704 (2012). ArticleCASPubMed Google Scholar
Cobb, J. A. et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev.19, 3055–3069 (2005). ArticleCASPubMedPubMed Central Google Scholar
Baker, S. P. et al. Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nature Cell Biol.12, 294–298 (2010). ArticleCASPubMed Google Scholar
Levesque, N., Leung, G. P., Fok, A. K., Schmidt, T. I. & Kobor, M. S. Loss of H3 K79 trimethylation leads to suppression of Rtt107-dependent DNA damage sensitivity through the translesion synthesis pathway. J. Biol. Chem.285, 35113–35122 (2010). ArticleCASPubMedPubMed Central Google Scholar
Conde, F. & San-Segundo, P. A. Role of Dot1 in the response to alkylating DNA damage in Saccharomyces cerevisiae: regulation of DNA damage tolerance by the error-prone polymerases Polzeta/Rev1. Genetics179, 1197–1210 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wysocki, R. et al. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol. Cell. Biol.25, 8430–8443 (2005). ArticleCASPubMedPubMed Central Google Scholar
Murakami-Sekimata, A., Huang, D., Piening, B. D., Bangur, C. & Paulovich, A. G. The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage. DNA Repair9, 824–834 (2010). ArticleCASPubMedPubMed Central Google Scholar
Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science318, 1928–1931 (2007). ArticleCASPubMed Google Scholar
Burgess, R. J., Zhou, H., Han, J. & Zhang, Z. A role for Gcn5 in replication-coupled nucleosome assembly. Mol. Cell37, 469–480 (2010). ArticleCASPubMedPubMed Central Google Scholar
Corpet, A. & Almouzni, G. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol.19, 29–41 (2009). ArticleCASPubMed Google Scholar
Au, T. J., Rodriguez, J., Vincent, J. A. & Tsukiyama, T. ATP-dependent chromatin remodeling factors tune S phase checkpoint activity. Mol. Cell. Biol.31, 4454–4463 (2011). ArticleCASPubMedPubMed Central Google Scholar
Papamichos-Chronakis, M. & Peterson, C. L. The INO80 chromatin-remodeling enzyme regulates replisome function and stability. Nature Struct. Mol. Biol.15, 338–345 (2008). ArticleCAS Google Scholar
Shimada, K. et al. INO80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr. Biol.18, 566–575 (2008). ArticleCASPubMed Google Scholar
Hur, S. K. et al. Roles of human INO80 chromatin remodeling enzyme in DNA replication and chromosome segregation suppress genome instability. Cell. Mol. Life Sci.67, 2283–2296 (2010). ArticleCASPubMed Google Scholar
Falbo, K. B. et al. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nature Struct. Mol. Biol.16, 1167–1172 (2009). ArticleCAS Google Scholar
Boerkoel, C. F. et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nature Genet.30, 215–220 (2002). ArticleCASPubMed Google Scholar
Ciccia, A. et al. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev.23, 2415–2425 (2009). ArticleCASPubMedPubMed Central Google Scholar
Bansbach, C. E., Betous, R., Lovejoy, C. A., Glick, G. G. & Cortez, D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev.23, 2405–2414 (2009). ArticleCASPubMedPubMed Central Google Scholar
Yusufzai, T., Kong, X., Yokomori, K. & Kadonaga, J. T. The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev.23, 2400–2404 (2009). ArticleCASPubMedPubMed Central Google Scholar
Betous, R. et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev.26, 151–162 (2012). ArticleCASPubMedPubMed Central Google Scholar
Vincent, J. A., Kwong, T. J. & Tsukiyama, T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nature Struct. Mol. Biol.15, 477–484 (2008). ArticleCAS Google Scholar
Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nature Genet.32, 627–632 (2002). ArticleCASPubMed Google Scholar
Poot, R. A. et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nature Cell Biol.6, 1236–1244 (2004). ArticleCASPubMed Google Scholar
Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature450, 1031–1035 (2007). ArticleCASPubMed Google Scholar
Fyodorov, D. V., Blower, M. D., Karpen, G. H. & Kadonaga, J. T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev.18, 170–183 (2004). ArticleCASPubMedPubMed Central Google Scholar
Rowbotham, S. P. et al. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell42, 285–296 (2011). ArticleCASPubMed Google Scholar
Stralfors, A., Walfridsson, J., Bhuiyan, H. & Ekwall, K. The FUN30 chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation. PLoS Genet.7, e1001334 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nature Rev. Mol. Cell Biol.5, 45–54 (2004). ArticleCAS Google Scholar
Talbert, P. B. & Henikoff, S. Histone variants—ancient wrap artists of the epigenome. Nature Rev. Mol. Cell Biol.11, 264–275 (2010). ArticleCAS Google Scholar
Verdaasdonk, J. S. & Bloom, K. Centromeres: unique chromatin structures that drive chromosome segregation. Nature Rev. Mol. Cell Biol.12, 320–332 (2011). ArticleCAS Google Scholar
Kim, H. S. et al. An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nature Struct. Mol. Biol.16, 1286–1293 (2009). ArticleCAS Google Scholar
Krogan, N. J. et al. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc. Natl Acad. Sci. USA101, 13513–13518 (2004). ArticleCASPubMedPubMed Central Google Scholar
Perez-Cadahia, B., Drobic, B. & Davie, J. R. H3 phosphorylation: dual role in mitosis and interphase. Biochem. Cell Biol.87, 695–709 (2009). ArticleCASPubMed Google Scholar
Kawashima, S. A., Yamagishi, Y., Honda, T., Ishiguro, K. & Watanabe, Y. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science327, 172–177 (2010). ArticleCASPubMed Google Scholar
Kelly, A. E. et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science330, 235–239 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yamagishi, Y., Honda, T., Tanno, Y. & Watanabe, Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science330, 239–243 (2010). ArticleCASPubMed Google Scholar
Tada, K., Susumu, H., Sakuno, T. & Watanabe, Y. Condensin association with histone H2A shapes mitotic chromosomes. Nature474, 477–483 (2011). ArticleCASPubMed Google Scholar
Hsu, J. M., Huang, J., Meluh, P. B. & Laurent, B. C. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol.23, 3202–3215 (2003). ArticleCASPubMedPubMed Central Google Scholar
Ogiwara, H., Enomoto, T. & Seki, M. The INO80 chromatin remodeling complex functions in sister chromatid cohesion. Cell Cycle6, 1090–1095 (2007). ArticleCASPubMed Google Scholar
Xue, Y. et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast RSC and localizes at kinetochores of mitotic chromosomes. Proc. Natl Acad. Sci. USA97, 13015–13020 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gkikopoulos, T. et al. The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J.30, 1919–1927 (2011). ArticleCASPubMedPubMed Central Google Scholar
Wu, S. et al. A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nature Struct. Mol. Biol.14, 1165–1172 (2007). ArticleCAS Google Scholar
Campsteijn, C., Wijnands-Collin, A. M. & Logie, C. Reverse genetic analysis of the yeast RSC chromatin remodeler reveals a role for RSC3 and SNF5 homolog 1 in ploidy maintenance. PLoS Genet.3, e92 (2007). This comprehensive genetic analysis of RSC led to the discovery of new role for RSC in the control of ploidy. ArticlePubMedPubMed CentralCAS Google Scholar
Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell136, 473–484 (2009). ArticlePubMedCAS Google Scholar
Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell125, 85–98 (2006). ArticleCASPubMed Google Scholar
Baumann, C., Korner, R., Hofmann, K. & Nigg, E. A. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell128, 101–114 (2007). ArticleCASPubMed Google Scholar
Chan, K. L., North, P. S. & Hickson, I. D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J.26, 3397–3409 (2007). ArticleCASPubMedPubMed Central Google Scholar
Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nature Cell Biol.11, 753–760 (2009). ArticleCASPubMed Google Scholar
Sillibourne, J. E., Delaval, B., Redick, S., Sinha, M. & Doxsey, S. J. Chromatin remodeling proteins interact with pericentrin to regulate centrosome integrity. Mol. Biol. Cell18, 3667–3680 (2007). This intriguing work suggests a novel role for chromatin-remodelling enzymes in centrosome assembly and function. ArticleCASPubMedPubMed Central Google Scholar
Vaze, M. B. et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell10, 373–385 (2002). ArticleCASPubMed Google Scholar
Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol.14, 1703–1711 (2004). ArticleCASPubMedPubMed Central Google Scholar
Korber, P., Luckenbach, T., Blaschke, D. & Horz, W. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter. Mol. Cell. Biol.24, 10965–10974 (2004). ArticleCASPubMedPubMed Central Google Scholar
Klopf, E. et al. Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol.29, 4994–5007 (2009). ArticleCASPubMedPubMed Central Google Scholar