Regular 4-polytope (original) (raw)

About DBpedia

Jedná se o čtyřrozměrné analogie trojrozměrných platónských těles. Tyto poprvé popsal švýcarský matematik Ludwig Schläfli v polovině 19. století. Zjistil, že jich existuje právě šest (5nadstěn, teserakt (8nadstěn), 16nadstěn, 24nadstěn, 120nadstěn a 600nadstěn). Pět z nich je možno chápat jako vícedimenzionální analogii konkrétních pěti platónských těles v trojrozměrném prostoru (5nadstěn, teserakt, 16nadstěn, 120nadstěn a 600nadstěn). Navíc ve čtyřrozměrném prostoru existuje ještě šesté těleso (24nadstěn), které nemá mezi trojrozměrnými platónskými tělesy ekvivalent.

thumbnail

Property Value
dbo:abstract Jedná se o čtyřrozměrné analogie trojrozměrných platónských těles. Tyto poprvé popsal švýcarský matematik Ludwig Schläfli v polovině 19. století. Zjistil, že jich existuje právě šest (5nadstěn, teserakt (8nadstěn), 16nadstěn, 24nadstěn, 120nadstěn a 600nadstěn). Pět z nich je možno chápat jako vícedimenzionální analogii konkrétních pěti platónských těles v trojrozměrném prostoru (5nadstěn, teserakt, 16nadstěn, 120nadstěn a 600nadstěn). Navíc ve čtyřrozměrném prostoru existuje ještě šesté těleso (24nadstěn), které nemá mezi trojrozměrnými platónskými tělesy ekvivalent. (cs) En matematiko, konveksa regula plurĉelo estas 4-dimensia plurĉelo kiu estas samtempe regula kaj konveksa. Ĉi tiuj plurĉeloj estas la kvar-dimensiaj analogoj de la platonaj solidoj en tri dimensioj kaj la regulaj plurlateroj en du dimensioj. Ĉi tiuj plurĉeloj estis unue priskribitaj de la svisa matematikisto Ludwig Schläfli en mezo de la 19-a jarcento. Schläfli esploris ke estas precize ses ĉi tiaj figuroj. Kvin el ili povas esti konsiderataj kiel pli alte dimensiaj analogoj de la platonaj solidoj. Estas unu aldona figuro (la 24-ĉelo) kiu ne havas tri-dimensian ekvivalenton. Ĉiu konveksa regula plurĉelo estas barita per aro de 3-dimensiaj ĉeloj kiuj ĉiuj estas platonaj solidoj de la sama speco kaj amplekso. Ili estas kunigitaj laŭ iliaj edroj en regula maniero. (eo) En matemáticas, un politopo regular convexo de 4 dimensiones (o polícoro) es un politopo tetradimensional que al mismo tiempo es regular y convexo. Son los análogos en cuatro dimensiones de los sólidos platónicos en tres dimensiones y los polígonos regulares en dos dimensiones. (es) Un polytope régulier convexe à 4 dimensions (ou polychore) est un objet géométrique, analogue en 4 dimensions des solides de Platon de la géométrie en 3 dimensions et des polygones réguliers de la géométrie en 2 dimensions. Ces polytopes furent décrits la première fois par le mathématicien suisse Ludwig Schläfli au milieu du XIXe siècle. Schläfli découvrit qu'il y avait précisément six figures de ce type. Cinq d'entre elles sont considérées comme les analogues de dimension 4 des solides de Platon. Il y a une figure supplémentaire (l'icositétrachore) qui n'a aucun équivalent tri-dimensionnel. Chaque polytope régulier convexe à 4 dimensions est limité par des cellules tri-dimensionnelles qui sont toutes des solides de Platon du même type et de même taille. Ceux-ci sont organisés ensemble le long de leurs côtés de manière régulière. Ils sont tous homéomorphes à une hypersphère à la surface tri-dimensionnelle ; leur caractéristique d'Euler-Poincaré vaut donc 0. (fr) In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. (en) 4차원 정다포체란 정다면체를 4차원으로 확장한 것이다. (ko) Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости. Правильные 4-мерные многогранники впервые были описаны швейцарским математиком Людвигом Шлефли в середине 19-го века, хотя полное множество было открыто много позже. Существует шесть выпуклых и десять звёздчатых правильных 4-мерных многогранников, в общей сумме шестнадцать. (ru) 在数学中,四维凸正多胞体(英語:convex regular polychoron)是指一类既是凸的又是正的的四维多胞体(4-多胞形)。它们是正多面体(三維)和正多边形(二维)的四维类比。它们最先在19世纪被数学家路德维希·施莱夫利所发现,其中五个与五个柏拉图立体一一对应,另外一个(正二十四胞体)没有好的三维类比。 每个四维凸正多胞体必须有同种的同样大小的凸正多面体胞面面相接构成,并且每个顶点周围必须有相同数量的胞。 (zh)
dbo:thumbnail wiki-commons:Special:FilePath/Hypercube.svg?width=300
dbo:wikiPageExternalLink http://www.dimensions-math.org/ https://archive.org/details/kaleidoscopessel0000coxe http://polytope.net/hedrondude/regulars.htm http://www.hti.umich.edu/cgi/b/bib/bibperm%3Fq1=ABN8623.0001.001 https://web.archive.org/web/20061107052613/http:/www.mathematik.uni-regensburg.de/Goette/sterne/ https://web.archive.org/web/20070704012333/http:/davidf.faricy.net/polyhedra/Star_Polychora.html http://www.weimholt.com/andrew/polytope.shtml https://books.google.com/books%3Fid=4vXDDwAAQBAJ&pg=PA161 http://assets.cambridge.org/052181/4960/sample/0521814960ws.pdf https://eudml.org/doc/141447 https://pages.uoregon.edu/koch/hypersolids/hypersolids.html http://www.math.cmu.edu/~fho/jenn/polytopes http://www.math.cmu.edu/~fho/jenn/polytopes/index.html
dbo:wikiPageID 18801624 (xsd:integer)
dbo:wikiPageLength 28508 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1107744391 (xsd:integer)
dbo:wikiPageWikiLink dbr:Schläfli_symbol dbr:Kepler–Poinsot_polyhedra dbr:Betti_number dbr:List_of_regular_polytopes_and_compounds dbr:Pentagram dbr:Pentakis_icosidodecahedron dbr:Perspective_projection dbr:Regular_icosahedron dbr:Regular_polygon dbr:Rhombic_dodecahedron dbr:Cube dbr:Cuboctahedron dbr:Uniform_4-polytope dbr:Star_polyhedron dbr:Pentagonal_polytope dbr:11-cell dbr:120-cell dbr:16-cell dbc:4-polytopes dbr:Cross-polytope dbr:Mathematics dbr:Orthographic_projection dbr:Orthographic_projection_(geometry) dbr:Great_icosahedron dbr:Greek_language dbr:Configuration_(polytope) dbr:Convex_polytope dbr:Ludwig_Schläfli dbr:Simplex dbr:Small_stellated_dodecahedron dbr:Stereographic_projection dbr:Density_(polytope) dbr:Icosahedral_120-cell dbr:Kepler–Poinsot_polyhedron dbr:Vertex_arrangement dbr:Pentagon dbr:Star_polygon dbr:Mathematician dbr:57-cell dbr:Coxeter-Dynkin_diagram dbr:24-cell dbr:3-sphere dbr:5-cell dbr:5-polytope dbr:600-cell dbr:4-polytope dbr:Norman_Johnson_(mathematician) dbr:Edmund_Hess dbr:Goursat_tetrahedron dbr:Grand_120-cell dbr:Grand_600-cell dbr:Grand_stellated_120-cell dbr:Regular_polyhedron dbr:Regular_polytope dbr:Coxeter_group dbr:Tesseract dbr:Tetrahedron dbr:Hypercube dbr:Vertex_figure dbr:Small_stellated_120-cell dbr:Arthur_Cayley dbr:Abstract_polytope dbr:John_Horton_Conway dbr:Edge_(geometry) dbr:Triangle dbr:Uniform_polytope dbr:Dihedral_angle dbr:Dodecahedron dbr:Platonic_solid dbr:Great_120-cell dbr:Great_dodecahedron dbr:Great_grand_120-cell dbr:Great_grand_stellated_120-cell dbr:Great_icosahedral_120-cell dbr:Great_stellated_120-cell dbr:Great_stellated_dodecahedron dbr:Face_arrangement dbr:Octahedron dbr:Order_(group_theory) dbr:Square dbr:Schlegel_diagram dbr:Vertex_(geometry) dbr:Euler_characteristic dbr:Face_(geometry) dbr:Cell_(geometry) dbr:Torsion_coefficient_(topology) dbr:List_of_regular_polytopes dbr:Stellation dbr:8-cell dbr:Dual_polytope dbr:File:Hypercube.svg dbr:Cell_(mathematics) dbr:Coxeter_diagram dbr:Kepler-Poinsot_polyhedra dbr:Hexacosichoric_symmetry dbr:Edge_arrangement dbr:Edge_figure dbr:File:Ortho_solid_011-uniform_polychoron_53p-t0.png dbr:Star_polytope dbr:Truncated_rhombic_triacontahedron dbr:File:Hexahedron.png dbr:File:Stereographic_polytope_5cell.png dbr:File:120-cell_graph_H4.svg dbr:File:Dodecahedron.png dbr:File:Regular_pentagon.svg dbr:File:Schlegel_wireframe_120-cell.png dbr:File:Schlegel_wireframe_5-cell.png dbr:File:Tetrahedron.png dbr:File:4-simplex_t0.svg dbr:File:24-cell_t0_F4.svg dbr:File:Schlegel_wireframe_16-cell.png dbr:File:Schlegel_wireframe_8-cell.png dbr:File:Stereographic_polytope_16cell.png dbr:File:4-cube_t3.svg dbr:File:4-cube_t0.svg dbr:File:600-cell_graph_H4.svg dbr:File:Ortho_solid_016-uniform_polychoron_p33-t0.png dbr:File:Schlegel_wireframe_24-cell.png dbr:File:Stereographic_polytope_600cell.png dbr:File:Ortho_solid_012-uniform_polychoron_p35-t0.png dbr:File:Ortho_solid_014-uniform_polychoron_3p5-t0.png dbr:File:Schlegel_wireframe_600-cell_vertex-centered.png dbr:File:Ortho_solid_009-uniform_polychoron_53p-t0.png dbr:File:Ortho_solid_015-uniform_polychoron_33p-t0.png dbr:File:Great_icosahedron.png dbr:File:Great_dodecahedron.png dbr:File:Great_stellated_dodecahedron.png dbr:File:Small_stellated_dodecahedron.png dbr:File:Ortho_solid_008-uniform_polychoron_5p5-t0.png dbr:File:Ortho_solid_010-uniform_polychoron_p53-t0.png dbr:File:Icosahedron.png dbr:File:16-cell_ortho_cell-centered.png dbr:File:Ortho_solid_120-cell.png dbr:File:Ortho_solid_24-cell.png dbr:File:Ortho_solid_600-cell.png dbr:File:Stereographic_polytope_120cell.png dbr:File:Stereographic_polytope_24cell.png dbr:File:Stereographic_polytope_8cell.png dbr:File:Ortho_solid_013-uniform_polychoron_p5p-t0.png dbr:File:Ortho_solid_007-uniform_polychoron_35p-t0.png dbr:File:Regular_triangle.svg dbr:File:Star_polygon_5-2.svg dbr:File:Relationship_among_regular_star_polychora-8.png dbr:File:Relationship_among_regular_star_polychora.png
dbp:title Regular polychoron (en)
dbp:urlname RegularPolychoron (en)
dbp:wikiPageUsesTemplate dbt:= dbt:CDD dbt:Cite_book dbt:Cite_journal dbt:Cite_web dbt:Mathworld dbt:Refbegin dbt:Refend dbt:Reflist dbt:Regular_convex_4-polytopes dbt:Sfn dbt:Sfrac dbt:Short_description dbt:4D_regular_polytopes
dcterms:subject dbc:4-polytopes
gold:hypernym dbr:Polytope
rdfs:comment Jedná se o čtyřrozměrné analogie trojrozměrných platónských těles. Tyto poprvé popsal švýcarský matematik Ludwig Schläfli v polovině 19. století. Zjistil, že jich existuje právě šest (5nadstěn, teserakt (8nadstěn), 16nadstěn, 24nadstěn, 120nadstěn a 600nadstěn). Pět z nich je možno chápat jako vícedimenzionální analogii konkrétních pěti platónských těles v trojrozměrném prostoru (5nadstěn, teserakt, 16nadstěn, 120nadstěn a 600nadstěn). Navíc ve čtyřrozměrném prostoru existuje ještě šesté těleso (24nadstěn), které nemá mezi trojrozměrnými platónskými tělesy ekvivalent. (cs) En matemáticas, un politopo regular convexo de 4 dimensiones (o polícoro) es un politopo tetradimensional que al mismo tiempo es regular y convexo. Son los análogos en cuatro dimensiones de los sólidos platónicos en tres dimensiones y los polígonos regulares en dos dimensiones. (es) In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. (en) 4차원 정다포체란 정다면체를 4차원으로 확장한 것이다. (ko) Правильные четырёхмерные многогранники являются четырёхмерными аналогами правильных многогранников в трёхмерном пространстве и правильных многоугольников на плоскости. Правильные 4-мерные многогранники впервые были описаны швейцарским математиком Людвигом Шлефли в середине 19-го века, хотя полное множество было открыто много позже. Существует шесть выпуклых и десять звёздчатых правильных 4-мерных многогранников, в общей сумме шестнадцать. (ru) 在数学中,四维凸正多胞体(英語:convex regular polychoron)是指一类既是凸的又是正的的四维多胞体(4-多胞形)。它们是正多面体(三維)和正多边形(二维)的四维类比。它们最先在19世纪被数学家路德维希·施莱夫利所发现,其中五个与五个柏拉图立体一一对应,另外一个(正二十四胞体)没有好的三维类比。 每个四维凸正多胞体必须有同种的同样大小的凸正多面体胞面面相接构成,并且每个顶点周围必须有相同数量的胞。 (zh) En matematiko, konveksa regula plurĉelo estas 4-dimensia plurĉelo kiu estas samtempe regula kaj konveksa. Ĉi tiuj plurĉeloj estas la kvar-dimensiaj analogoj de la platonaj solidoj en tri dimensioj kaj la regulaj plurlateroj en du dimensioj. Ĉi tiuj plurĉeloj estis unue priskribitaj de la svisa matematikisto Ludwig Schläfli en mezo de la 19-a jarcento. Schläfli esploris ke estas precize ses ĉi tiaj figuroj. Kvin el ili povas esti konsiderataj kiel pli alte dimensiaj analogoj de la platonaj solidoj. Estas unu aldona figuro (la 24-ĉelo) kiu ne havas tri-dimensian ekvivalenton. (eo) Un polytope régulier convexe à 4 dimensions (ou polychore) est un objet géométrique, analogue en 4 dimensions des solides de Platon de la géométrie en 3 dimensions et des polygones réguliers de la géométrie en 2 dimensions. Ces polytopes furent décrits la première fois par le mathématicien suisse Ludwig Schläfli au milieu du XIXe siècle. Schläfli découvrit qu'il y avait précisément six figures de ce type. Cinq d'entre elles sont considérées comme les analogues de dimension 4 des solides de Platon. Il y a une figure supplémentaire (l'icositétrachore) qui n'a aucun équivalent tri-dimensionnel. (fr)
rdfs:label Čtyřrozměrná platónská tělesa (cs) Konveksa regula plurĉelo (eo) Politopo regular convexo de 4 dimensiones (es) 4-polytope régulier convexe (fr) 4차원 정다포체 (ko) Regular 4-polytope (en) Правильный четырёхмерный многогранник (ru) 四维凸正多胞体 (zh)
owl:sameAs freebase:Regular 4-polytope wikidata:Regular 4-polytope wikidata:Regular 4-polytope dbpedia-cs:Regular 4-polytope dbpedia-eo:Regular 4-polytope dbpedia-es:Regular 4-polytope dbpedia-fr:Regular 4-polytope dbpedia-ko:Regular 4-polytope dbpedia-ro:Regular 4-polytope dbpedia-ru:Regular 4-polytope dbpedia-simple:Regular 4-polytope dbpedia-zh:Regular 4-polytope https://global.dbpedia.org/id/2G8tp
prov:wasDerivedFrom wikipedia-en:Regular_4-polytope?oldid=1107744391&ns=0
foaf:depiction wiki-commons:Special:FilePath/4-cube_t0.svg wiki-commons:Special:FilePath/Dodecahedron.png wiki-commons:Special:FilePath/Icosahedron.png wiki-commons:Special:FilePath/Hexahedron.png wiki-commons:Special:FilePath/Tetrahedron.png wiki-commons:Special:FilePath/Regular_pentagon.svg wiki-commons:Special:FilePath/120-cell_graph_H4.svg wiki-commons:Special:FilePath/24-cell_t0_F4.svg wiki-commons:Special:FilePath/4-cube_t3.svg wiki-commons:Special:FilePath/4-simplex_t0.svg wiki-commons:Special:FilePath/600-cell_graph_H4.svg wiki-commons:Special:FilePath/Hypercube.svg wiki-commons:Special:FilePath/Ortho_solid_016-uniform_polychoron_p33-t0.png wiki-commons:Special:FilePath/Schlegel_wireframe_24-cell.png wiki-commons:Special:FilePath/Great_dodecahedron.png wiki-commons:Special:FilePath/Great_stellated_dodecahedron.png wiki-commons:Special:FilePath/Small_stellated_dodecahedron.png wiki-commons:Special:FilePath/Schlegel_wireframe_5-cell.png wiki-commons:Special:FilePath/Schlegel_wireframe_16-cell.png wiki-commons:Special:FilePath/16-cell_ortho_cell-centered.png wiki-commons:Special:FilePath/Ortho_solid_007-uniform_polychoron_35p-t0.png wiki-commons:Special:FilePath/Ortho_solid_008-uniform_polychoron_5p5-t0.png wiki-commons:Special:FilePath/Ortho_solid_009-uniform_polychoron_53p-t0.png wiki-commons:Special:FilePath/Ortho_solid_010-uniform_polychoron_p53-t0.png wiki-commons:Special:FilePath/Ortho_solid_011-uniform_polychoron_53p-t0.png wiki-commons:Special:FilePath/Ortho_solid_012-uniform_polychoron_p35-t0.png wiki-commons:Special:FilePath/Ortho_solid_013-uniform_polychoron_p5p-t0.png wiki-commons:Special:FilePath/Ortho_solid_014-uniform_polychoron_3p5-t0.png wiki-commons:Special:FilePath/Ortho_solid_015-uniform_polychoron_33p-t0.png wiki-commons:Special:FilePath/Ortho_solid_120-cell.png wiki-commons:Special:FilePath/Ortho_solid_24-cell.png wiki-commons:Special:FilePath/Ortho_solid_600-cell.png wiki-commons:Special:FilePath/Regular_triangle.svg wiki-commons:Special:FilePath/Schlegel_wireframe_600-cell_vertex-centered.png wiki-commons:Special:FilePath/Star_polygon_5-2.svg wiki-commons:Special:FilePath/Stereographic_polytope_120cell.png wiki-commons:Special:FilePath/Stereographic_polytope_16cell.png wiki-commons:Special:FilePath/Stereographic_polytope_24cell.png wiki-commons:Special:FilePath/Stereographic_polytope_5cell.png wiki-commons:Special:FilePath/Stereographic_polytope_600cell.png wiki-commons:Special:FilePath/Great_icosahedron.png wiki-commons:Special:FilePath/Schlegel_wireframe_8-cell.png wiki-commons:Special:FilePath/Stereographic_polytope_8cell.png wiki-commons:Special:FilePath/Schlegel_wireframe_120-cell.png wiki-commons:Special:FilePath/Relationship_among_regular_star_polychora-8.png wiki-commons:Special:FilePath/Relationship_among_regular_star_polychora.png
foaf:isPrimaryTopicOf wikipedia-en:Regular_4-polytope
is dbo:wikiPageRedirects of dbr:Convex_regular_4-polytopes dbr:Convex_regular_polychora dbr:Convex_regular_polychoron dbr:Nonconvex_regular_polychoron dbr:Regular_4-polytopes dbr:Greatening_(geometry) dbr:Schlafli-Hess_polychoron dbr:Schläfli-Hess_4-polytope dbr:Schläfli-Hess_polytope dbr:Schläfli–Hess_4-polytope dbr:Convex_regular_4-polytope dbr:Schlaefli-Hess_polychoron dbr:Schlafli-Hess_4-polytope dbr:Schlafli-Hess_polytope dbr:Schlafli–Hess_polychoron dbr:Schläfli-Hess_polychoron dbr:Aggrandizement_(geometry) dbr:Schläfli–Hess_polychoron dbr:Regular_convex_4-polytope dbr:Regular_convex_polychora dbr:Regular_convex_polychoron dbr:Regular_polychora dbr:Regular_polychoron dbr:Regular_star-polychoron dbr:Regular_star_4-polytope dbr:Regular_star_polychoron dbr:Star_4-polytope dbr:Star_polychoron
is dbo:wikiPageWikiLink of dbr:Convex_regular_4-polytopes dbr:Convex_regular_polychora dbr:Convex_regular_polychoron dbr:Nonconvex_regular_polychoron dbr:List_of_geometers dbr:List_of_regular_polytopes_and_compounds dbr:Pentagram dbr:Regular_icosahedron dbr:List_of_mathematical_shapes dbr:List_of_polygons,_polyhedra_and_polytopes dbr:10 dbr:120-cell dbr:16-cell dbr:Regular_4-polytopes dbr:Ludwig_Schläfli dbr:Density_(polytope) dbr:6-cube dbr:6-demicube dbr:6-orthoplex dbr:6-polytope dbr:6-simplex dbr:7-cube dbr:7-demicube dbr:7-orthoplex dbr:7-simplex dbr:8-cube dbr:8-orthoplex dbr:8-simplex dbr:Triangular_tiling_honeycomb dbr:24-cell dbr:4 dbr:5 dbr:5-cell dbr:600-cell dbr:9 dbr:4-polytope dbr:5-cube dbr:5-demicube dbr:5-orthoplex dbr:5-simplex dbr:Four-dimensional_space dbr:Regular_polytope dbr:Tesseract dbr:Tetrahedron dbr:Vertex_figure dbr:Binary_icosahedral_group dbr:Rectified_5-simplexes dbr:Greatening_(geometry) dbr:Schlafli-Hess_polychoron dbr:Schläfli-Hess_4-polytope dbr:Schläfli-Hess_polytope dbr:Schläfli–Hess_4-polytope dbr:Skew_polygon dbr:Order-6_hexagonal_tiling_honeycomb dbr:Polytope dbr:Convex_regular_4-polytope dbr:Schlaefli-Hess_polychoron dbr:Schlafli-Hess_4-polytope dbr:Schlafli-Hess_polytope dbr:Schlafli–Hess_polychoron dbr:Schläfli-Hess_polychoron dbr:Stellation dbr:Aggrandizement_(geometry) dbr:Schläfli–Hess_polychoron dbr:Regular_convex_4-polytope dbr:Regular_convex_polychora dbr:Regular_convex_polychoron dbr:Regular_polychora dbr:Regular_polychoron dbr:Regular_star-polychoron dbr:Regular_star_4-polytope dbr:Regular_star_polychoron dbr:Star_4-polytope dbr:Star_polychoron
is foaf:primaryTopic of wikipedia-en:Regular_4-polytope