Module: tf.compat.v1 | TensorFlow v2.16.1 (original) (raw)
Bring in all of the public TensorFlow interface into this module.
Modules
app module: Public API for tf._api.v2.app namespace
audio module: Public API for tf._api.v2.audio namespace
autograph module: Public API for tf._api.v2.autograph namespace
bitwise module: Public API for tf._api.v2.bitwise namespace
compat module: Public API for tf._api.v2.compat namespace
config module: Public API for tf._api.v2.config namespace
data module: Public API for tf._api.v2.data namespace
debugging module: Public API for tf._api.v2.debugging namespace
distribute module: Public API for tf._api.v2.distribute namespace
distributions module: Public API for tf._api.v2.distributions namespace
dtypes module: Public API for tf._api.v2.dtypes namespace
errors module: Public API for tf._api.v2.errors namespace
experimental module: Public API for tf._api.v2.experimental namespace
feature_column module: Public API for tf._api.v2.feature_column namespace
flags module: Import router for absl.flags. See https://github.com/abseil/abseil-py
gfile module: Public API for tf._api.v2.gfile namespace
graph_util module: Public API for tf._api.v2.graph_util namespace
image module: Public API for tf._api.v2.image namespace
initializers module: Public API for tf._api.v2.initializers namespace
io module: Public API for tf._api.v2.io namespace
keras module: DO NOT EDIT.
layers module
linalg module: Public API for tf._api.v2.linalg namespace
lite module: Public API for tf._api.v2.lite namespace
logging module: Public API for tf._api.v2.logging namespace
lookup module: Public API for tf._api.v2.lookup namespace
losses module: Public API for tf._api.v2.losses namespace
manip module: Public API for tf._api.v2.manip namespace
math module: Public API for tf._api.v2.math namespace
metrics module: Public API for tf._api.v2.metrics namespace
mixed_precision module: Public API for tf._api.v2.mixed_precision namespace
mlir module: Public API for tf._api.v2.mlir namespace
nest module: Public API for tf._api.v2.nest namespace
nn module: Public API for tf._api.v2.nn namespace
profiler module: Public API for tf._api.v2.profiler namespace
python_io module: Public API for tf._api.v2.python_io namespace
quantization module: Public API for tf._api.v2.quantization namespace
queue module: Public API for tf._api.v2.queue namespace
ragged module: Public API for tf._api.v2.ragged namespace
random module: Public API for tf._api.v2.random namespace
raw_ops module: Public API for tf._api.v2.raw_ops namespace
resource_loader module: Public API for tf._api.v2.resource_loader namespace
saved_model module: Public API for tf._api.v2.saved_model namespace
sets module: Public API for tf._api.v2.sets namespace
signal module: Public API for tf._api.v2.signal namespace
sparse module: Public API for tf._api.v2.sparse namespace
spectral module: Public API for tf._api.v2.spectral namespace
strings module: Public API for tf._api.v2.strings namespace
summary module: Public API for tf._api.v2.summary namespace
sysconfig module: Public API for tf._api.v2.sysconfig namespace
test module: Public API for tf._api.v2.test namespace
tpu module: Public API for tf._api.v2.tpu namespace
train module: Public API for tf._api.v2.train namespace
types module: Public API for tf._api.v2.types namespace
user_ops module: Public API for tf._api.v2.user_ops namespace
version module: Public API for tf._api.v2.version namespace
xla module: Public API for tf._api.v2.xla namespace
Classes
class AggregationMethod: A class listing aggregation methods used to combine gradients.
class AttrValue: A ProtocolMessage
class ConditionalAccumulator: A conditional accumulator for aggregating gradients.
class ConditionalAccumulatorBase: A conditional accumulator for aggregating gradients.
class ConfigProto: A ProtocolMessage
class CriticalSection: Critical section.
class DType: Represents the type of the elements in a Tensor
.
class DeviceSpec: Represents a (possibly partial) specification for a TensorFlow device.
class Dimension: Represents the value of one dimension in a TensorShape.
class Event: A ProtocolMessage
class FIFOQueue: A queue implementation that dequeues elements in first-in first-out order.
class FixedLenFeature: Configuration for parsing a fixed-length input feature.
class FixedLenSequenceFeature: Configuration for parsing a variable-length input feature into a Tensor
.
class FixedLengthRecordReader: A Reader that outputs fixed-length records from a file.
class GPUOptions: A ProtocolMessage
class GradientTape: Record operations for automatic differentiation.
class Graph: A TensorFlow computation, represented as a dataflow graph.
class GraphDef: A protobuf containing the graph of operations.
class GraphKeys: Standard names to use for graph collections.
class GraphOptions: A ProtocolMessage
class HistogramProto: A ProtocolMessage
class IdentityReader: A Reader that outputs the queued work as both the key and value.
class IndexedSlices: A sparse representation of a set of tensor slices at given indices.
class IndexedSlicesSpec: Type specification for a tf.IndexedSlices.
class InteractiveSession: A TensorFlow Session
for use in interactive contexts, such as a shell.
class LMDBReader: A Reader that outputs the records from a LMDB file.
class LogMessage: A ProtocolMessage
class MetaGraphDef: A ProtocolMessage
class Module: Base neural network module class.
class NameAttrList: A ProtocolMessage
class NodeDef: A ProtocolMessage
class OpError: The base class for TensorFlow exceptions.
class Operation: Represents a graph node that performs computation on tensors.
class OptimizerOptions: A ProtocolMessage
class OptionalSpec: Type specification for tf.experimental.Optional.
class PaddingFIFOQueue: A FIFOQueue that supports batching variable-sized tensors by padding.
class PriorityQueue: A queue implementation that dequeues elements in prioritized order.
class QueueBase: Base class for queue implementations.
class RaggedTensor: Represents a ragged tensor.
class RaggedTensorSpec: Type specification for a tf.RaggedTensor.
class RandomShuffleQueue: A queue implementation that dequeues elements in a random order.
class ReaderBase: Base class for different Reader types, that produce a record every step.
class RegisterGradient: A decorator for registering the gradient function for an op type.
class RunMetadata: A ProtocolMessage
class RunOptions: A ProtocolMessage
class Session: A class for running TensorFlow operations.
class SessionLog: A ProtocolMessage
class SparseConditionalAccumulator: A conditional accumulator for aggregating sparse gradients.
class SparseFeature: Configuration for parsing a sparse input feature from an Example
.
class SparseTensor: Represents a sparse tensor.
class SparseTensorSpec: Type specification for a tf.sparse.SparseTensor.
class SparseTensorValue: SparseTensorValue(indices, values, dense_shape)
class Summary: A ProtocolMessage
class SummaryMetadata: A ProtocolMessage
class TFRecordReader: A Reader that outputs the records from a TFRecords file.
class Tensor: A tf.Tensor represents a multidimensional array of elements.
class TensorArray: Class wrapping dynamic-sized, per-time-step, Tensor arrays.
class TensorArraySpec: Type specification for a tf.TensorArray.
class TensorInfo: A ProtocolMessage
class TensorShape: Represents the shape of a Tensor
.
class TensorSpec: Describes the type of a tf.Tensor.
class TextLineReader: A Reader that outputs the lines of a file delimited by newlines.
class TypeSpec: Specifies a TensorFlow value type.
class UnconnectedGradients: Controls how gradient computation behaves when y does not depend on x.
class VarLenFeature: Configuration for parsing a variable-length input feature.
class Variable: See the Variables Guide.
class VariableAggregation: Indicates how a distributed variable will be aggregated.
class VariableScope: Variable scope object to carry defaults to provide to get_variable
.
class VariableSynchronization: Indicates when a distributed variable will be synced.
class WholeFileReader: A Reader that outputs the entire contents of a file as a value.
class constant_initializer: Initializer that generates tensors with constant values.
class glorot_normal_initializer: The Glorot normal initializer, also called Xavier normal initializer.
class glorot_uniform_initializer: The Glorot uniform initializer, also called Xavier uniform initializer.
class name_scope: A context manager for use when defining a Python op.
class ones_initializer: Initializer that generates tensors initialized to 1.
class orthogonal_initializer: Initializer that generates an orthogonal matrix.
class random_normal_initializer: Initializer that generates tensors with a normal distribution.
class random_uniform_initializer: Initializer that generates tensors with a uniform distribution.
class truncated_normal_initializer: Initializer that generates a truncated normal distribution.
class uniform_unit_scaling_initializer: Initializer that generates tensors without scaling variance.
class variable_scope: A context manager for defining ops that creates variables (layers).
class variance_scaling_initializer: Initializer capable of adapting its scale to the shape of weights tensors.
class zeros_initializer: Initializer that generates tensors initialized to 0.
Functions
Assert(...): Asserts that the given condition is true.
NoGradient(...): Specifies that ops of type op_type
is not differentiable.
NotDifferentiable(...): Specifies that ops of type op_type
is not differentiable.
Print(...): Prints a list of tensors. (deprecated)
abs(...): Computes the absolute value of a tensor.
accumulate_n(...): Returns the element-wise sum of a list of tensors. (deprecated)
acos(...): Computes acos of x element-wise.
acosh(...): Computes inverse hyperbolic cosine of x element-wise.
add(...): Returns x + y element-wise.
add_check_numerics_ops(...): Connect a tf.debugging.check_numerics to every floating point tensor.
add_n(...): Returns the element-wise sum of a list of tensors.
add_to_collection(...): Wrapper for Graph.add_to_collection() using the default graph.
add_to_collections(...): Wrapper for Graph.add_to_collections() using the default graph.
all_variables(...): Use tf.compat.v1.global_variables instead. (deprecated)
angle(...): Returns the element-wise argument of a complex (or real) tensor.
approx_top_k(...): Returns min/max k values and their indices of the input operand in an approximate manner.
arg_max(...): Returns the index with the largest value across dimensions of a tensor. (deprecated)
arg_min(...): Returns the index with the smallest value across dimensions of a tensor. (deprecated)
argmax(...): Returns the index with the largest value across axes of a tensor. (deprecated arguments)
argmin(...): Returns the index with the smallest value across axes of a tensor. (deprecated arguments)
argsort(...): Returns the indices of a tensor that give its sorted order along an axis.
as_dtype(...): Converts the given type_value
to a tf.DType.
as_string(...): Converts each entry in the given tensor to strings.
asin(...): Computes the trignometric inverse sine of x element-wise.
asinh(...): Computes inverse hyperbolic sine of x element-wise.
assert_equal(...): Assert the condition x == y
holds element-wise.
assert_greater(...): Assert the condition x > y
holds element-wise.
assert_greater_equal(...): Assert the condition x >= y
holds element-wise.
assert_integer(...): Assert that x
is of integer dtype.
assert_less(...): Assert the condition x < y
holds element-wise.
assert_less_equal(...): Assert the condition x <= y
holds element-wise.
assert_near(...): Assert the condition x
and y
are close element-wise.
assert_negative(...): Assert the condition x < 0
holds element-wise.
assert_non_negative(...): Assert the condition x >= 0
holds element-wise.
assert_non_positive(...): Assert the condition x <= 0
holds element-wise.
assert_none_equal(...): Assert the condition x != y
holds element-wise.
assert_positive(...): Assert the condition x > 0
holds element-wise.
assert_proper_iterable(...): Static assert that values is a "proper" iterable.
assert_rank(...): Assert x
has rank equal to rank
.
assert_rank_at_least(...): Assert x
has rank equal to rank
or higher.
assert_rank_in(...): Assert x
has rank in ranks
.
assert_same_float_dtype(...): Validate and return float type based on tensors
and dtype
.
assert_scalar(...): Asserts that the given tensor
is a scalar (i.e. zero-dimensional).
assert_type(...): Statically asserts that the given Tensor
is of the specified type.
assert_variables_initialized(...): Returns an Op to check if variables are initialized.
assign(...): Update ref
by assigning value
to it.
assign_add(...): Update ref
by adding value
to it.
assign_sub(...): Update ref
by subtracting value
from it.
atan(...): Computes the trignometric inverse tangent of x element-wise.
atan2(...): Computes arctangent of y/x
element-wise, respecting signs of the arguments.
atanh(...): Computes inverse hyperbolic tangent of x element-wise.
batch_gather(...): Gather slices from params according to indices with leading batch dims. (deprecated)
batch_scatter_update(...): Generalization of tf.compat.v1.scatter_update to axis different than 0. (deprecated)
batch_to_space(...): BatchToSpace for 4-D tensors of type T.
batch_to_space_nd(...): BatchToSpace for N-D tensors of type T.
betainc(...): Compute the regularized incomplete beta integral \(I_x(a, b)\).
bincount(...): Counts the number of occurrences of each value in an integer array.
bitcast(...): Bitcasts a tensor from one type to another without copying data.
boolean_mask(...): Apply boolean mask to tensor.
broadcast_dynamic_shape(...): Computes the shape of a broadcast given symbolic shapes.
broadcast_static_shape(...): Computes the shape of a broadcast given known shapes.
broadcast_to(...): Broadcast an array for a compatible shape.
case(...): Create a case operation.
cast(...): Casts a tensor to a new type.
ceil(...): Return the ceiling of the input, element-wise.
check_numerics(...): Checks a tensor for NaN and Inf values.
cholesky(...): Computes the Cholesky decomposition of one or more square matrices.
cholesky_solve(...): Solves systems of linear eqns A X = RHS
, given Cholesky factorizations.
clip_by_average_norm(...): Clips tensor values to a maximum average L2-norm. (deprecated)
clip_by_global_norm(...): Clips values of multiple tensors by the ratio of the sum of their norms.
clip_by_norm(...): Clips tensor values to a maximum L2-norm.
clip_by_value(...): Clips tensor values to a specified min and max.
colocate_with(...): DEPRECATED FUNCTION
complex(...): Converts two real numbers to a complex number.
concat(...): Concatenates tensors along one dimension.
cond(...): Return true_fn()
if the predicate pred
is true else false_fn()
. (deprecated arguments)
confusion_matrix(...): Computes the confusion matrix from predictions and labels.
conj(...): Returns the complex conjugate of a complex number.
constant(...): Creates a constant tensor.
container(...): Wrapper for Graph.container() using the default graph.
control_dependencies(...): Wrapper for Graph.control_dependencies() using the default graph.
control_flow_v2_enabled(...): Returns True
if v2 control flow is enabled.
conv(...): Computes a N-D convolution given (N+1+batch_dims)-D input
and (N+2)-D filter
tensors.
conv2d_backprop_filter_v2(...): Computes the gradients of convolution with respect to the filter.
conv2d_backprop_input_v2(...): Computes the gradients of convolution with respect to the input.
convert_to_tensor(...): Converts the given value
to a Tensor
.
convert_to_tensor_or_indexed_slices(...): Converts the given object to a Tensor
or an IndexedSlices
.
convert_to_tensor_or_sparse_tensor(...): Converts value to a SparseTensor
or Tensor
.
cos(...): Computes cos of x element-wise.
cosh(...): Computes hyperbolic cosine of x element-wise.
count_nonzero(...): Computes number of nonzero elements across dimensions of a tensor. (deprecated arguments) (deprecated arguments)
count_up_to(...): Increments 'ref' until it reaches 'limit'. (deprecated)
create_partitioned_variables(...): Create a list of partitioned variables according to the given slicing
. (deprecated)
cross(...): Compute the pairwise cross product.
cumprod(...): Compute the cumulative product of the tensor x
along axis
.
cumsum(...): Compute the cumulative sum of the tensor x
along axis
.
custom_gradient(...): Decorator to define a function with a custom gradient.
decode_base64(...): Decode web-safe base64-encoded strings.
decode_compressed(...): Decompress strings.
decode_csv(...): Convert CSV records to tensors. Each column maps to one tensor.
decode_json_example(...): Convert JSON-encoded Example records to binary protocol buffer strings.
decode_raw(...): Convert raw byte strings into tensors. (deprecated arguments)
delete_session_tensor(...): Delete the tensor for the given tensor handle.
depth_to_space(...): DepthToSpace for tensors of type T.
dequantize(...): Dequantize the 'input' tensor into a float or bfloat16 Tensor.
deserialize_many_sparse(...): Deserialize and concatenate SparseTensors
from a serialized minibatch.
device(...): Wrapper for Graph.device() using the default graph.
diag(...): Returns a diagonal tensor with a given diagonal values.
diag_part(...): Returns the diagonal part of the tensor.
digamma(...): Computes Psi, the derivative of Lgamma (the log of the absolute value of
dimension_at_index(...): Compatibility utility required to allow for both V1 and V2 behavior in TF.
dimension_value(...): Compatibility utility required to allow for both V1 and V2 behavior in TF.
disable_control_flow_v2(...): Opts out of control flow v2.
disable_eager_execution(...): Disables eager execution.
disable_resource_variables(...): Opts out of resource variables. (deprecated)
disable_tensor_equality(...): Compare Tensors by their id and be hashable.
disable_v2_behavior(...): Disables TensorFlow 2.x behaviors.
disable_v2_tensorshape(...): Disables the V2 TensorShape behavior and reverts to V1 behavior.
div(...): Divides x / y elementwise (using Python 2 division operator semantics). (deprecated)
div_no_nan(...): Computes a safe divide which returns 0 if y
(denominator) is zero.
divide(...): Computes Python style division of x
by y
.
dynamic_partition(...): Partitions data
into num_partitions
tensors using indices from partitions
.
dynamic_stitch(...): Interleave the values from the data
tensors into a single tensor.
edit_distance(...): Computes the Levenshtein distance between sequences.
einsum(...): Tensor contraction over specified indices and outer product.
enable_control_flow_v2(...): Use control flow v2.
enable_eager_execution(...): Enables eager execution for the lifetime of this program.
enable_resource_variables(...): Creates resource variables by default.
enable_tensor_equality(...): Compare Tensors with element-wise comparison and thus be unhashable.
enable_v2_behavior(...): Enables TensorFlow 2.x behaviors.
enable_v2_tensorshape(...): In TensorFlow 2.0, iterating over a TensorShape instance returns values.
encode_base64(...): Encode strings into web-safe base64 format.
ensure_shape(...): Updates the shape of a tensor and checks at runtime that the shape holds.
equal(...): Returns the truth value of (x == y) element-wise.
erf(...): Computes the Gauss error function of x
element-wise. In statistics, for non-negative values of \(x\), the error function has the following interpretation: for a random variable \(Y\) that is normally distributed with mean 0 and variance \(1/\sqrt{2}\), \(erf(x)\) is the probability that \(Y\) falls in the range \([−x, x]\).
erfc(...): Computes the complementary error function of x
element-wise.
executing_eagerly(...): Checks whether the current thread has eager execution enabled.
executing_eagerly_outside_functions(...): Returns True if executing eagerly, even if inside a graph function.
exp(...): Computes exponential of x element-wise. \(y = e^x\).
expand_dims(...): Returns a tensor with a length 1 axis inserted at index axis
. (deprecated arguments)
expm1(...): Computes exp(x) - 1
element-wise.
extract_image_patches(...): Extract patches
from images
and put them in the "depth" output dimension.
extract_volume_patches(...): Extract patches
from input
and put them in the "depth"
output dimension. 3D extension of extract_image_patches
.
eye(...): Construct an identity matrix, or a batch of matrices.
fake_quant_with_min_max_args(...): Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same shape and type.
fake_quant_with_min_max_args_gradient(...): Compute gradients for a FakeQuantWithMinMaxArgs operation.
fake_quant_with_min_max_vars(...): Fake-quantize the 'inputs' tensor of type float via global float scalars
fake_quant_with_min_max_vars_gradient(...): Compute gradients for a FakeQuantWithMinMaxVars operation.
fake_quant_with_min_max_vars_per_channel(...): Fake-quantize the 'inputs' tensor of type float via per-channel floats
fake_quant_with_min_max_vars_per_channel_gradient(...): Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
fft(...): Fast Fourier transform.
fft2d(...): 2D fast Fourier transform.
fft3d(...): 3D fast Fourier transform.
fftnd(...): ND fast Fourier transform.
fill(...): Creates a tensor filled with a scalar value.
fingerprint(...): Generates fingerprint values.
fixed_size_partitioner(...): Partitioner to specify a fixed number of shards along given axis.
floor(...): Returns element-wise largest integer not greater than x.
floor_div(...): Returns x // y element-wise.
floordiv(...): Divides x / y
elementwise, rounding toward the most negative integer.
floormod(...): Returns element-wise remainder of division.
foldl(...): foldl on the list of tensors unpacked from elems
on dimension 0.
foldr(...): foldr on the list of tensors unpacked from elems
on dimension 0.
function(...): Compiles a function into a callable TensorFlow graph. (deprecated arguments) (deprecated arguments) (deprecated arguments)
gather(...): Gather slices from params axis axis
according to indices. (deprecated arguments)
gather_nd(...): Gather slices from params
into a Tensor with shape specified by indices
.
get_collection(...): Wrapper for Graph.get_collection() using the default graph.
get_collection_ref(...): Wrapper for Graph.get_collection_ref() using the default graph.
get_default_graph(...): Returns the default graph for the current thread.
get_default_session(...): Returns the default session for the current thread.
get_local_variable(...): Gets an existing local variable or creates a new one.
get_logger(...): Return TF logger instance.
get_seed(...): Returns the local seeds an operation should use given an op-specific seed.
get_session_handle(...): Return the handle of data
.
get_session_tensor(...): Get the tensor of type dtype
by feeding a tensor handle.
get_static_value(...): Returns the constant value of the given tensor, if efficiently calculable.
get_variable(...): Gets an existing variable with these parameters or create a new one.
get_variable_scope(...): Returns the current variable scope.
global_norm(...): Computes the global norm of multiple tensors.
global_variables(...): Returns global variables.
global_variables_initializer(...): Returns an Op that initializes global variables.
grad_pass_through(...): Creates a grad-pass-through op with the forward behavior provided in f.
gradients(...): Constructs symbolic derivatives of sum of ys
w.r.t. x in xs
.
greater(...): Returns the truth value of (x > y) element-wise.
greater_equal(...): Returns the truth value of (x >= y) element-wise.
group(...): Create an op that groups multiple operations.
guarantee_const(...): Promise to the TF runtime that the input tensor is a constant. (deprecated)
hessians(...): Constructs the Hessian of sum of ys
with respect to x
in xs
.
histogram_fixed_width(...): Return histogram of values.
histogram_fixed_width_bins(...): Bins the given values for use in a histogram.
identity(...): Return a Tensor with the same shape and contents as input.
identity_n(...): Returns a list of tensors with the same shapes and contents as the input
ifft(...): Inverse fast Fourier transform.
ifft2d(...): Inverse 2D fast Fourier transform.
ifft3d(...): Inverse 3D fast Fourier transform.
ifftnd(...): ND inverse fast Fourier transform.
igamma(...): Compute the lower regularized incomplete Gamma function P(a, x)
.
igammac(...): Compute the upper regularized incomplete Gamma function Q(a, x)
.
imag(...): Returns the imaginary part of a complex (or real) tensor.
import_graph_def(...): Imports the graph from graph_def
into the current default Graph
. (deprecated arguments)
init_scope(...): A context manager that lifts ops out of control-flow scopes and function-building graphs.
initialize_all_tables(...): Returns an Op that initializes all tables of the default graph. (deprecated)
initialize_all_variables(...): See tf.compat.v1.global_variables_initializer. (deprecated)
initialize_local_variables(...): See tf.compat.v1.local_variables_initializer. (deprecated)
initialize_variables(...): See tf.compat.v1.variables_initializer. (deprecated)
invert_permutation(...): Computes the inverse permutation of a tensor.
irfftnd(...): ND inverse real fast Fourier transform.
is_finite(...): Returns which elements of x are finite.
is_inf(...): Returns which elements of x are Inf.
is_nan(...): Returns which elements of x are NaN.
is_non_decreasing(...): Returns True
if x
is non-decreasing.
is_numeric_tensor(...): Returns True
if the elements of tensor
are numbers.
is_strictly_increasing(...): Returns True
if x
is strictly increasing.
is_symbolic_tensor(...): Test if tensor
is a symbolic Tensor.
is_tensor(...): Checks whether x
is a TF-native type that can be passed to many TF ops.
is_variable_initialized(...): Tests if a variable has been initialized.
lbeta(...): Computes \(ln(|Beta(x)|)\), reducing along the last dimension.
less(...): Returns the truth value of (x < y) element-wise.
less_equal(...): Returns the truth value of (x <= y) element-wise.
lgamma(...): Computes the log of the absolute value of Gamma(x)
element-wise.
lin_space(...): Generates evenly-spaced values in an interval along a given axis.
linspace(...): Generates evenly-spaced values in an interval along a given axis.
load_file_system_library(...): Loads a TensorFlow plugin, containing file system implementation. (deprecated)
load_library(...): Loads a TensorFlow plugin.
load_op_library(...): Loads a TensorFlow plugin, containing custom ops and kernels.
local_variables(...): Returns local variables.
local_variables_initializer(...): Returns an Op that initializes all local variables.
log(...): Computes natural logarithm of x element-wise.
log1p(...): Computes natural logarithm of (1 + x) element-wise.
log_sigmoid(...): Computes log sigmoid of x
element-wise.
logical_and(...): Returns the truth value of x AND y element-wise.
logical_not(...): Returns the truth value of NOT x
element-wise.
logical_or(...): Returns the truth value of x OR y element-wise.
logical_xor(...): Logical XOR function.
make_ndarray(...): Create a numpy ndarray from a tensor.
make_template(...): Given an arbitrary function, wrap it so that it does variable sharing.
make_tensor_proto(...): Create a TensorProto.
map_fn(...): Transforms elems
by applying fn
to each element unstacked on axis 0. (deprecated arguments)
matching_files(...): Returns the set of files matching one or more glob patterns.
matmul(...): Multiplies matrix a
by matrix b
, producing a
* b
.
matrix_band_part(...): Copy a tensor setting everything outside a central band in each innermost matrix to zero.
matrix_determinant(...): Computes the determinant of one or more square matrices.
matrix_diag(...): Returns a batched diagonal tensor with given batched diagonal values.
matrix_diag_part(...): Returns the batched diagonal part of a batched tensor.
matrix_inverse(...): Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes).
matrix_set_diag(...): Returns a batched matrix tensor with new batched diagonal values.
matrix_solve(...): Solves systems of linear equations.
matrix_solve_ls(...): Solves one or more linear least-squares problems.
matrix_square_root(...): Computes the matrix square root of one or more square matrices:
matrix_transpose(...): Transposes last two dimensions of tensor a
.
matrix_triangular_solve(...): Solve systems of linear equations with upper or lower triangular matrices.
maximum(...): Returns the max of x and y (i.e. x > y ? x : y) element-wise.
meshgrid(...): Broadcasts parameters for evaluation on an N-D grid.
min_max_variable_partitioner(...): Partitioner to allocate minimum size per slice.
minimum(...): Returns the min of x and y (i.e. x < y ? x : y) element-wise.
mod(...): Returns element-wise remainder of division.
model_variables(...): Returns all variables in the MODEL_VARIABLES collection.
moving_average_variables(...): Returns all variables that maintain their moving averages.
multinomial(...): Draws samples from a multinomial distribution. (deprecated)
multiply(...): Returns an element-wise x * y.
negative(...): Computes numerical negative value element-wise.
no_gradient(...): Specifies that ops of type op_type
is not differentiable.
no_op(...): Does nothing. Only useful as a placeholder for control edges.
no_regularizer(...): Use this function to prevent regularization of variables.
nondifferentiable_batch_function(...): Batches the computation done by the decorated function.
norm(...): Computes the norm of vectors, matrices, and tensors. (deprecated arguments)
not_equal(...): Returns the truth value of (x != y) element-wise.
numpy_function(...): Wraps a python function and uses it as a TensorFlow op.
one_hot(...): Returns a one-hot tensor.
ones(...): Creates a tensor with all elements set to one (1).
ones_like(...): Creates a tensor with all elements set to 1.
op_scope(...): DEPRECATED. Same as name_scope above, just different argument order.
pad(...): Pads a tensor.
parallel_stack(...): Stacks a list of rank-R
tensors into one rank-(R+1)
tensor in parallel.
parse_example(...): Parses Example
protos into a dict
of tensors.
parse_single_example(...): Parses a single Example
proto.
parse_single_sequence_example(...): Parses a single SequenceExample
proto.
parse_tensor(...): Transforms a serialized tensorflow.TensorProto proto into a Tensor.
placeholder(...): Inserts a placeholder for a tensor that will be always fed.
placeholder_with_default(...): A placeholder op that passes through input
when its output is not fed.
polygamma(...): Compute the polygamma function \(\psi^{(n)}(x)\).
pow(...): Computes the power of one value to another.
print(...): Print the specified inputs.
py_func(...): Wraps a python function and uses it as a TensorFlow op.
py_function(...): Wraps a python function into a TensorFlow op that executes it eagerly.
qr(...): Computes the QR decompositions of one or more matrices.
quantize(...): Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
quantize_v2(...): Please use tf.quantization.quantize instead.
quantized_concat(...): Concatenates quantized tensors along one dimension.
ragged_fill_empty_rows_grad(...)
random_crop(...): Randomly crops a tensor to a given size.
random_gamma(...): Draws shape
samples from each of the given Gamma distribution(s).
random_index_shuffle(...): Outputs the position of value
in a permutation of [0, ..., max_index].
random_normal(...): Outputs random values from a normal distribution.
random_poisson(...): Draws shape
samples from each of the given Poisson distribution(s).
random_shuffle(...): Randomly shuffles a tensor along its first dimension.
random_uniform(...): Outputs random values from a uniform distribution.
range(...): Creates a sequence of numbers.
rank(...): Returns the rank of a tensor.
read_file(...): Reads the contents of file.
real(...): Returns the real part of a complex (or real) tensor.
realdiv(...): Returns x / y element-wise for real types.
reciprocal(...): Computes the reciprocal of x element-wise.
recompute_grad(...): Defines a function as a recompute-checkpoint for the tape auto-diff.
reduce_all(...): Computes tf.math.logical_and of elements across dimensions of a tensor. (deprecated arguments)
reduce_any(...): Computes tf.math.logical_or of elements across dimensions of a tensor. (deprecated arguments)
reduce_join(...): Joins all strings into a single string, or joins along an axis.
reduce_logsumexp(...): Computes log(sum(exp(elements across dimensions of a tensor))). (deprecated arguments)
reduce_max(...): Computes tf.math.maximum of elements across dimensions of a tensor. (deprecated arguments)
reduce_mean(...): Computes the mean of elements across dimensions of a tensor.
reduce_min(...): Computes the tf.math.minimum of elements across dimensions of a tensor. (deprecated arguments)
reduce_prod(...): Computes tf.math.multiply of elements across dimensions of a tensor. (deprecated arguments)
reduce_sum(...): Computes the sum of elements across dimensions of a tensor. (deprecated arguments)
regex_replace(...): Replace elements of input
matching regex pattern
with rewrite
.
register_tensor_conversion_function(...): Registers a function for converting objects of base_type
to Tensor
.
repeat(...): Repeat elements of input
.
report_uninitialized_variables(...): Adds ops to list the names of uninitialized variables.
required_space_to_batch_paddings(...): Calculate padding required to make block_shape divide input_shape.
reset_default_graph(...): Clears the default graph stack and resets the global default graph.
reshape(...): Reshapes a tensor.
resource_variables_enabled(...): Returns True
if resource variables are enabled.
reverse(...): Reverses specific dimensions of a tensor.
reverse_sequence(...): Reverses variable length slices. (deprecated arguments) (deprecated arguments)
reverse_v2(...): Reverses specific dimensions of a tensor.
rfftnd(...): ND fast real Fourier transform.
rint(...): Returns element-wise integer closest to x.
roll(...): Rolls the elements of a tensor along an axis.
round(...): Rounds the values of a tensor to the nearest integer, element-wise.
rsqrt(...): Computes reciprocal of square root of x element-wise.
saturate_cast(...): Performs a safe saturating cast of value
to dtype
.
scalar_mul(...): Multiplies a scalar times a Tensor
or IndexedSlices
object.
scan(...): scan on the list of tensors unpacked from elems
on dimension 0.
scatter_add(...): Adds sparse updates to the variable referenced by resource
.
scatter_div(...): Divides a variable reference by sparse updates.
scatter_max(...): Reduces sparse updates into a variable reference using the max
operation.
scatter_min(...): Reduces sparse updates into a variable reference using the min
operation.
scatter_mul(...): Multiplies sparse updates into a variable reference.
scatter_nd(...): Scatters updates
into a tensor of shape shape
according to indices
.
scatter_nd_add(...): Applies sparse addition to individual values or slices in a Variable.
scatter_nd_sub(...): Applies sparse subtraction to individual values or slices in a Variable.
scatter_nd_update(...): Applies sparse updates
to individual values or slices in a Variable.
scatter_sub(...): Subtracts sparse updates to a variable reference.
scatter_update(...): Applies sparse updates to a variable reference.
searchsorted(...): Searches for where a value would go in a sorted sequence.
segment_max(...): Computes the maximum along segments of a tensor.
segment_mean(...): Computes the mean along segments of a tensor.
segment_min(...): Computes the minimum along segments of a tensor.
segment_prod(...): Computes the product along segments of a tensor.
segment_sum(...): Computes the sum along segments of a tensor.
self_adjoint_eig(...): Computes the eigen decomposition of a batch of self-adjoint matrices.
self_adjoint_eigvals(...): Computes the eigenvalues of one or more self-adjoint matrices.
sequence_mask(...): Returns a mask tensor representing the first N positions of each cell.
serialize_many_sparse(...): Serialize N
-minibatch SparseTensor
into an [N, 3]
Tensor
.
serialize_sparse(...): Serialize a SparseTensor
into a 3-vector (1-D Tensor
) object.
serialize_tensor(...): Transforms a Tensor into a serialized TensorProto proto.
set_random_seed(...): Sets the graph-level random seed for the default graph.
setdiff1d(...): Computes the difference between two lists of numbers or strings.
shape(...): Returns the shape of a tensor.
shape_n(...): Returns shape of a list of tensors.
sigmoid(...): Computes sigmoid of x
element-wise.
sign(...): Returns an element-wise indication of the sign of a number.
sin(...): Computes sine of x element-wise.
sinh(...): Computes hyperbolic sine of x element-wise.
size(...): Returns the size of a tensor.
slice(...): Extracts a slice from a tensor.
sort(...): Sorts a tensor.
space_to_batch(...): SpaceToBatch for 4-D tensors of type T.
space_to_batch_nd(...): SpaceToBatch for N-D tensors of type T.
space_to_depth(...): SpaceToDepth for tensors of type T.
sparse_add(...): Adds two tensors, at least one of each is a SparseTensor
. (deprecated arguments)
sparse_concat(...): Concatenates a list of SparseTensor
along the specified dimension. (deprecated arguments)
sparse_fill_empty_rows(...): Fills empty rows in the input 2-D SparseTensor
with a default value.
sparse_mask(...): Masks elements of IndexedSlices
.
sparse_matmul(...): Multiply matrix "a" by matrix "b". (deprecated)
sparse_maximum(...): Returns the element-wise max of two SparseTensors.
sparse_merge(...): Combines a batch of feature ids and values into a single SparseTensor
. (deprecated)
sparse_minimum(...): Returns the element-wise min of two SparseTensors.
sparse_placeholder(...): Inserts a placeholder for a sparse tensor that will be always fed.
sparse_reduce_max(...): Computes tf.sparse.maximum of elements across dimensions of a SparseTensor. (deprecated arguments) (deprecated arguments)
sparse_reduce_max_sparse(...): Computes the max of elements across dimensions of a SparseTensor. (deprecated arguments)
sparse_reduce_sum(...): Computes tf.sparse.add of elements across dimensions of a SparseTensor. (deprecated arguments) (deprecated arguments)
sparse_reduce_sum_sparse(...): Computes the sum of elements across dimensions of a SparseTensor. (deprecated arguments)
sparse_reorder(...): Reorders a SparseTensor
into the canonical, row-major ordering.
sparse_reset_shape(...): Resets the shape of a SparseTensor
with indices and values unchanged.
sparse_reshape(...): Reshapes a SparseTensor
to represent values in a new dense shape.
sparse_retain(...): Retains specified non-empty values within a SparseTensor
.
sparse_segment_mean(...): Computes the mean along sparse segments of a tensor.
sparse_segment_sqrt_n(...): Computes the sum along sparse segments of a tensor divided by the sqrt(N).
sparse_segment_sum(...): Computes the sum along sparse segments of a tensor.
sparse_slice(...): Slice a SparseTensor
based on the start
and size
.
sparse_softmax(...): Applies softmax to a batched N-D SparseTensor
.
sparse_split(...): Split a SparseTensor
into num_split
tensors along axis
. (deprecated arguments)
sparse_tensor_dense_matmul(...): Multiply SparseTensor (or dense Matrix) (of rank 2) "A" by dense matrix
sparse_tensor_to_dense(...): Converts a SparseTensor
into a dense tensor.
sparse_to_dense(...): Converts a sparse representation into a dense tensor. (deprecated)
sparse_to_indicator(...): Converts a SparseTensor
of ids into a dense bool indicator tensor.
sparse_transpose(...): Transposes a SparseTensor
.
split(...): Splits a tensor value
into a list of sub tensors.
sqrt(...): Computes element-wise square root of the input tensor.
square(...): Computes square of x element-wise.
squared_difference(...): Returns conj(x - y)(x - y) element-wise.
squeeze(...): Removes dimensions of size 1 from the shape of a tensor. (deprecated arguments)
stack(...): Stacks a list of rank-R
tensors into one rank-(R+1)
tensor.
stop_gradient(...): Stops gradient computation.
strided_slice(...): Extracts a strided slice of a tensor (generalized Python array indexing).
string_join(...): Perform element-wise concatenation of a list of string tensors.
string_split(...): Split elements of source
based on delimiter
. (deprecated arguments)
string_strip(...): Strip leading and trailing whitespaces from the Tensor.
string_to_hash_bucket(...): Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_hash_bucket_fast(...): Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_hash_bucket_strong(...): Converts each string in the input Tensor to its hash mod by a number of buckets.
string_to_number(...): Converts each string in the input Tensor to the specified numeric type.
substr(...): Return substrings from Tensor
of strings.
subtract(...): Returns x - y element-wise.
svd(...): Computes the singular value decompositions of one or more matrices.
switch_case(...): Create a switch/case operation, i.e.
tables_initializer(...): Returns an Op that initializes all tables of the default graph.
tan(...): Computes tan of x element-wise.
tanh(...): Computes hyperbolic tangent of x
element-wise.
tensor_scatter_add(...): Adds sparse updates
to an existing tensor according to indices
.
tensor_scatter_nd_add(...): Adds sparse updates
to an existing tensor according to indices
.
tensor_scatter_nd_max(...): Apply a sparse update to a tensor taking the element-wise maximum.
tensor_scatter_nd_sub(...): Subtracts sparse updates
from an existing tensor according to indices
.
tensor_scatter_nd_update(...): Scatter updates
into an existing tensor according to indices
.
tensor_scatter_sub(...): Subtracts sparse updates
from an existing tensor according to indices
.
tensor_scatter_update(...): Scatter updates
into an existing tensor according to indices
.
tensordot(...): Tensor contraction of a and b along specified axes and outer product.
tile(...): Constructs a tensor by tiling a given tensor.
timestamp(...): Provides the time since epoch in seconds.
to_bfloat16(...): Casts a tensor to type bfloat16
. (deprecated)
to_complex128(...): Casts a tensor to type complex128
. (deprecated)
to_complex64(...): Casts a tensor to type complex64
. (deprecated)
to_double(...): Casts a tensor to type float64
. (deprecated)
to_float(...): Casts a tensor to type float32
. (deprecated)
to_int32(...): Casts a tensor to type int32
. (deprecated)
to_int64(...): Casts a tensor to type int64
. (deprecated)
trace(...): Compute the trace of a tensor x
.
trainable_variables(...): Returns all variables created with trainable=True
.
transpose(...): Transposes a
.
truediv(...): Divides x / y elementwise (using Python 3 division operator semantics).
truncated_normal(...): Outputs random values from a truncated normal distribution.
truncatediv(...): Returns x / y element-wise, rounded towards zero.
truncatemod(...): Returns element-wise remainder of division.
tuple(...): Group tensors together.
type_spec_from_value(...): Returns a tf.TypeSpec that represents the given value
.
unique(...): Finds unique elements in a 1-D tensor.
unique_with_counts(...): Finds unique elements in a 1-D tensor.
unravel_index(...): Converts an array of flat indices into a tuple of coordinate arrays.
unsorted_segment_max(...): Computes the maximum along segments of a tensor.
unsorted_segment_mean(...): Computes the mean along segments of a tensor.
unsorted_segment_min(...): Computes the minimum along segments of a tensor.
unsorted_segment_prod(...): Computes the product along segments of a tensor.
unsorted_segment_sqrt_n(...): Computes the sum along segments of a tensor divided by the sqrt(N).
unsorted_segment_sum(...): Computes the sum along segments of a tensor.
unstack(...): Unpacks the given dimension of a rank-R
tensor into rank-(R-1)
tensors.
variable_axis_size_partitioner(...): Get a partitioner for VariableScope to keep shards below max_shard_bytes
.
variable_creator_scope(...): Scope which defines a variable creation function to be used by variable().
variable_op_scope(...): Deprecated: context manager for defining an op that creates variables.
variables_initializer(...): Returns an Op that initializes a list of variables.
vectorized_map(...): Parallel map on the list of tensors unpacked from elems
on dimension 0.
verify_tensor_all_finite(...): Assert that the tensor does not contain any NaN's or Inf's.
where(...): Return the elements, either from x
or y
, depending on the condition
.
where_v2(...): Returns the indices of non-zero elements, or multiplexes x
and y
.
while_loop(...): Repeat body
while the condition cond
is true.
wrap_function(...): Wraps the TF 1.x function fn into a graph function.
write_file(...): Writes contents
to the file at input filename
.
zeros(...): Creates a tensor with all elements set to zero.
zeros_like(...): Creates a tensor with all elements set to zero.
zeta(...): Compute the Hurwitz zeta function \(\zeta(x, q)\).
Other Members | |
---|---|
AUTO_REUSE | <_ReuseMode.AUTO_REUSE: 1> When passed in as the value for the reuse flag, AUTO_REUSE indicates that get_variable() should create the requested variable if it doesn't exist or, if it does exist, simply return it. |
COMPILER_VERSION | 'Ubuntu Clang 17.0.6 (++20231208085846+6009708b4367-1~exp1~20231208085949.74)' |
CXX11_ABI_FLAG | 1 |
CXX_VERSION | 201703 |
GIT_VERSION | 'v2.16.1-0-g5bc9d26649c' |
GRAPH_DEF_VERSION | 1766 |
GRAPH_DEF_VERSION_MIN_CONSUMER | 0 |
GRAPH_DEF_VERSION_MIN_PRODUCER | 0 |
MONOLITHIC_BUILD | 0 |
QUANTIZED_DTYPES | { tf.qint16, tf.qint16_ref, tf.qint32, tf.qint32_ref, tf.qint8, tf.qint8_ref, tf.quint16, tf.quint16_ref, tf.quint8, tf.quint8_ref } |
VERSION | '2.16.1' |
bfloat16 | Instance of tf.dtypes.DType 16-bit bfloat (brain floating point). |
bool | Instance of tf.dtypes.DType Boolean. |
complex128 | Instance of tf.dtypes.DType 128-bit complex. |
complex64 | Instance of tf.dtypes.DType 64-bit complex. |
double | Instance of tf.dtypes.DType 64-bit (double precision) floating-point. |
float16 | Instance of tf.dtypes.DType 16-bit (half precision) floating-point. |
float32 | Instance of tf.dtypes.DType 32-bit (single precision) floating-point. |
float64 | Instance of tf.dtypes.DType 64-bit (double precision) floating-point. |
half | Instance of tf.dtypes.DType 16-bit (half precision) floating-point. |
int16 | Instance of tf.dtypes.DType Signed 16-bit integer. |
int32 | Instance of tf.dtypes.DType Signed 32-bit integer. |
int64 | Instance of tf.dtypes.DType Signed 64-bit integer. |
int8 | Instance of tf.dtypes.DType Signed 8-bit integer. |
newaxis | None |
qint16 | Instance of tf.dtypes.DType Signed quantized 16-bit integer. |
qint32 | Instance of tf.dtypes.DType signed quantized 32-bit integer. |
qint8 | Instance of tf.dtypes.DType Signed quantized 8-bit integer. |
quint16 | Instance of tf.dtypes.DType Unsigned quantized 16-bit integer. |
quint8 | Instance of tf.dtypes.DType Unsigned quantized 8-bit integer. |
resource | Instance of tf.dtypes.DType Handle to a mutable, dynamically allocated resource. |
string | Instance of tf.dtypes.DType Variable-length string, represented as byte array. |
uint16 | Instance of tf.dtypes.DType Unsigned 16-bit (word) integer. |
uint32 | Instance of tf.dtypes.DType Unsigned 32-bit (dword) integer. |
uint64 | Instance of tf.dtypes.DType Unsigned 64-bit (qword) integer. |
uint8 | Instance of tf.dtypes.DType Unsigned 8-bit (byte) integer. |
variant | Instance of tf.dtypes.DType Data of arbitrary type (known at runtime). |