Equivariant map (original) (raw)

Property Value
dbo:abstract Unter einer äquivarianten Abbildung versteht man in der Mathematik eine Abbildung, die mit der Wirkung einer Gruppe kommutiert. (de) In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group. That is, applying a symmetry transformation and then computing the function produces the same result as computing the function and then applying the transformation. Equivariant maps generalize the concept of invariants, functions whose value is unchanged by a symmetry transformation of their argument. The value of an equivariant map is often (imprecisely) called an invariant. In statistical inference, equivariance under statistical transformations of data is an important property of various estimation methods; see invariant estimator for details. In pure mathematics, equivariance is a central object of study in equivariant topology and its subtopics equivariant cohomology and equivariant stable homotopy theory. (en) En mathématiques, l'équivariance est une forme de symétrie de fonctions d'un espace par symétrie avec un autre (tels que les espaces symétriques). Une fonction est appelée application équivariante quand son domaine et son codomaine agissent sur le même groupe de symétrie, et quand la fonction commute avec l'action de groupe. Ainsi, appliquer une transformation de symétrie puis calculer la fonction produit le même résultat que le calcul de la fonction suivi de la transformation. Les applications équivariantes généralisent le concept d'invariants, des fonctions dont la valeur est inchangée par une transformation symétrique de son argument. La valeur d'une application équivariante est souvent (par abus) appelé un invariant. En inférence statistique, l'équivariance sous transformation statistique de données est une propriété importante de plusieurs méthodes d'estimation ; voir pour plus de détails. En mathématiques pures, l'équivariance est un objet central d'étude en et ses sous-sujets ( et ). (fr) Em matemática, uma aplicação invariante é uma função entre dois conjuntos que comuta com a ação de um grupo. Especificamente, seja G um grupo e sejam X e Y os G-conjuntos associados. Uma função f : X → Y é dita equivariante se f(g·x) = g·f(x) para todo g ∈ G e todo x em X. Note que se uma ou ambas as ações forem ações à direita a condição que define a equivariância deve ser modificada adequadamente: f(x·g) = f(x)·g ; (direita-direita)f(x·g) = g−1·f(x) ; (direita-esquerda)f(g·x) = f(x)·g−1 ; (esquerda-esquerda) Aplicações equivariantes são homomorfismos na categoria dos G-conjuntos (para um G fixado). Assim, elas também são conhecidas como G-aplicações ou G-homomorphismos. Os isomorfismos de G-conjuntos são simplesmente as aplicações equivariantes bijetoras. A condição de equivariância também pode ser entendida como por meio do seguinte diagrama comutativo. Observe que denota a aplicação que recebe um elemento e retorna . (pt) 在数学中,一个等变映射(equivariant map)是两个集合之间与群作用交换的一个函数。具体地,设 G 是一个群,X 与 Y 是两个关联的 G-集合。一个函数 f : X → Y 称为等变,如果 f(g·x) = g·f(x) 对所有 g ∈ G 与 x ∈ X 成立。注意如果其中一个或两个作用是右作用,则等变条件必须适当地修改: f(x·g) = f(x)·g ; (右-右)f(x·g) = g−1·f(x) ; (右-左)f(g·x) = f(x)·g−1 ; (左-右) 等变映射是 G-集合范畴(对一个取定的 G)中的同态。从而它们也称为 G-映射或 G-同态。G-集合的同构就是等变双射。 等变条件也能理解为下面的交换图表。注意 表示映射取元素 得到 。 (zh)
dbo:thumbnail wiki-commons:Special:FilePath/Triangle.Centroid.svg?width=300
dbo:wikiPageID 422711 (xsd:integer)
dbo:wikiPageLength 12496 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1041208705 (xsd:integer)
dbo:wikiPageWikiLink dbr:Scalar_(mathematics) dbr:Schur's_Lemma dbr:Module_(mathematics) dbr:Monotonic_function dbr:Homomorphism dbr:Curtis–Hedlund–Lyndon_theorem dbr:Incenter dbr:Invariant_(mathematics) dbr:Commutative_property dbr:Continuous_function dbr:Mathematics dbr:Mean dbr:Median dbr:Natural_transformation dbr:Circumcenter dbr:Function_(mathematics) dbr:Morphism dbr:Congruence_(geometry) dbr:Equivariant_cohomology dbr:Equivariant_stable_homotopy_theory dbr:Equivariant_topology dbr:Statistical_inference dbr:Orthocenter dbr:Similarity_(geometry) dbr:Bijective dbr:Commutative_diagram dbr:Functor dbr:Functor_category dbr:Perimeter dbr:Subgroup dbr:Symmetric_space dbr:Symmetry dbr:Symmetry_group dbr:Automorphism dbr:Category_of_sets dbr:Central_tendency dbr:Centroid dbr:Irreducible_representation dbr:Linear_function_(calculus) dbr:Linear_map dbr:Representation_theory_of_finite_groups dbr:Affine_transformation dbc:Symmetry dbr:Field_(mathematics) dbr:Isomorphism dbr:Group_(mathematics) dbr:Group_action_(mathematics) dbr:Invariant_estimator dbr:Isomorphic dbr:Triangle_center dbr:Area dbc:Representation_theory dbr:Triangle dbr:Zero_map dbc:Group_actions_(mathematics) dbr:Group_ring dbr:Ordinal_data dbr:Category_(mathematics) dbr:Category_of_topological_spaces dbr:Set_(mathematics) dbr:Cellular_automata dbr:Category_of_vector_spaces dbr:Up_to dbr:Robust_statistics dbr:Topological_space dbr:Simple_module dbr:Linear_representation dbr:Statistical_estimation dbr:File:Triangle.Centroid.svg dbr:File:Equivariant_commutative_diagram.png
dbp:wikiPageUsesTemplate dbt:Math dbt:Mvar dbt:Reflist dbt:See_also dbt:Short_description dbt:Unreferenced_section
dct:subject dbc:Symmetry dbc:Representation_theory dbc:Group_actions_(mathematics)
rdf:type owl:Thing yago:Abstraction100002137 yago:Act100030358 yago:Event100029378 yago:GroupAction101080366 yago:PsychologicalFeature100023100 yago:WikicatGroupActions yago:YagoPermanentlyLocatedEntity
rdfs:comment Unter einer äquivarianten Abbildung versteht man in der Mathematik eine Abbildung, die mit der Wirkung einer Gruppe kommutiert. (de) 在数学中,一个等变映射(equivariant map)是两个集合之间与群作用交换的一个函数。具体地,设 G 是一个群,X 与 Y 是两个关联的 G-集合。一个函数 f : X → Y 称为等变,如果 f(g·x) = g·f(x) 对所有 g ∈ G 与 x ∈ X 成立。注意如果其中一个或两个作用是右作用,则等变条件必须适当地修改: f(x·g) = f(x)·g ; (右-右)f(x·g) = g−1·f(x) ; (右-左)f(g·x) = f(x)·g−1 ; (左-右) 等变映射是 G-集合范畴(对一个取定的 G)中的同态。从而它们也称为 G-映射或 G-同态。G-集合的同构就是等变双射。 等变条件也能理解为下面的交换图表。注意 表示映射取元素 得到 。 (zh) In mathematics, equivariance is a form of symmetry for functions from one space with symmetry to another (such as symmetric spaces). A function is said to be an equivariant map when its domain and codomain are acted on by the same symmetry group, and when the function commutes with the action of the group. That is, applying a symmetry transformation and then computing the function produces the same result as computing the function and then applying the transformation. (en) En mathématiques, l'équivariance est une forme de symétrie de fonctions d'un espace par symétrie avec un autre (tels que les espaces symétriques). Une fonction est appelée application équivariante quand son domaine et son codomaine agissent sur le même groupe de symétrie, et quand la fonction commute avec l'action de groupe. Ainsi, appliquer une transformation de symétrie puis calculer la fonction produit le même résultat que le calcul de la fonction suivi de la transformation. (fr) Em matemática, uma aplicação invariante é uma função entre dois conjuntos que comuta com a ação de um grupo. Especificamente, seja G um grupo e sejam X e Y os G-conjuntos associados. Uma função f : X → Y é dita equivariante se f(g·x) = g·f(x) para todo g ∈ G e todo x em X. Note que se uma ou ambas as ações forem ações à direita a condição que define a equivariância deve ser modificada adequadamente: f(x·g) = f(x)·g ; (direita-direita)f(x·g) = g−1·f(x) ; (direita-esquerda)f(g·x) = f(x)·g−1 ; (esquerda-esquerda) (pt)
rdfs:label Äquivariante Abbildung (de) Equivariant map (en) Équivariance (fr) Aplicação equivariante (pt) 等变映射 (zh)
rdfs:seeAlso dbr:Representation_theory dbr:Isomorphisms
owl:sameAs freebase:Equivariant map yago-res:Equivariant map wikidata:Equivariant map dbpedia-de:Equivariant map dbpedia-fr:Equivariant map dbpedia-pt:Equivariant map dbpedia-zh:Equivariant map https://global.dbpedia.org/id/2Qk9K
prov:wasDerivedFrom wikipedia-en:Equivariant_map?oldid=1041208705&ns=0
foaf:depiction wiki-commons:Special:FilePath/Equivariant_commutative_diagram.png wiki-commons:Special:FilePath/Triangle.Centroid.svg
foaf:isPrimaryTopicOf wikipedia-en:Equivariant_map
is dbo:wikiPageRedirects of dbr:Equivariant dbr:Intertwiner dbr:Intertwining_map dbr:Intertwining_operator dbr:Equivariance dbr:Equivariant_morphism
is dbo:wikiPageWikiLink of dbr:List_of_abstract_algebra_topics dbr:Algebraic_signal_processing dbr:Curtis–Hedlund–Lyndon_theorem dbr:Robust_Regression_and_Outlier_Detection dbr:Connection_(fibred_manifold) dbr:Norm_(mathematics) dbr:Real_representation dbr:Schur–Weyl_duality dbr:Quasitoric_manifold dbr:Quaternionic_representation dbr:Glossary_of_representation_theory dbr:Continuous_group_action dbr:Convex_cap dbr:Convolutional_neural_network dbr:Equivariant_topology dbr:Data_reduction dbr:Representation_theory_of_finite_groups dbr:Affine_symmetric_group dbr:Curve-shortening_flow dbr:Capsule_neural_network dbr:Equivariant dbr:Group_action dbr:Invariant_estimator dbr:Italo_Jose_Dejter dbr:Covariant_(invariant_theory) dbr:Tensor dbr:Triangle_center dbr:Tensor_product_of_representations dbr:Principalization_(algebra) dbr:Representation_theory_of_the_Poincaré_group dbr:Commute dbr:Roger_Lyndon dbr:Yoneda_lemma dbr:Semisimple_representation dbr:Intertwiner dbr:Intertwining_map dbr:Intertwining_operator dbr:Equivariance dbr:Equivariant_morphism
is rdfs:seeAlso of dbr:Representation_theory dbr:Representation_theory_of_finite_groups dbr:Category_of_representations
is foaf:primaryTopic of wikipedia-en:Equivariant_map