- Bitsikas, V., Correa, I. R. Jr & Nichols, B. J. Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 3, e03970 (2014).
Article PubMed PubMed Central Google Scholar
- Wideman, J. G., Leung, K. F., Field, M. C. & Dacks, J. B. The cell biology of the endocytic system from an evolutionary perspective. Cold Spring Harb. Perspect. Biol. 6, a016998 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Traub, L. M. Regarding the amazing choreography of clathrin coats. PLoS Biol. 9, e1001037 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Weinberg, J. & Drubin, D. G. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol. 22, 1–13 (2012).
Article CAS PubMed Google Scholar
- Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).
Article CAS PubMed Google Scholar
- Merrifield, C. J., Feldman, M. E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).
Article CAS PubMed Google Scholar
- Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011). This is a systematic and quantitative live-cell imaging study of the assembly sequence of the endocytic protein machinery.
Article CAS PubMed PubMed Central Google Scholar
- Tonikian, R. et al. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol. 7, e1000218 (2009).
Article PubMed PubMed Central CAS Google Scholar
- Carroll, S. Y. et al. Analysis of yeast endocytic site formation and maturation through a regulatory transition point. Mol. Biol. Cell 23, 657–668 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature 448, 883–888 (2007).
Article CAS PubMed Google Scholar
- Cocucci, E., Aguet, F., Boulant, S. & Kirchhausen, T. The first five seconds in the life of a clathrin-coated pit. Cell 150, 495–507 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).
Article CAS PubMed Google Scholar
- Kadlecova, Z. et al. Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J. Cell Biol. 216, 167–179 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Kelly, B. T. et al. AP2 controls clathrin polymerization with a membrane-activated switch. Science 345, 459–463 (2014). This article shows how the AP2 complex can integrate information from cargo and lipid binding to clathrin coat assembly.
Article CAS PubMed PubMed Central Google Scholar
- Messa, M. et al. Epsin deficiency impairs endocytosis by stalling the actin-dependent invagination of endocytic clathrin-coated pits. eLife 3, e03311 (2014).
Article PubMed PubMed Central Google Scholar
- Miller, S. E. et al. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell 33, 163–175 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Henne, W. M. et al. FCHo proteins are nucleators of clathrin-mediated endocytosis. Science 328, 1281–1284 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Ma, L. et al. Transient Fcho1/2Eps15/RAP-2 nanoclusters prime the AP-2 clathrin adaptor for cargo binding. Dev. Cell 37, 428–443 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Umasankar, P. K. et al. Distinct and separable activities of the endocytic clathrin-coat components Fcho1/2 and AP-2 in developmental patterning. Nat. Cell Biol. 14, 488–501 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Stimpson, H. E., Toret, C. P., Cheng, A. T., Pauly, B. S. & Drubin, D. G. Early-arriving Syp1p and Ede1p function in endocytic site placement and formation in budding yeast. Mol. Biol. Cell 20, 4640–4651 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Brach, T., Godlee, C., Moeller-Hansen, I., Boeke, D. & Kaksonen, M. The initiation of clathrin-mediated endocytosis is mechanistically highly flexible. Curr. Biol. 24, 548–554 (2014).
Article CAS PubMed Google Scholar
- Sun, Y., Martin, A. C. & Drubin, D. G. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell 11, 33–46 (2006).
Article CAS PubMed Google Scholar
- Goode, B. L., Eskin, J. A. & Wendland, B. Actin and endocytosis in budding yeast. Genetics 199, 315–358 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Massol, R. H., Boll, W., Griffin, A. M. & Kirchhausen, T. A burst of auxilin recruitment determines the onset of clathrin-coated vesicle uncoating. Proc. Natl Acad. Sci. USA 103, 10265–10270 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Nunez, D. et al. Hotspots organize clathrin-mediated endocytosis by efficient recruitment and retention of nucleating resources. Traffic 12, 1868–1878 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004).
Article CAS PubMed Google Scholar
- Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol. 7, e1000057 (2009).
Article PubMed Central CAS Google Scholar
- Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell 121, 593–606 (2005).
Article CAS PubMed Google Scholar
- Antonescu, C. N., Aguet, F., Danuser, G. & Schmid, S. L. Phosphatidylinositol-(4,5)-bisphosphate regulates clathrin-coated pit initiation, stabilization, and size. Mol. Biol. Cell 22, 2588–2600 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Zoncu, R. et al. Loss of endocytic clathrin-coated pits upon acute depletion of phosphatidylinositol 4,5-bisphosphate. Proc. Natl Acad. Sci. USA 104, 3793–3798 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Layton, A. T. et al. Modeling vesicle traffic reveals unexpected consequences for Cdc42p-mediated polarity establishment. Curr. Biol. 21, 184–194 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Liu, A. P., Aguet, F., Danuser, G. & Schmid, S. L. Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J. Cell Biol. 191, 1381–1393 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Peng, Y. et al. Casein kinase 1 promotes initiation of clathrin-mediated endocytosis. Dev. Cell 32, 231–240 (2015).
Article CAS PubMed PubMed Central Google Scholar
- McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011).
Article CAS PubMed Google Scholar
- Sigismund, S. et al. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol. Rev. 92, 273–366 (2012).
Article CAS PubMed Google Scholar
- Mercer, J., Schelhaas, M. & Helenius, A. Virus entry by endocytosis. Annu. Rev. Biochem. 79, 803–833 (2010).
Article CAS PubMed Google Scholar
- Traub, L. M. Tickets to ride: selecting cargo for clathrin-regulated internalization. Nat. Rev. Mol. Cell Biol. 10, 583–596 (2009).
Article CAS PubMed Google Scholar
- Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).
Article CAS PubMed Google Scholar
- Traub, L. M. & Bonifacino, J. S. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb. Perspect. Biol. 5, a016790 (2013).
Article PubMed PubMed Central CAS Google Scholar
- Mettlen, M., Loerke, D., Yarar, D., Danuser, G. & Schmid, S. L. Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J. Cell Biol. 188, 919–933 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Mettlen, M. et al. Endocytic accessory proteins are functionally distinguished by their differential effects on the maturation of clathrin-coated pits. Mol. Biol. Cell 20, 3251–3260 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Henry, A. G. et al. Regulation of endocytic clathrin dynamics by cargo ubiquitination. Dev. Cell 23, 519–532 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Jackson, L. P. et al. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141, 1220–1229 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Ritter, B. et al. NECAP 1 regulates AP-2 interactions to control vesicle size, number, and cargo during clathrin-mediated endocytosis. PLoS Biol. 11, e1001670 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Busch, D. J. et al. Intrinsically disordered proteins drive membrane curvature. Nat. Commun. 6, 7875 (2015).
Article CAS PubMed Google Scholar
- Stachowiak, J. C., Brodsky, F. M. & Miller, E. A. A cost-benefit analysis of the physical mechanisms of membrane curvature. Nat. Cell Biol. 15, 1019–1027 (2013).
Article CAS PubMed Google Scholar
- Kirchhausen, T. & Harrison, S. C. Protein organization in clathrin trimers. Cell 23, 755–761 (1981).
Article CAS PubMed Google Scholar
- Pearse, B. M. Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol. 97, 93–98 (1975).
Article CAS PubMed Google Scholar
- Heuser, J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84, 560–583 (1980).
Article CAS PubMed Google Scholar
- Nossal, R. Energetics of clathrin basket assembly. Traffic 2, 138–147 (2001).
Article CAS PubMed Google Scholar
- Kirchhausen, T. Coated pits and coated vesicles — sorting it all out. Curr. Opin. Struct. Biol. 3, 182–188 (1993).
Article CAS Google Scholar
- Boulant, S., Kural, C., Zeeh, J. C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011). This study reveals that actin polymerization is critical for endocytosis under high membrane tension conditions in mammalian cells.
Article CAS PubMed PubMed Central Google Scholar
- Saleem, M. et al. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nat. Commun. 6, 6249 (2015).
Article CAS PubMed Google Scholar
- Thiam, A. R. & Pincet, F. The energy of COPI for budding membranes. PLoS ONE 10, e0133757 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Dannhauser, P. N. & Ungewickell, E. J. Reconstitution of clathrin-coated bud and vesicle formation with minimal components. Nat. Cell Biol. 14, 634–639 (2012). This article presents the first reconstitution of clathrin-coated vesicles from artificial membranes and proposes that amphipathic helices are not necessary for membrane bending.
Article CAS PubMed Google Scholar
- Maupin, P. & Pollard, T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J. Cell Biol. 96, 51–62 (1983).
Article CAS PubMed Google Scholar
- Dannhauser, P. N. et al. Effect of clathrin light chains on the stiffness of clathrin lattices and membrane budding. Traffic 16, 519–533 (2015).
Article CAS PubMed Google Scholar
- Avinoam, O., Schorb, M., Beese, C. J., Briggs, J. A. & Kaksonen, M. Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348, 1369–1372 (2015).
Article CAS PubMed Google Scholar
- Kukulski, W., Schorb, M., Kaksonen, M. & Briggs, J. A. Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell 150, 508–520 (2012).
Article CAS PubMed Google Scholar
- Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).
Article CAS PubMed Google Scholar
- Copic, A., Latham, C. F., Horlbeck, M. A., D'Arcangelo, J. G. & Miller, E. A. ER cargo properties specify a requirement for COPII coat rigidity mediated by Sec13p. Science 335, 1359–1362 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Loerke, D., Wienisch, M., Kochubey, O. & Klingauf, J. Differential control of clathrin subunit dynamics measured with EW-FRAP microscopy. Traffic 6, 918–929 (2005).
Article CAS PubMed Google Scholar
- Wu, X. et al. Clathrin exchange during clathrin-mediated endocytosis. J. Cell Biol. 155, 291–300 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Schlossman, D. M., Schmid, S. L., Braell, W. A. & Rothman, J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J. Cell Biol. 99, 723–733 (1984).
Article CAS PubMed Google Scholar
- Barouch, W., Prasad, K., Greene, L. E. & Eisenberg, E. ATPase activity associated with the uncoating of clathrin baskets by Hsp70. J. Biol. Chem. 269, 28563–28568 (1994).
Article CAS PubMed Google Scholar
- Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).
Article CAS PubMed PubMed Central Google Scholar
- Fujimoto, L. M., Roth, R., Heuser, J. E. & Schmid, S. L. Actin assembly plays a variable, but not obligatory role in receptor-mediated endocytosis in mammalian cells. Traffic 1, 161–171 (2000).
Article CAS PubMed Google Scholar
- Gottlieb, T. A., Ivanov, I. E., Adesnik, M. & Sabatini, D. D. Actin microfilaments play a criticalrole in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. J. Cell Biol. 120, 695–710 (1993).
Article CAS PubMed Google Scholar
- Lamaze, C., Fujimoto, L. M., Yin, H. L. & Schmid, S. L. The actin cytoskeleton is required for receptor-mediated endocytosis in mammalian cells. J. Biol. Chem. 272, 20332–20335 (1997).
Article CAS PubMed Google Scholar
- Salisbury, J. L., Condeelis, J. S. & Satir, P. Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J. Cell Biol. 87, 132–141 (1980).
Article CAS PubMed Google Scholar
- Grassart, A. et al. Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. J. Cell Biol. 205, 721–735 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Li, D. et al. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).
Article CAS PubMed Google Scholar
- Sirotkin, V., Beltzner, C. C., Marchand, J. B. & Pollard, T. D. Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J. Cell Biol. 170, 637–648 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Idrissi, F. Z., Blasco, A., Espinal, A. & Geli, M. I. Ultrastructural dynamics of proteins involved in endocytic budding. Proc. Natl Acad. Sci. USA 109, E2587–E2594 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16, 964–975 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Idrissi, F. Z. et al. Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. J. Cell Biol. 180, 1219–1232 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Mulholland, J. et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125, 381–391 (1994).
Article CAS PubMed Google Scholar
- Collins, A., Warrington, A., Taylor, K. A. & Svitkina, T. Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr. Biol. 21, 1167–1175 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Picco, A., Mund, M., Ries, J., Nedelec, F. & Kaksonen, M. Visualizing the functional architecture of the endocytic machinery. eLife 4, e04535 (2015).
Article PubMed Central Google Scholar
- Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83, 13–18 (2004).
Article CAS PubMed Google Scholar
- Chen, Q. & Pollard, T. D. Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches. Curr. Biol. 23, 1154–1162 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Galletta, B. J., Chuang, D. Y. & Cooper, J. A. Distinct roles for Arp2/3 regulators in actin assembly and endocytosis. PLoS Biol. 6, e1 (2008).
Article PubMed PubMed Central CAS Google Scholar
- Bradford, M. K., Whitworth, K. & Wendland, B. Pan1 regulates transitions between stages of clathrin-mediated endocytosis. Mol. Biol. Cell 26, 1371–1385 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Sun, Y., Leong, N. T., Wong, T. & Drubin, D. G. A. Pan1/End3/Sla1 complex links Arp2/3-mediated actin assembly to sites of clathrin-mediated endocytosis. Mol. Biol. Cell 26, 3841–3856 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Engqvist-Goldstein, A. E. et al. RNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery. Mol. Biol. Cell 15, 1666–1679 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Skruzny, M. et al. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc. Natl Acad. Sci. USA 109, E2533–E2542 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Skruzny, M. et al. An organized co-assembly of clathrin adaptors is essential for endocytosis. Dev. Cell 33, 150–162 (2015).
Article CAS PubMed Google Scholar
- Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).
Article CAS PubMed Google Scholar
- Carlsson, A. E. & Bayly, P. V. Force generation by endocytic actin patches in budding yeast. Biophys. J. 106, 1596–1606 (2014).
Article CAS PubMed PubMed Central Google Scholar
- Dmitrieff, S. & Nedelec, F. Membrane mechanics of endocytosis in cells with turgor. PLoS Comput. Biol. 11, e1004538 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Geli, M. I. & Riezman, H. Role of type I myosins in receptor-mediated endocytosis in yeast. Science 272, 533–535 (1996).
Article CAS PubMed Google Scholar
- Cheng, J., Grassart, A. & Drubin, D. G. Myosin 1E coordinates actin assembly and cargo trafficking during clathrin-mediated endocytosis. Mol. Biol. Cell 23, 2891–2904 (2012).
Article CAS PubMed PubMed Central Google Scholar
- Lewellyn, E. B. et al. An engineered minimal WASP-myosin fusion protein reveals essential functions for endocytosis. Dev. Cell 35, 281–294 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Antonny, B. et al. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 35, 2270–2284 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Bashkirov, P. V. et al. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell 135, 1276–1286 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Pucadyil, T. J. & Schmid, S. L. Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263–1275 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature 441, 528–531 (2006).
Article CAS PubMed Google Scholar
- Sweitzer, S. M. & Hinshaw, J. E. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93, 1021–1029 (1998).
Article CAS PubMed Google Scholar
- Daumke, O., Roux, A. & Haucke, V. BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156, 882–892 (2014).
Article CAS PubMed Google Scholar
- Nothwehr, S. F., Conibear, E. & Stevens, T. H. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J. Cell Biol. 129, 35–46 (1995).
Article CAS PubMed Google Scholar
- Palmer, S. E. et al. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast. Curr. Biol. 25, 868–878 (2015).
Article CAS PubMed PubMed Central Google Scholar
- Smaczynska-de, R. II et al. A role for the dynamin-like protein Vps1 during endocytosis in yeast. J. Cell Sci. 123, 3496–3506 (2010).
Article Google Scholar
- Ringstad, N. et al. Endophilin/SH3p4 is required for the transition from early to late stages in clathrin-mediated synaptic vesicle endocytosis. Neuron 24, 143–154 (1999).
Article CAS PubMed Google Scholar
- Takei, K., Slepnev, V. I., Haucke, V. & De Camilli, P. Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat. Cell Biol. 1, 33–39 (1999).
Article CAS PubMed Google Scholar
- Farsad, K. et al. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 155, 193–200 (2001).
Article CAS PubMed PubMed Central Google Scholar
- Meinecke, M. et al. Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission. J. Biol. Chem. 288, 6651–6661 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Neumann, S. & Schmid, S. L. Dual role of BAR domain-containing proteins in regulating vesicle release catalyzed by the GTPase, dynamin-2. J. Biol. Chem. 288, 25119–25128 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Yoshida, Y. et al. The stimulatory action of amphiphysin on dynamin function is dependent on lipid bilayer curvature. EMBO J. 23, 3483–3491 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004).
Article CAS PubMed Google Scholar
- Frost, A. et al. Structural basis of membrane invagination by F-BAR domains. Cell 132, 807–817 (2008).
Article CAS PubMed PubMed Central Google Scholar
- Habermann, B. The BAR-domain family of proteins: a case of bending and binding? EMBO Rep. 5, 250–255 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Mim, C. et al. Structural basis of membrane bending by the N-BAR protein endophilin. Cell 149, 137–145 (2012). This study is a 3D cryo-electron microscopy reconstruction of the endophilin coat around a membrane tubule showing how amphipathic helices participate in lateral interactions between BAR domains.
Article CAS PubMed PubMed Central Google Scholar
- Sorre, B. et al. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proc. Natl Acad. Sci. USA 109, 173–178 (2012).
Article CAS PubMed Google Scholar
- Hatzakis, N. S. et al. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat. Chem. Biol. 5, 835–841 (2009).
Article CAS PubMed Google Scholar
- Boucrot, E. et al. Membrane fission is promoted by insertion of amphipathic helices and is restricted by crescent BAR domains. Cell 149, 124–136 (2012). This article shows how membrane shaping and fission can be driven by the insertion of amphipathic helices.
Article CAS PubMed PubMed Central Google Scholar
- Itoh, T. et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev. Cell 9, 791–804 (2005).
Article CAS PubMed Google Scholar
- Posor, Y. et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature 499, 233–237 (2013).
Article CAS PubMed Google Scholar
- Schoneberg, J. et al. Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission. Nat. Commun. 8, 15873 (2017).
Article PubMed PubMed Central CAS Google Scholar
- Wu, M. et al. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system. Nat. Cell Biol. 12, 902–908 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Hohendahl, A. et al. Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 6, e26856 (2017).
Article PubMed PubMed Central Google Scholar
- Shimada, A. et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129, 761–772 (2007).
Article CAS PubMed Google Scholar
- Simunovic, M. et al. How curvature-generating proteins build scaffolds on membrane nanotubes. Proc. Natl Acad. Sci. USA 113, 11226–11231 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Zhao, H. et al. Membrane-sculpting BAR domains generate stable lipid microdomains. Cell Rep. 4, 1213–1223 (2013).
Article CAS PubMed PubMed Central Google Scholar
- Renard, H. F. et al. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517, 493–496 (2015).
Article CAS PubMed Google Scholar
- Simunovic, M. et al. Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170, 172–184.e11 (2017).
Article CAS PubMed PubMed Central Google Scholar
- Braell, W. A., Schlossman, D. M., Schmid, S. L. & Rothman, J. E. Dissociation of clathrin coats coupled to the hydrolysis of ATP: role of an uncoating ATPase. J. Cell Biol. 99, 734–741 (1984).
Article CAS PubMed Google Scholar
- Ungewickell, E. The 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that releases clathrin triskelia from coated vesicles. EMBO J. 4, 3385–3391 (1985).
Article CAS PubMed PubMed Central Google Scholar
- Newmyer, S. L., Christensen, A. & Sever, S. Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Dev. Cell 4, 929–940 (2003).
Article CAS PubMed Google Scholar
- Scheele, U. et al. Molecular and functional characterization of clathrin- and AP-2-binding determinants within a disordered domain of auxilin. J. Biol. Chem. 278, 25357–25368 (2003).
Article CAS PubMed Google Scholar
- Scheele, U., Kalthoff, C. & Ungewickell, E. Multiple interactions of auxilin 1 with clathrin and the AP-2 adaptor complex. J. Biol. Chem. 276, 36131–36138 (2001).
Article CAS PubMed Google Scholar
- Sousa, R. & Lafer, E. M. The role of molecular chaperones in clathrin mediated vesicular trafficking. Front. Mol. Biosci. 2, 26 (2015).
Article PubMed PubMed Central CAS Google Scholar
- Fotin, A. et al. Structure of an auxilin-bound clathrin coat and its implications for the mechanism of uncoating. Nature 432, 649–653 (2004).
Article CAS PubMed Google Scholar
- Goloubinoff, P. & Rios, P. D. L. The mechanism of Hsp70 chaperones: (entropic) pulling the models together. Trends Biochem. Sci. 32, 372–380 (2007).
Article CAS PubMed Google Scholar
- Sousa, R. et al. Clathrin-coat disassembly illuminates the mechanisms of Hsp70 force generation. Nat. Struct. Mol. Biol. 23, 821–829 (2016). This article presents a computational modelling of the action of HSC70 on the clathrin coat and proposes that HSC70 acts as a wrecking ball on the 'wall' of the clathrin lattice.
Article CAS PubMed PubMed Central Google Scholar
- McPherson, P. S. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).
Article CAS PubMed Google Scholar
- Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).
Article CAS PubMed Google Scholar
- Posor, Y., Eichhorn-Grunig, M. & Haucke, V. Phosphoinositides in endocytosis. Biochim. Biophys. Acta 1851, 794–804 (2015).
Article CAS PubMed Google Scholar
- Di Paolo, G. et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415–422 (2004).
Article CAS PubMed Google Scholar
- Varnai, P., Thyagarajan, B., Rohacs, T. & Balla, T. Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. J. Cell Biol. 175, 377–382 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Perera, R. M., Zoncu, R., Lucast, L., De Camilli, P. & Toomre, D. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc. Natl Acad. Sci. USA 103, 19332–19337 (2006).
Article CAS PubMed PubMed Central Google Scholar
- Schuske, K. R. et al. Endophilin is required for synaptic vesicle endocytosis by localizing synaptojanin. Neuron 40, 749–762 (2003).
Article CAS PubMed Google Scholar
- Verstreken, P. et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–748 (2003).
Article CAS PubMed Google Scholar
- Chang-Ileto, B. et al. Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev. Cell 20, 206–218 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Erdmann, K. S. et al. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev. Cell 13, 377–390 (2007).
Article CAS PubMed PubMed Central Google Scholar
- Choudhury, R. et al. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the _trans_-Golgi network. Mol. Biol. Cell 16, 3467–3479 (2005).
Article CAS PubMed PubMed Central Google Scholar
- Ungewickell, A., Ward, M. E., Ungewickell, E. & Majerus, P. W. The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc. Natl Acad. Sci. USA 101, 13501–13506 (2004).
Article CAS PubMed PubMed Central Google Scholar
- Nandez, R. et al. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe≈syndrome cells. eLife 3, e02975 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Cauvin, C. et al. Rab35 GTPase triggers switch-like recruitment of the Lowe syndrome lipid phosphatase OCRL on newborn endosomes. Curr. Biol. 26, 120–128 (2016).
Article CAS PubMed Google Scholar
- Zoncu, R. et al. A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136, 1110–1121 (2009).
Article CAS PubMed PubMed Central Google Scholar
- Roth, T. F. & Porter, K. R. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. L. J. Cell Biol. 20, 313–332 (1964).
Article CAS PubMed PubMed Central Google Scholar
- Sirotkin, V., Berro, J., Macmillan, K., Zhao, L. & Pollard, T. D. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol. Biol. Cell 21, 2894–2904 (2010).
Article CAS PubMed PubMed Central Google Scholar
- Sochacki, K. A., Dickey, A. M., Strub, M. P. & Taraska, J. W. Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat. Cell Biol. 19, 352–361 (2017). This is a systematic super-resolution study of the organization of proteins in the clathrin coat.
Article CAS PubMed PubMed Central Google Scholar
- Doyon, J. B. et al. Rapid and efficient clathrin-mediated endocytosis revealed in genome-edited mammalian cells. Nat. Cell Biol. 13, 331–337 (2011).
Article CAS PubMed PubMed Central Google Scholar
- Umasankar, P. K. et al. A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. elife 3, e04137 (2014).
Article PubMed Central Google Scholar
- Aguet, F. et al. Membrane dynamics of dividing cells imaged by lattice light-sheet microscopy. Mol. Biol. Cell 27, 3418–3435 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Ferguson, J. P. et al. Deciphering dynamics of clathrin-mediated endocytosis in a living organism. J. Cell Biol. 214, 347–358 (2016).
Article CAS PubMed PubMed Central Google Scholar
- Kukulski, W., Picco, A., Specht, T., Briggs, J. A. & Kaksonen, M. Clathrin modulates vesicle scission, but not invagination shape, in yeast endocytosis. eLife 5, e16036 (2016).
Article PubMed PubMed Central Google Scholar
- Payne, G. S., Baker, D., van Tuinen, E. & Schekman, R. Protein transport to the vacuole and receptor-mediated endocytosis by clathrin heavy chain-deficient yeast. J. Cell Biol. 106, 1453–1461 (1988).
Article CAS PubMed Google Scholar
- Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nat. Cell Biol. 11, 1039–1042 (2009).
Article CAS PubMed Google Scholar
- Kaur, S., Fielding, A. B., Gassner, G., Carter, N. J. & Royle, S. J. An unmet actin requirement explains the mitotic inhibition of clathrin-mediated endocytosis. eLife 3, e00829 (2014).
Article PubMed PubMed Central CAS Google Scholar
- Lieber, A. D., Yehudai-Resheff, S., Barnhart, E. L., Theriot, J. A. & Keren, K. Membrane tension in rapidly moving cells is determined by cytoskeletal forces. Curr. Biol. 23, 1409–1417 (2013).
Article CAS PubMed Google Scholar
- Kanaseki, T. & Kadota, K. The “vesicle in a basket”. A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J. Cell Biol. 42, 202–220 (1969).
Article CAS PubMed PubMed Central Google Scholar
- Fotin, A. et al. Molecular model for a complete clathrin lattice from electron cryomicroscopy. Nature 432, 573–579 (2004).
Article CAS PubMed Google Scholar
- Heuser, J. E. & Anderson, R. G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108, 389–400 (1989).
Article CAS PubMed Google Scholar
- Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).
Article CAS PubMed Google Scholar