Bijection (original) (raw)

About DBpedia

في الرياضيات، الدالة التقابلية (بالإنجليزية: Bijective Function)‏ أو ببساطة، التقابل، هي دالة رياضية من مجموعة X إلى مجموعة Y حيث كل عنصر y من المجموعة المستقر Y ،هناك سابق واحد فقط x من المجموعة المنطلق X حيث يكون : f(x) = y أي أن y هي صورة x بالدالة f.

thumbnail

Property Value
dbo:abstract En matemàtiques, una funció o aplicació bijectiva també anomenada simplement una bijecció és una funció f d'un conjunt X a un conjunt Y (f:X → Y) amb la propietat que per a cada y de Y hi ha exactament un x de X tal que . Desglossant aquesta propietat en d'altres importants podem dir que f és bijectiva si és una correspondència tal que tots els elements del domini tenen imatge (és a dir, és una funció), tots els elements del recorregut tenen una única antiimatge, (és a dir, és una funció injectiva) i al mateix temps tots els elements del codomini són al recorregut perquè són imatge d'algun element del domini (és a dir, és una funció suprajectiva). En definitiva, una funció injectiva i exhaustiva. D'una bijecció també se'n diu una permutació. Tot i que això es fa servir més habitualment quan . El conjunt de totes les bijeccions de X en Y es denota com a . De fet, quan existeix alguna bijecció entre dos conjunts X i Y es diu que aquests són equipotents i es nota . La relació d'equipotència és d'equivalència i conserva moltes propietats, com el cardinal. Les funcions bijectives juguen un paper fonamental en moltes àrees de les matemàtiques, per exemple en la definició d'isomorfismes (i conceptes relacionats com els homeomorfismes i els difeomorfismes), grup de permutacions, , i molts altres. (ca) في الرياضيات، الدالة التقابلية (بالإنجليزية: Bijective Function)‏ أو ببساطة، التقابل، هي دالة رياضية من مجموعة X إلى مجموعة Y حيث كل عنصر y من المجموعة المستقر Y ،هناك سابق واحد فقط x من المجموعة المنطلق X حيث يكون : f(x) = y أي أن y هي صورة x بالدالة f. (ar) Matematika funkcio nomiĝas dissurĵeto (aŭ bijekcio, aŭ inversigebla funkcio), se ĝi estas disĵeto kaj surĵeto. (eo) In mathematics, a bijection, also known as a bijective function, one-to-one correspondence, or invertible function, is a function between the elements of two sets, where each element of one set is paired with exactly one element of the other set, and each element of the other set is paired with exactly one element of the first set. There are no unpaired elements. In mathematical terms, a bijective function f: X → Y is a one-to-one (injective) and onto (surjective) mapping of a set X to a set Y. The term one-to-one correspondence must not be confused with one-to-one function (an injective function; see figures). A bijection from the set X to the set Y has an inverse function from Y to X. If X and Y are finite sets, then the existence of a bijection means they have the same number of elements. For infinite sets, the picture is more complicated, leading to the concept of cardinal number—a way to distinguish the various sizes of infinite sets. A bijective function from a set to itself is also called a permutation, and the set of all permutations of a set forms the symmetric group. Bijective functions are essential to many areas of mathematics including the definitions of isomorphism, homeomorphism, diffeomorphism, permutation group, and projective map. (en) Bijektivität (zum Adjektiv bijektiv, welches etwa ‚umkehrbar eindeutig auf‘ bedeutet – daher auch der Begriff eineindeutig bzw. substantivisch entsprechend Eineindeutigkeit) ist ein mathematischer Begriff aus dem Bereich der Mengenlehre. Er bezeichnet eine spezielle Eigenschaft von Abbildungen und Funktionen. Bijektive Abbildungen und Funktionen nennt man auch Bijektionen. Zu einer mathematischen Struktur auftretende Bijektionen haben oft eigene Namen wie Isomorphismus, Diffeomorphismus, Homöomorphismus, Spiegelung oder Ähnliches. Hier sind dann in der Regel noch zusätzliche Forderungen in Hinblick auf die Erhaltung der jeweils betrachteten Struktur zu erfüllen. Zur Veranschaulichung kann man sagen, dass bei einer Bijektion eine vollständige Paarbildung zwischen den Elementen von Definitionsmenge und Zielmenge stattfindet. Bijektionen behandeln ihren Definitionsbereich und ihren Wertebereich also symmetrisch; deshalb hat eine bijektive Funktion immer eine Umkehrfunktion. Bei einer Bijektion haben die Definitionsmenge und die Zielmenge dieselbe Mächtigkeit, im Falle endlicher Mengen also gleich viele Elemente. Die Bijektion einer Menge auf sich selbst heißt auch Permutation. Auch hier gibt es in mathematischen Strukturen vielfach eigene Namen. Hat die Bijektion darüber hinausgehend strukturerhaltende Eigenschaften, spricht man von einem Automorphismus. Eine Bijektion zwischen zwei Mengen wird manchmal auch eine bijektive Korrespondenz genannt. (de) Matematikan, bijekzioa edo funtzio bijektiboa funtzio bat da, aldi berean injektiboa eta supraiektiboa dena; hau da, X multzoko elementu bakoitzari Y multzoko elementu bat dagokio, eta Y multzoko edozein y elementuri y = f(x) funtzioa beteko duen X multzoko x elementu bakarra dagokio. Formalki, Aurrekoaren ondorio zuzena hau da: funtzio bijektibo batean abiaburu-multzoko edo Definizio-eremuaren kardinalitatea, eta helburu-multzoarena edo irudi-multzoarena, berbera da. Hori adibidean ikus daiteke, non |X
dbo:thumbnail wiki-commons:Special:FilePath/Bijection.svg?width=300
dbo:wikiPageExternalLink https://archive.org/details/nutsboltsofproof00anto%7Curl-access=registration%7Cpublisher=Wadsworth%7Cisbn= http://jeff560.tripod.com/i.html
dbo:wikiPageID 3942 (xsd:integer)
dbo:wikiPageLength 18388 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1121358460 (xsd:integer)
dbo:wikiPageWikiLink dbr:Total_ordering dbr:Bijection,_injection_and_surjection dbc:Basic_concepts_in_set_theory dbc:Types_of_functions dbc:Mathematical_relations dbr:Homomorphism dbr:Permutation dbr:Cardinalities dbr:Infinite_set dbr:Cricket dbr:One-to-one_function dbr:Function_(mathematics) dbr:Function_composition dbr:Möbius_transformation dbr:Converse_relation dbr:Equinumerosity dbr:Symmetric_inverse_semigroup dbr:Batting_order_(baseball) dbr:Axiomatic_set_theory dbr:Category_of_sets dbr:Total_function dbr:Domain_of_a_function dbr:Linear_function dbc:Functions_and_mappings dbr:Exponential_function dbr:Finite_set dbr:Partial_functions dbr:Cardinal_number dbr:Diffeomorphism dbr:Graph_of_a_function dbr:Isomorphism dbr:Group_(mathematics) dbr:Inverse_function dbr:Invertible_function dbr:Bijective_numeration dbr:Bijective_proof dbr:Surjective_function dbr:Codomain dbr:Homeomorphism dbr:Transformation_(function) dbr:Ax–Grothendieck_theorem dbr:Identity_function dbr:If_and_only_if dbr:Injection_(mathematics) dbr:Injective_function dbr:Natural_logarithm dbr:Onto dbr:Category_of_groups dbr:Category_theory dbr:Set_(mathematics) dbr:Factorial dbr:Symmetric_group dbr:Multivalued_function dbr:Permutation_group dbr:Subset dbr:Cantor-Bernstein-Schröder_theorem dbr:Group_(algebra) dbr:Projective_map dbr:Surjection dbr:File:Bijection.svg dbr:File:Bijective_composition.svg
dbp:id p/b016230 (en)
dbp:title Bijection (en)
dbp:urlname Bijection (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:Set_theory dbt:Cite_book dbt:Commons_category dbt:Details dbt:Gallery dbt:MathWorld dbt:Portal dbt:Reflist dbt:Short_description dbt:Unichar dbt:Use_dmy_dates dbt:Functions dbt:Mathematical_logic
dct:subject dbc:Basic_concepts_in_set_theory dbc:Types_of_functions dbc:Mathematical_relations dbc:Functions_and_mappings
gold:hypernym dbr:Function
rdf:type yago:WikicatBasicConceptsInSetTheory yago:WikicatSpecialFunctions yago:Abstraction100002137 yago:Cognition100023271 yago:Concept105835747 yago:Content105809192 yago:Function113783816 yago:Idea105833840 yago:MathematicalRelation113783581 yago:PsychologicalFeature100023100 yago:Relation100031921 yago:WikicatFunctionsAndMappings dbo:Disease
rdfs:comment في الرياضيات، الدالة التقابلية (بالإنجليزية: Bijective Function)‏ أو ببساطة، التقابل، هي دالة رياضية من مجموعة X إلى مجموعة Y حيث كل عنصر y من المجموعة المستقر Y ،هناك سابق واحد فقط x من المجموعة المنطلق X حيث يكون : f(x) = y أي أن y هي صورة x بالدالة f. (ar) Matematika funkcio nomiĝas dissurĵeto (aŭ bijekcio, aŭ inversigebla funkcio), se ĝi estas disĵeto kaj surĵeto. (eo) Matematikan, bijekzioa edo funtzio bijektiboa funtzio bat da, aldi berean injektiboa eta supraiektiboa dena; hau da, X multzoko elementu bakoitzari Y multzoko elementu bat dagokio, eta Y multzoko edozein y elementuri y = f(x) funtzioa beteko duen X multzoko x elementu bakarra dagokio. Formalki, Aurrekoaren ondorio zuzena hau da: funtzio bijektibo batean abiaburu-multzoko edo Definizio-eremuaren kardinalitatea, eta helburu-multzoarena edo irudi-multzoarena, berbera da. Hori adibidean ikus daiteke, non |X
rdfs:label Bijection (en) تقابل (دالة) (ar) Funció bijectiva (ca) Bijekce (cs) Bijektive Funktion (de) Dissurĵeto (eo) Función biyectiva (es) Bijekzio (eu) Bijeksi (in) Bijection (fr) Corrispondenza biunivoca (it) 全単射 (ja) 전단사 함수 (ko) Bijectie (nl) Funkcja wzajemnie jednoznaczna (pl) Função bijectiva (pt) Биекция (ru) Bijektiv funktion (sv) Бієкція (uk) 双射 (zh)
owl:sameAs freebase:Bijection yago-res:Bijection wikidata:Bijection dbpedia-ar:Bijection dbpedia-be:Bijection dbpedia-bg:Bijection http://bs.dbpedia.org/resource/Bijekcija dbpedia-ca:Bijection dbpedia-cs:Bijection dbpedia-da:Bijection dbpedia-de:Bijection dbpedia-eo:Bijection dbpedia-es:Bijection dbpedia-eu:Bijection dbpedia-fa:Bijection dbpedia-fi:Bijection dbpedia-fr:Bijection dbpedia-he:Bijection http://hi.dbpedia.org/resource/द्विअंतथक्षेपण dbpedia-hr:Bijection dbpedia-hu:Bijection http://hy.dbpedia.org/resource/Փոխմիարժեք_համապատասխանություն http://ia.dbpedia.org/resource/Bijection dbpedia-id:Bijection dbpedia-io:Bijection dbpedia-is:Bijection dbpedia-it:Bijection dbpedia-ja:Bijection dbpedia-kk:Bijection dbpedia-ko:Bijection dbpedia-la:Bijection dbpedia-lmo:Bijection http://lt.dbpedia.org/resource/Bijekcija dbpedia-mk:Bijection dbpedia-nl:Bijection dbpedia-nn:Bijection dbpedia-no:Bijection dbpedia-oc:Bijection dbpedia-pl:Bijection dbpedia-pt:Bijection dbpedia-ro:Bijection dbpedia-ru:Bijection http://sco.dbpedia.org/resource/Bijection dbpedia-simple:Bijection dbpedia-sk:Bijection dbpedia-sl:Bijection dbpedia-sr:Bijection dbpedia-sv:Bijection http://ta.dbpedia.org/resource/இருவழிக்கோப்பு dbpedia-th:Bijection dbpedia-tr:Bijection dbpedia-uk:Bijection dbpedia-vi:Bijection dbpedia-zh:Bijection https://global.dbpedia.org/id/jjM3
prov:wasDerivedFrom wikipedia-en:Bijection?oldid=1121358460&ns=0
foaf:depiction wiki-commons:Special:FilePath/Bijection.svg wiki-commons:Special:FilePath/Bijective_composition.svg wiki-commons:Special:FilePath/Injection.svg wiki-commons:Special:FilePath/Not-Injection-Surjection.svg wiki-commons:Special:FilePath/Surjection.svg
foaf:isPrimaryTopicOf wikipedia-en:Bijection
is dbo:wikiPageRedirects of dbr:Bijectiob dbr:One-to-one_correspondence dbr:Bijections dbr:Bijective dbr:Bijective_relation dbr:Bijectio dbr:Bijection_(mathematics) dbr:Bijectional dbr:Bijective_Function dbr:Bijective_function dbr:Bijective_map dbr:Bijective_mapping dbr:Bijectivity dbr:1:1_correspondence dbr:One-one_correspondence dbr:One-to-one_and_onto dbr:One_to_One_Correspondence dbr:One_to_one_and_onto dbr:One_to_one_correspondence dbr:Partial_bijection dbr:Partial_one-one_transformation dbr:1-1_Correspondence dbr:1-to-1_correspondence dbr:1-to-1_map dbr:1-to-1_mapping
is dbo:wikiPageWikiLink of dbr:Calkin–Wilf_tree dbr:Cantor's_theorem dbr:Cardinality_of_the_continuum dbr:Cartesian_product dbr:Amorphous_set dbr:Bell_number dbr:Power_set dbr:Quadratic_irrational_number dbr:Quadric dbr:Robinson–Schensted_correspondence dbr:Schröder–Bernstein_theorem dbr:Element_(category_theory) dbr:Elias_delta_coding dbr:Elias_gamma_coding dbr:Elias_omega_coding dbr:End_(topology) dbr:Entity–relationship_model dbr:Myhill_isomorphism_theorem dbr:New_Foundations dbr:Scott's_trick dbr:One-dimensional_symmetry_group dbr:Parsimonious_reduction dbr:Representation_theory dbr:Prime_geodesic dbr:Subcategory dbr:Bencode dbr:Bijectiob dbr:Binary_relation dbr:Binary_tree dbr:Bipartite_double_cover dbr:Bounded_inverse_theorem dbr:Antiisomorphism dbr:Arc_length dbr:Argumentation_framework dbr:Homogeneous_relation dbr:Homography dbr:Homotopy_groups_of_spheres dbr:Hypercube_graph dbr:Bertrand's_ballot_theorem dbr:List_of_mathematical_symbols_by_subject dbr:List_of_set_identities_and_relations dbr:Permutation dbr:Permutohedron dbr:Relation_(mathematics) dbr:Reversible_cellular_automaton dbr:CubeHash dbr:Cubic_form dbr:Currying dbr:Curve dbr:Cycle_index dbr:Càdlàg dbr:Ultrafilter_(set_theory) dbr:Uniform_isomorphism dbr:Uniform_space dbr:Unital_(geometry) dbr:Valuation_ring dbr:Vector_space dbr:Vincent's_theorem dbr:Volume_of_an_n-ball dbr:Von_Staudt_conic dbr:Decomposition_of_a_module dbr:Derived_set_(mathematics) dbr:Development_(differential_geometry) dbr:Deviation_risk_measure dbr:Double_coset dbr:Dyadic_rational dbr:Earth_mover's_distance dbr:Incidence_geometry dbr:Interval_exchange_transformation dbr:Interval_order dbr:Inverse_semigroup dbr:Inversion_transformation dbr:Inversive_distance dbr:Involutory_matrix dbr:Jacquet–Langlands_correspondence dbr:LB-space dbr:Number dbr:Lifting_scheme dbr:List_of_group_theory_topics dbr:List_of_permutation_topics dbr:Order_isomorphism dbr:Robinson–Schensted–Knuth_correspondence dbr:Z_curve dbr:Nowhere_commutative_semigroup dbr:Nowhere_dense_set dbr:Quotient_ring dbr:PSPACE-complete dbr:Prüfer_sequence dbr:Quasi-Hopf_algebra dbr:Stiefel–Whitney_class dbr:Perspectivity dbr:Witt_group dbr:'t_Hooft_loop dbr:0.999... dbr:100_prisoners_problem dbr:Complex_logarithm dbr:Complex_plane dbr:Computability_theory dbr:Conic_section dbr:Constructible_universe dbr:Construction_of_the_real_numbers dbr:Constructivism_(philosophy_of_mathematics) dbr:Countable_set dbr:Analogy dbr:Matrix_(mathematics) dbr:Matrix_representation_of_conic_sections dbr:General_topology dbr:Geometric_transformation dbr:Nominal_number dbr:One-time_pad dbr:One-to-one_correspondence dbr:One-way_function dbr:Open_book_decomposition dbr:Order_(mathematics) dbr:Order_type dbr:Orientation_(graph_theory) dbr:Quasigroup dbr:Transport_of_structure dbr:Class_(set_theory) dbr:Code_page_37 dbr:Alexander's_theorem dbr:Ellipse dbr:Endomorphism dbr:Equality_(mathematics) dbr:Function_(mathematics) dbr:Function_composition dbr:Generalized_continued_fraction dbr:Georg_Cantor dbr:Glossary_of_group_theory dbr:Graph_homomorphism dbr:Graph_labeling dbr:Boundary_parallel dbr:Morphism dbr:Multiplication_(music) dbr:Conductor_(ring_theory) dbr:Conformal_map dbr:Continuum_hypothesis dbr:Controlled_vocabulary dbr:Convex_body dbr:Coordinate_system dbr:Coproduct dbr:Correspondence_theorem dbr:Cryptomorphism dbr:Equinumerosity dbr:Equivalent_definitions_of_mathematical_structures dbr:Aristotle's_wheel_paradox dbr:Bent_function dbr:Berman–Hartmanis_conjecture dbr:Legendre_polynomials dbr:Linear_algebra dbr:Linear_form dbr:Localization_(commutative_algebra) dbr:Similarity_(geometry) dbr:Bijections dbr:Bijective dbr:Bijective_relation dbr:Steiner_system dbr:Stereographic_projection dbr:Straightedge_and_compass_construction dbr:Suffix_automaton dbr:Collineation dbr:Combination dbr:Combinatorial_proof dbr:Combinatorial_species dbr:Comma_category dbr:Commutative_diagram dbr:Complex_coordinate_space dbr:Complex_measure dbr:Computable_number dbr:Computable_set dbr:Federer–Morse_theorem dbr:Function_space dbr:Fundamental_group dbr:Half-integer dbr:Ideal_quotient dbr:Idempotent_(ring_theory) dbr:Identifiability dbr:Khinchin's_constant dbr:PG(3,2) dbr:Paradoxes_of_set_theory dbr:Parity_of_a_permutation dbr:Partial_function dbr:Perfect_number dbr:Permuted_congruential_generator dbr:Picture_(mathematics) dbr:Plane_(geometry) dbr:Pocket_set_theory dbr:Polish_notation dbr:Space_(mathematics) dbr:Spectrum_of_a_sentence dbr:Subgroup dbr:Successor_cardinal dbr:Symmetry_group dbr:Mathematics,_Form_and_Function dbr:Matroid_representation dbr:Young's_lattice dbr:Musical_cryptogram dbr:Stack-sortable_permutation dbr:Automorphism dbr:BKL_singularity dbr:Adjoint_functors dbr:Cayley_transform dbr:Cayley–Hamilton_theorem dbr:Time_evolution dbr:Total_order dbr:Tree_traversal dbr:Trigonometric_functions dbr:Truth_value dbr:Weierstrass_elliptic_function dbr:Wigner's_theorem dbr:Distributive_category dbr:Distributive_lattice dbr:Divergent_series dbr:GPS_signals dbr:Gamas's_Theorem dbr:Correspondence dbr:Gårding_domain dbr:Irrelevant_ideal dbr:Jónsson–Tarski_algebra dbr:Lambert_azimuthal_equal-area_projection dbr:Latimer–MacDuffee_theorem dbr:Lattice_(order) dbr:Lattice_graph dbr:Linear_bottleneck_assignment_problem dbr:Linear_extension dbr:Linear_map dbr:Link_(simplicial_complex) dbr:Lipschitz_domain dbr:Logicism dbr:Permutation_polynomial dbr:Tennenbaum's_theorem dbr:Representation_theory_of_finite_groups dbr:Point_plotting dbr:6 dbr:Abstract_simplicial_complex dbr:Affine_space dbr:Affine_symmetric_group dbr:Affine_transformation dbr:Aleph_number dbr:1:1 dbr:Curvilinear_coordinates dbr:Cyclic_group dbr:Cyclic_order dbr:Cyclic_permutation dbr:Dual_space dbr:Duality_(mathematics) dbr:Alternating_permutation dbr:Equivalence_relation dbr:Euler's_totient_function dbr:Exponential_family dbr:Exponential_function dbr:F._Riesz's_theorem dbr:Fallibilism dbr:Fibonacci_number dbr:Field_(mathematics) dbr:Finite_intersection_property dbr:Finite_set dbr:Banach_manifold dbr:Base-orderable_matroid dbr:Brauer's_three_main_theorems dbr:Nicolas_Bourbaki dbr:Numeral_system dbr:P-adic_number dbr:Pairing_function dbr:Cardinal_assignment dbr:Cardinal_number dbr:Cardinality dbr:Causal_sets dbr:Cayley_configuration_space dbr:Diaconescu's_theorem dbr:Diffeomorphism dbr:Dihedral_group_of_order_6 dbr:Direct_sum dbr:Discrete_Morse_theory dbr:Discrete_mathematics dbr:Fano_plane dbr:Foundations_of_geometry dbr:Fourth_normal_form dbr:Fractional_graph_isomorphism dbr:Glossary_of_topology dbr:Gompertz_function dbr:Graph_amalgamation dbr:Graph_isomorphism dbr:Hanner_polytope dbr:Hirsch_conjecture dbr:History_of_computing dbr:Isomorphism_theorems dbr:Isotopy_of_loops dbr:Joy_(programming_language) dbr:Kaprekar_number dbr:Knowledge_space dbr:Unconditional_convergence dbr:Natural_density dbr:Mathematical_proof dbr:Projection_(mathematics) dbr:Quadratic_assignment_problem dbr:Quotient_space_(topology) dbr:Rader's_FFT_algorithm dbr:Radical_of_an_ideal dbr:Relation_algebra
is gold:hypernym of dbr:Robinson–Schensted–Knuth_correspondence dbr:Picture_(mathematics)
is foaf:primaryTopic of wikipedia-en:Bijection