Ricci calculus (original) (raw)
في الرياضيات، يشكل حساب ريتشي قواعد تدوين الفهرس والتلاعب في مجالات الموتر والموتر. وهو أيضًا الاسم الحديث لما كان يُطلق عليه حساب التفاضل والتكامل المطلق (أساس حساب الموتر)، الذي طوره غريغوريو ريتشي في 1887-1896، وتم تعميمه لاحقًا في ورقة مكتوبة مع تلميذه توليو ليفي تشيفيتا في 1900. طور جان أرنولدوس شوتن الرموز الحديثة والشكلية لهذا الإطار الرياضي، وقدم مساهمات في النظرية، خلال تطبيقاته للنسبية العامة والهندسة التفاضلية في أوائل القرن العشرين.
Property | Value |
---|---|
dbo:abstract | في الرياضيات، يشكل حساب ريتشي قواعد تدوين الفهرس والتلاعب في مجالات الموتر والموتر. وهو أيضًا الاسم الحديث لما كان يُطلق عليه حساب التفاضل والتكامل المطلق (أساس حساب الموتر)، الذي طوره غريغوريو ريتشي في 1887-1896، وتم تعميمه لاحقًا في ورقة مكتوبة مع تلميذه توليو ليفي تشيفيتا في 1900. طور جان أرنولدوس شوتن الرموز الحديثة والشكلية لهذا الإطار الرياضي، وقدم مساهمات في النظرية، خلال تطبيقاته للنسبية العامة والهندسة التفاضلية في أوائل القرن العشرين. (ar) In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century. A component of a tensor is a real number that is used as a coefficient of a basis element for the tensor space. The tensor is the sum of its components multiplied by their corresponding basis elements. Tensors and tensor fields can be expressed in terms of their components, and operations on tensors and tensor fields can be expressed in terms of operations on their components. The description of tensor fields and operations on them in terms of their components is the focus of the Ricci calculus. This notation allows an efficient expression of such tensor fields and operations. While much of the notation may be applied with any tensors, operations relating to a differential structure are only applicable to tensor fields. Where needed, the notation extends to components of non-tensors, particularly multidimensional arrays. A tensor may be expressed as a linear sum of the tensor product of vector and covector basis elements. The resulting tensor components are labelled by indices of the basis. Each index has one possible value per dimension of the underlying vector space. The number of indices equals the degree (or order) of the tensor. For compactness and convenience, the Ricci calculus incorporates Einstein notation, which implies summation over indices repeated within a term and universal quantification over free indices. Expressions in the notation of the Ricci calculus may generally be interpreted as a set of simultaneous equations relating the components as functions over a manifold, usually more specifically as functions of the coordinates on the manifold. This allows intuitive manipulation of expressions with familiarity of only a limited set of rules. (en) Em matemática, o cálculo de Ricci constitui as regras da notação de índice e manipulação de tensores e campos tensoriais. Também é o nome moderno para o que costumava ser chamado de cálculo diferencial absoluto (a base do cálculo tensorial), desenvolvido por Gregorio Ricci-Curbastro em 1887-1896, e posteriormente popularizado em um artigo escrito com seu pupilo Tullio Levi-Civita em 1900. Jan Arnoldus Schouten desenvolveu a notação moderna e o formalismo para esta estrutura matemática, e fez contribuições com a teoria, durante suas aplicações à relatividade geral e geometria diferencial no início do século XX. (pt) |
dbo:wikiPageExternalLink | https://archive.org/details/tensoranalysison00bish https://archive.org/details/theoryofrelativi029229mbp https://archive.org/details/tensorcalculus00syng https://books.google.com/books%3Fas_isbn=140201015X |
dbo:wikiPageID | 35456546 (xsd:integer) |
dbo:wikiPageLength | 43217 (xsd:nonNegativeInteger) |
dbo:wikiPageRevisionID | 1124931328 (xsd:integer) |
dbo:wikiPageWikiLink | dbr:Cartesian_coordinates dbr:Product_rule dbr:Metric_connection dbr:Monotonic_function dbr:Universal_quantification dbr:Coordinate_basis dbr:Basis_(linear_algebra) dbr:Bracket dbr:Antisymmetric_tensor dbr:Hodge_star_operator dbr:Holonomic_basis dbr:Permutation dbr:Vector_(mathematics_and_physics) dbr:Vector_calculus_identities dbr:Vector_space dbr:Lie_derivative dbr:Van_der_Waerden_notation dbc:Differential_geometry dbr:Comma dbr:Commutator dbr:Connection_(mathematics) dbr:Covariance_and_contravariance_of_vectors dbr:Mathematics dbr:Tangent_bundle dbr:Penrose_graphical_notation dbr:Christoffel_symbols dbr:Circumflex dbr:Einstein_notation dbr:Electromagnetic_tensor dbr:Gauss's_law_for_magnetism dbr:General_relativity dbr:Greek_alphabet dbr:Multi-index_notation dbr:Coordinate_vector dbr:Levi-Civita_connection dbr:Levi-Civita_symbol dbr:Lorentz_transformation dbr:Slash_(punctuation) dbr:Smooth_function dbr:Identity_matrix dbr:Partial_derivative dbr:Tilde dbr:Trace_(linear_algebra) dbr:Tullio_Levi-Civita dbr:Distributive_property dbr:Line_element dbr:Affine_connection dbr:Euclidean_space dbr:Exterior_algebra dbr:Exterior_derivative dbr:Faraday's_law_of_induction dbr:Four-dimensional_space dbr:Frame_of_reference dbr:Differential_structure dbr:Directional_derivative dbr:Riemann_curvature_tensor dbr:Tensor_contraction dbr:Tensor_field dbr:Regge_calculus dbr:Riemannian_connection dbr:Gregorio_Ricci-Curbastro dbr:Jan_Arnoldus_Schouten dbr:Covariant_derivative dbr:Tensor_fields dbr:Tensor_product dbr:Tensors dbc:Calculus dbr:Abstract_index_notation dbc:Tensors dbr:Latin_alphabet dbr:Symmetric_tensor dbr:Tensor_(intrinsic_definition) dbr:Torsion_tensor dbr:Mixed_tensor dbr:Diacritic dbr:Differentiable_manifold dbr:Differential_form dbr:Differential_geometry dbr:Dimension dbr:Dimensional_analysis dbr:Spacetime dbr:Spinor dbr:If_and_only_if dbr:Kronecker_delta dbr:Metric_tensor dbr:Raising_and_lowering_indices dbr:Real_number dbr:Semicolon dbr:Tensor_calculus dbr:Generalized_Kronecker_delta dbr:Macron_(diacritic) dbr:Signature_(permutation) dbr:Inverse_matrix dbr:Ricci_decomposition dbr:Base_manifold dbr:Parameterization dbr:Covector dbr:Summation_convention dbr:Passive_transformation dbr:Identity_mapping dbr:Space-like dbr:Koszul_connection dbr:Multidimensional_array dbr:Time-like |
dbp:wikiPageUsesTemplate | dbt:! dbt:Citation dbt:Cite_book dbt:Div_col dbt:Div_col_end dbt:Efn dbt:Math dbt:Notelist dbt:Redirect dbt:Reflist dbt:Rp dbt:See_also dbt:Short_description dbt:Sub dbt:Sup dbt:Su dbt:Isup dbt:Tensors |
dcterms:subject | dbc:Differential_geometry dbc:Calculus dbc:Tensors |
rdf:type | owl:Thing yago:WikicatTensors yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Idea105833840 yago:PsychologicalFeature100023100 yago:Quantity105855125 yago:Tensor105864481 yago:Variable105857459 |
rdfs:comment | في الرياضيات، يشكل حساب ريتشي قواعد تدوين الفهرس والتلاعب في مجالات الموتر والموتر. وهو أيضًا الاسم الحديث لما كان يُطلق عليه حساب التفاضل والتكامل المطلق (أساس حساب الموتر)، الذي طوره غريغوريو ريتشي في 1887-1896، وتم تعميمه لاحقًا في ورقة مكتوبة مع تلميذه توليو ليفي تشيفيتا في 1900. طور جان أرنولدوس شوتن الرموز الحديثة والشكلية لهذا الإطار الرياضي، وقدم مساهمات في النظرية، خلال تطبيقاته للنسبية العامة والهندسة التفاضلية في أوائل القرن العشرين. (ar) Em matemática, o cálculo de Ricci constitui as regras da notação de índice e manipulação de tensores e campos tensoriais. Também é o nome moderno para o que costumava ser chamado de cálculo diferencial absoluto (a base do cálculo tensorial), desenvolvido por Gregorio Ricci-Curbastro em 1887-1896, e posteriormente popularizado em um artigo escrito com seu pupilo Tullio Levi-Civita em 1900. Jan Arnoldus Schouten desenvolveu a notação moderna e o formalismo para esta estrutura matemática, e fez contribuições com a teoria, durante suas aplicações à relatividade geral e geometria diferencial no início do século XX. (pt) In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900. Jan Arnoldus Schouten developed the modern notation and formalism for this mathematical framework, and made contributions to the theory, during its applications to general relativity and differential geometry in the early twentieth century. (en) |
rdfs:label | حساب ريتشي (ar) Ricci calculus (en) Cálculo de Ricci (pt) |
rdfs:seeAlso | dbr:Index_notation dbr:Four-gradient |
owl:sameAs | freebase:Ricci calculus yago-res:Ricci calculus wikidata:Ricci calculus dbpedia-ar:Ricci calculus dbpedia-pt:Ricci calculus https://global.dbpedia.org/id/4tfXo |
prov:wasDerivedFrom | wikipedia-en:Ricci_calculus?oldid=1124931328&ns=0 |
foaf:isPrimaryTopicOf | wikipedia-en:Ricci_calculus |
is dbo:knownFor of | dbr:Gregorio_Ricci-Curbastro |
is dbo:wikiPageRedirects of | dbr:Tensor_index_notation dbr:Absolute_differential_calculus |
is dbo:wikiPageWikiLink of | dbr:Calculus dbr:Metric_tensor_(general_relativity) dbr:Holonomic_basis dbr:Hooke's_law dbr:Ricci_curvature dbr:D'Alembert_operator dbr:Vector_(mathematics_and_physics) dbr:Index_of_physics_articles_(R) dbr:Van_der_Waerden_notation dbr:Cramer's_rule dbr:Maxwell's_equations dbr:Gauge_covariant_derivative dbr:Penrose_graphical_notation dbr:Solutions_of_the_Einstein_field_equations dbr:Christoffel_symbols dbr:Einstein_field_equations dbr:Einstein_notation dbr:Einstein–Hilbert_action dbr:Electromagnetic_stress–energy_tensor dbr:Electromagnetic_tensor dbr:General_relativity dbr:Glossary_of_areas_of_mathematics dbr:Gluon_field_strength_tensor dbr:Multi-index_notation dbr:Contracted_Bianchi_identities dbr:Levi-Civita_symbol dbr:Lorentz_transformation dbr:Stress–energy_tensor dbr:Subscript_and_superscript dbr:Harmonic_coordinate_condition dbr:Palatini_identity dbr:Maxwell_stress_tensor dbr:Mathematical_descriptions_of_the_electromagnetic_field dbr:Maxwell's_equations_in_curved_spacetime dbr:Spin_connection dbr:Two-body_Dirac_equations dbr:Lanczos_tensor dbr:Line_element dbr:Curvilinear_coordinates dbr:Four-gradient dbr:Nonlinear_Dirac_equation dbr:Four-current dbr:Glossary_of_tensor_theory dbr:History_of_mathematical_notation dbr:Tensor_contraction dbr:Regge_calculus dbr:Gregorio_Ricci-Curbastro dbr:Introduction_to_the_mathematics_of_general_relativity dbr:Jan_Arnoldus_Schouten dbr:Covariant_derivative dbr:Covariant_formulation_of_classical_electromagnetism dbr:Tensor dbr:Abstract_index_notation dbr:Symmetric_tensor dbr:Mixed_tensor dbr:Divergence dbr:Classical_electromagnetism_and_special_relativity dbr:Tensor_index_notation dbr:Metric_tensor dbr:Cartesian_tensor dbr:Raising_and_lowering_indices dbr:Matrix_calculus dbr:Tensor_calculus dbr:Outer_product dbr:Tensor_derivative_(continuum_mechanics) dbr:Ricci_decomposition dbr:Absolute_differential_calculus |
is dbp:knownFor of | dbr:Gregorio_Ricci-Curbastro |
is foaf:primaryTopic of | wikipedia-en:Ricci_calculus |