mRNA—From COVID-19 Treatment to Cancer Immunotherapy (original) (raw)

1. Brenner S., Jacob F., Meselson M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature. 1961;190:576–581. doi: 10.1038/190576a0. [PubMed] [CrossRef] [Google Scholar]

2. Wolff J.A., Malone R.W., Williams P., Chong W., Acsadi G., Jani A., Felgner P.L. Direct gene transfer into mouse muscle in vivo. Science. 1990;247:1465–1468. doi: 10.1126/science.1690918. [PubMed] [CrossRef] [Google Scholar]

3. Barbier A.J., Jiang A.Y., Zhang P., Wooster R., Anderson D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 2022;40:840–854. doi: 10.1038/s41587-022-01294-2. [PubMed] [CrossRef] [Google Scholar]

4. Corbett K.S., Edwards D.K., Leist S.R., Abiona O.M., Boyoglu-Barnum S., Gillespie R.A., Himansu S., Schäfer A., Ziwawo C.T., DiPiazza A.T., et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586:567–571. doi: 10.1038/s41586-020-2622-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

5. Alexopoulou L., Holt A.C., Medzhitov R., Flavell R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature. 2001;413:732–738. doi: 10.1038/35099560. [PubMed] [CrossRef] [Google Scholar]

6. Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science. 2004;303:1526–1529. doi: 10.1126/science.1093620. [PubMed] [CrossRef] [Google Scholar]

7. Rehwinkel J., Tan C.P., Goubau D., Schulz O., Pichlmair A., Bier K., Robb N., Vreede F., Barclay W., Fodor E., et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell. 2010;140:397–408. doi: 10.1016/j.cell.2010.01.020. [PubMed] [CrossRef] [Google Scholar]

8. Nallagatla S.R., Hwang J., Toroney R., Zheng X., Cameron C.E., Bevilacqua P.C. 5’-Triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science. 2007;318:1455–1458. doi: 10.1126/science.1147347. [PubMed] [CrossRef] [Google Scholar]

9. Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586:516–527. doi: 10.1038/s41586-020-2798-3. [PubMed] [CrossRef] [Google Scholar]

10. Martin J.E., Louder M.K., Holman L.A., Gordon I.J., Enama M.E., Larkin B.D., Andrews C.A., Vogel L., Koup R.A., Roederer M., et al. A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. Vaccine. 2008;26:6338–6343. doi: 10.1016/j.vaccine.2008.09.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Yong C.Y., Ong H.K., Yeap S.K., Ho K.L., Tan W.S. Recent advances in the vaccine development against middle east respiratory syndrome-coronavirus. Front. Microbiol. 2019;10:1781. doi: 10.3389/fmicb.2019.01781. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020;5:562–569. doi: 10.1038/s41564-020-0688-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

13. Alsoussi W.B., Turner J.S., Case J.B., Zhao H., Schmitz A.J., Zhou J.Q., Chen R.E., Lei T., Rizk A.A., McIntire K.M., et al. A potently neutralizing antibody protects mice against SARS-CoV-2 infection. J. Immunol. 2020;205:915–922. doi: 10.4049/jimmunol.2000583. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Deng W., Bao L., Liu J., Xiao C., Liu J., Xue J., Lv Q., Qi F., Gao H., Yu P., et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science. 2020;369:818–823. doi: 10.1126/science.abc5343. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Yu J., Tostanoski L.H., Peter L., Mercado N.B., McMahan K., Mahrokhian S.H., Nkolola J.P., Liu J., Li Z., Chandrashekar A., et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. 2020;369:806–811. doi: 10.1126/science.abc6284. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Su F., Patel G.B., Hu S., Chen W. Induction of mucosal immunity through systemic immunization: Phantom or reality? Hum. Vaccines Immunother. 2016;12:1070–1079. doi: 10.1080/21645515.2015.1114195. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

17. Shuman S. What messenger RNA capping tells us about eukaryotic evolution. Nat. Rev. Mol. Cell Biol. 2002;3:619–625. doi: 10.1038/nrm880. [PubMed] [CrossRef] [Google Scholar]

18. Cao J., He L., Lin G., Hu C., Dong R., Zhang J., Zhu H., Hu Y., Wagner C.R., He Q., et al. Cap-dependent translation initiation factor, eIF4E, is the target for Ouabain-mediated inhibition of HIF-1α Biochem. Pharmacol. 2014;89:20–30. doi: 10.1016/j.bcp.2013.12.002. [PubMed] [CrossRef] [Google Scholar]

19. Vaidyanathan S., Azizian K.T., Haque A.A., Henderson J.M., Hendel A., Shore S., Antony J.S., Hogrefe R.I., Kormann M.S., Porteus M.H., et al. Uridine depletion and chemical modification increase Cas9 mRNA activity and reduce immunogenicity without HPLC purification. Mol. Ther.-Nucleic Acids. 2018;12:530–542. doi: 10.1016/j.omtn.2018.06.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Muttach F., Muthmann N., Rentmeister A. Synthetic mRNA capping. Beilstein J. Org. Chem. 2017;13:2819–2832. doi: 10.3762/bjoc.13.274. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

22. Kocmik I., Piecyk K., Rudzinska M., Niedzwiecka A., Darzynkiewicz E., Grzela R., Jankowska-Anyszka M. Modified ARCA analogs providing enhanced translational properties of capped mRNAs. Cell Cycle. 2018;17:1624–1636. doi: 10.1080/15384101.2018.1486164. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

24. Gallie D.R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991;5:2108–2116. doi: 10.1101/gad.5.11.2108. [PubMed] [CrossRef] [Google Scholar]

25. Holtkamp S., Kreiter S., Selmi A., Simon P., Koslowski M., Huber C., Türeci O., Sahin U. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. 2006;108:4009–4017. doi: 10.1182/blood-2006-04-015024. [PubMed] [CrossRef] [Google Scholar]

26. Warren L., Manos P.D., Ahfeldt T., Loh Y.-H., Li H., Lau F., Ebina W., Mandal P.K., Smith Z.D., Meissner A., et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–630. doi: 10.1016/j.stem.2010.08.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Miao L., Zhang Y., Huang L. mRNA vaccine for cancer immunotherapy. Mol. Cancer. 2021;20:1–23. doi: 10.1186/s12943-021-01335-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Pickering B.M., Willis A.E. Seminars in Cell & Developmental Biology. Volume 16. Academic Press; Cambridge, MA, USA: 2005. The implications of structured 5’ untranslated regions on translation and disease; pp. 39–47. [PubMed] [CrossRef] [Google Scholar]

29. Linares-Fernández S., Lacroix C., Exposito J.-Y., Verrier B. Tailoring mRNA vaccine to balance innate/adaptive immune response. Trends Mol. Med. 2019;26:311–323. doi: 10.1016/j.molmed.2019.10.002. [PubMed] [CrossRef] [Google Scholar]

30. Mauger D.M., Cabral B.J., Presnyak V., Su S.V., Reid D.W., Goodman B. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl. Acad. Sci. USA. 2019;116:24075–24083. doi: 10.1073/pnas.1908052116. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Kudla G., Lipinski L., Caffin F., Helwak A., Zylicz M. High guanine and cytosine content increases mRNA levels in mammalian cells. PLoS Biol. 2006;4:e180. doi: 10.1371/journal.pbio.0040180. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Karikó K., Buckstein M., Ni H., Weissman D. Suppression of RNA recognition by toll-like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23:165–175. doi: 10.1016/j.immuni.2005.06.008. [PubMed] [CrossRef] [Google Scholar]

33. Weng Y., Li C., Yang T., Hu B., Zhang M., Guo S., Xiao H., Liang X.-J., Huang Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 2020;40:107534. doi: 10.1016/j.biotechadv.2020.107534. [PubMed] [CrossRef] [Google Scholar]

34. Orlandini von Niessen A.G.O., Poleganov M.A., Rechner C., Plaschke A., Kranz L.M., Fesser S., Diken M., Löwer M., Vallazza B., Beissert T., et al. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3′ UTRs identified by cellular library screening. Mol. Ther. 2018;27:824–836. doi: 10.1016/j.ymthe.2018.12.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control. Nature. 2011;473:337–342. doi: 10.1038/nature10098. [PubMed] [CrossRef] [Google Scholar]

36. Tanguay R.M., Jorquera R., Poudrier J., St-Louis M. Tyrosine and its catabolites: From disease to cancer. Acta Biochim. Pol. 1996;43:209–216. doi: 10.18388/abp.1996_4530. [PubMed] [CrossRef] [Google Scholar]

37. Mangus D.A., Evans M.C., Jacobson A. Poly(A)-binding proteins: Multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol. 2003;4:223. doi: 10.1186/gb-2003-4-7-223. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Roy B., Jacobson A. The intimate relationships of mRNA decay and translation. Trends Genet. 2013;29:691–699. doi: 10.1016/j.tig.2013.09.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

39. Jalkanen A.L., Coleman S.J., Wilusz J. Determinants and implications of mRNA poly(A) tail size—Does this protein make my tail look big? Semin. Cell Dev. Biol. 2014;34:24–32. doi: 10.1016/j.semcdb.2014.05.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Lima S.A., Chipman L.B., Nicholson A.L., Chen Y.-H., Yee B.A., Yeo E., Coller J., Pasquinelli A.E. Short poly(A) tails are a conserved feature of highly expressed genes. Nat. Struct. Mol. Biol. 2017;24:1057–1063. doi: 10.1038/nsmb.3499. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Bidram M., Zhao Y., Shebardina N.G., Baldin A.V., Bazhin A.V., Ganjalikhany M.R., Zamyatnin A.A., Ganjalikhani-Hakemi M. mRNA-based cancer vaccines: A therapeutic strategy for the treatment of melanoma patients. Vaccines. 2021;9:1060. doi: 10.3390/vaccines9101060. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

42. Ziemniak M., Strenkowska M., Kowalska J., Jemielity J. Potential therapeutic applications of RNA cap analogs. Future Med. Chem. 2013;5:1141–1172. doi: 10.4155/fmc.13.96. [PubMed] [CrossRef] [Google Scholar]

43. Kuhn A.N., Diken M., Kreiter S., Selmi A., Kowalska J., Jemielity J., Darzynkiewicz E., Huber C., Türeci Ö., Sahin U. Phosphorothioate cap analogs increase stability and translational efficiency of RNA vaccines in immature dendritic cells and induce superior immune responses in vivo. Gene Ther. 2010;17:961–971. doi: 10.1038/gt.2010.52. [PubMed] [CrossRef] [Google Scholar]

44. Kowalski P.S., Rudra A., Miao L., Anderson D.G. Delivering the messenger: Advances in technologies for therapeutic mRNA delivery. Mol. Ther. 2019;27:710–728. doi: 10.1016/j.ymthe.2019.02.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Elfakess R., Dikstein R. A translation initiation element specific to mRNAs with very short 5′UTR that also regulates transcription. PLoS ONE. 2008;3:e3094. doi: 10.1371/journal.pone.0003094. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Karikó K., Muramatsu H., Keller J.M., Weissman D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mRNA encoding erythropoietin. Mol. Ther. 2012;20:948–953. doi: 10.1038/mt.2012.7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Van Gulck E.R.A., Ponsaerts P., Heyndrickx L., Vereecken K., Moerman F., De Roo A., Colebunders R., Van den Bosch G., Van Bockstaele D.R., Van Tendeloo V.F.I., et al. Efficient stimulation of HIV-1-specific T cells using dendritic cells electroporated with mRNA encoding autologous HIV-1 Gag and Env proteins. Blood. 2006;107:1818–1827. doi: 10.1182/blood-2005-01-0339. [PubMed] [CrossRef] [Google Scholar]

48. Ballesteros-Briones M.C., Silva-Pilipich N., Herrador-Cañete G., Vanrell L., Smerdou C. A new generation of vaccines based on alphavirus self-amplifying RNA. Curr. Opin. Virol. 2020;44:145–153. doi: 10.1016/j.coviro.2020.08.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

50. Bloom K., van den Berg F., Arbuthnot P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2021;28:117–129. doi: 10.1038/s41434-020-00204-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Vogel A.B., Lambert L., Kinnear E., Busse D., Erbar S., Reuter K.C., Wicke L., Perkovic M., Beissert T., Haas H., et al. Self-Amplifying RNA Vaccines Give Equivalent Protection against Influenza to mRNA Vaccines but at Much Lower Doses. Mol. Ther. 2018;26:446–455. doi: 10.1016/j.ymthe.2017.11.017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Ljungberg K., Liljeström P. Self-replicating alphavirus RNA vaccines. Expert Rev. Vaccines. 2015;14:177–194. doi: 10.1586/14760584.2015.965690. [PubMed] [CrossRef] [Google Scholar]

53. Zhou X., Berglund P., Rhodes G., Parker S., Jondal M., Liljeström P. Self-replicating Semliki Forest virus RNA as recombinant vaccine. Vaccine. 1994;12:1510–1514. doi: 10.1016/0264-410X(94)90074-4. [PubMed] [CrossRef] [Google Scholar]

54. Chakraborty C., Sharma A.R., Bhattacharya M., Lee S.-S. From COVID-19 to cancer mRNA vaccines: Moving from bench to clinic in the vaccine landscape. Front. Immunol. 2021;12:679344. doi: 10.3389/fimmu.2021.679344. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Deering R.P., Kommareddy S., Ulmer J.B., Brito L.A., Geall A.J. Nucleic acid vaccines: Prospects for non-viral delivery of mRNA vaccines. Expert Opin. Drug Deliv. 2014;11:885–899. doi: 10.1517/17425247.2014.901308. [PubMed] [CrossRef] [Google Scholar]

56. Pardi N., Hogan M.J., Porter F.W., Weissman D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018;17:261–279. doi: 10.1038/nrd.2017.243. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

57. Sahin U., Karikó K., Türeci Ö. mRNA-based therapeutics—Developing a new class of drugs. Nat. Rev. Drug Discov. 2014;13:759–780. doi: 10.1038/nrd4278. [PubMed] [CrossRef] [Google Scholar]

58. Beissert T., Perkovic M., Vogel A., Erbar S., Walzer K.C., Hempel T., Brill S., Haefner E., Becker R., Türeci Ö., et al. A trans-amplifying RNA vaccine strategy for induction of potent protective immunity. Mol. Ther. 2020;28:119–128. doi: 10.1016/j.ymthe.2019.09.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Tregoning J.S., Kinnear E. Using plasmids as DNA vaccines for infectious diseases. Microbiol. Spectr. 2014;2:651–668. doi: 10.1128/microbiolspec.PLAS-0028-2014. [PubMed] [CrossRef] [Google Scholar]

60. Xu S., Yang K., Li R., Zhang L. mRNA vaccine era—Mechanisms, drug platform and clinical prospection. Int. J. Mol. Sci. 2020;21:6582. doi: 10.3390/ijms21186582. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Jackson N.A.C., Kester K.E., Casimiro D., Gurunathan S., DeRosa F. The promise of mRNA vaccines: A biotech and industrial perspective. NPJ Vaccines. 2020;5:11. doi: 10.1038/s41541-020-0159-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Blakney A.K., Zhu Y., McKay P.F., Bouton C., Yeow J., Tang J., Hu K., Samnuan K., Grigsby C., Shattock R.J., et al. Big is beautiful: Enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS Nano. 2020;14:5711–5727. doi: 10.1021/acsnano.0c00326. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Chen J., Ye Z., Huang C., Qiu M., Song D., Li Y., Xu Q. Lipid nanoparticle-mediated lymph node–targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response. Proc. Natl. Acad. Sci. USA. 2022;119:e2207841119. doi: 10.1073/pnas.2207841119. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Wang Y., Wang M., Wu H., Xu R. Advancing to the era of cancer immunotherapy. Cancer Commun. 2021;41:803–829. doi: 10.1002/cac2.12178. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

65. Lorenz C., Fotin-Mleczek M., Roth G., Becker C., Dam T.C., Verdurmen W.P.R., Brock R., Probst J., Schlake T. Protein expression from exogenous mRNA: Uptake by receptor-mediated endocytosis and trafficking via the lysosomal pathway. RNA Biol. 2011;8:627–636. doi: 10.4161/rna.8.4.15394. [PubMed] [CrossRef] [Google Scholar]

66. Selmi A., Vascotto F., Kautz-Neu K., Türeci Ö., Sahin U., von Stebut E., Diken M., Kreiter S. Uptake of synthetic naked RNA by skin-resident dendritic cells via macropinocytosis allows antigen expression and induction of T-cell responses in mice. Cancer Immunol. Immunother. 2016;65:1075–1083. doi: 10.1007/s00262-016-1869-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Dirisala A., Uchida S., Tockary T.A., Yoshinaga N., Li J., Osawa S., Gorantla L., Fukushima S., Osada K., Kataoka K. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability. J. Drug Target. 2019;27:670–680. doi: 10.1080/1061186X.2018.1550646. [PubMed] [CrossRef] [Google Scholar]

68. Yen A., Cheng Y., Sylvestre M., Gustafson H.H., Puri S., Pun S.H. Serum nuclease susceptibility of mRNA cargo in condensed polyplexes. Mol. Pharm. 2018;15:2268–2276. doi: 10.1021/acs.molpharmaceut.8b00134. [PubMed] [CrossRef] [Google Scholar]

69. Aldosari B., Alfagih I., Almurshedi A. Lipid nanoparticles as delivery systems for RNA-based vaccines. Pharmaceutics. 2021;13:206. doi: 10.3390/pharmaceutics13020206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Jayaraman M., Ansell S.M., Mui B.L., Tam Y.K., Chen J., Du X., Butler D., Eltepu L., Matsuda S., Narayanannair J.K., et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. 2012;51:8529–8533. doi: 10.1002/anie.201203263. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Kauffman K.J., Dorkin J.R., Yang J.H., Heartlein M.W., DeRosa F., Mir F.F., Fenton O.S., Anderson D.G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015;15:7300–7306. doi: 10.1021/acs.nanolett.5b02497. [PubMed] [CrossRef] [Google Scholar]

72. Lokugamage M.P., Gan Z., Zurla C., Levin J., Islam F.Z., Kalathoor S., Sato M., Sago C.D., Santangelo P.J., Dahlman J.E. Mild innate immune activation overrides efficient nanoparticle-mediated RNA delivery. Adv. Mater. 2019;32:e1904905. doi: 10.1002/adma.201904905. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Lubich C., Allacher P., de la Rosa M., Bauer A., Prenninger T., Horling F.M., Siekmann J., Oldenburg J., Scheiflinger F., Reipert B.M. The mystery of antibodies against polyethylene glycol (PEG)—What do we know? Pharm. Res. 2016;33:2239–2249. doi: 10.1007/s11095-016-1961-x. [PubMed] [CrossRef] [Google Scholar]

74. Yanez Arteta M., Kjellman T., Bartesaghi S., Wallin S., Wu X., Kvist A.J., Dabkowska A., Székely N., Radulescu A., Bergenholtz J., et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. USA. 2018;115:E3351–E3360. doi: 10.1073/pnas.1720542115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Miao L., Lin J., Huang Y., Li L., Delcassian D., Ge Y., Shi Y., Anderson D.G. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 2020;11:2424. doi: 10.1038/s41467-020-16248-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Gooden M., Lampen M., Jordanova E.S., Leffers N., Trimbos J.B., van der Burg S.H., Nijman H., van Hall T. HLA-E expression by gynecological cancers restrains tumor-infiltrating CD8+ T lymphocytes. Proc. Natl. Acad. Sci. USA. 2011;108:10656–10661. doi: 10.1073/pnas.1100354108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Ur Rehman Z., Hoekstra D., Zuhorn I.S. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: Real-time visualization of transient membrane destabilization without endosomal lysis. ACS Nano. 2013;7:3767–3777. doi: 10.1021/nn3049494. [PubMed] [CrossRef] [Google Scholar]

78. Vermeulen L.M.P., Brans T., Samal S.K., Dubruel P., Demeester J., De Smedt S.C., Remaut K., Braeckmans K. Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles. ACS Nano. 2018;12:2332–2345. doi: 10.1021/acsnano.7b07583. [PubMed] [CrossRef] [Google Scholar]

79. Dimitriadis G.J. Entrapment of ribonucleic acids in liposomes. FEBS Lett. 1978;86:289–293. doi: 10.1016/0014-5793(78)80582-1. [PubMed] [CrossRef] [Google Scholar]

80. Li B., Zhang X., Dong Y. Nanoscale platforms for messenger RNA delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019;11:e1530. doi: 10.1002/wnan.1530. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Ma Z., Li J., He F., Wilson A., Pitt B., Li S. Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun. 2005;330:755–759. doi: 10.1016/j.bbrc.2005.03.041. [PubMed] [CrossRef] [Google Scholar]

82. Kowalski P.S., Bhattacharya C., Afewerki S., Langer R.S. Smart biomaterials: Recent advances and future directions. ACS Biomater. Sci. Eng. 2018;4:3809–3817. doi: 10.1021/acsbiomaterials.8b00889. [PubMed] [CrossRef] [Google Scholar]

83. Ping Y., Wu D., Kumar J.N., Cheng W., Lay C.L., Liu Y. Redox-responsive hyperbranched poly(amido amine)s with tertiary amino cores for gene delivery. Biomacromolecules. 2013;14:2083–2094. doi: 10.1021/bm400460r. [PubMed] [CrossRef] [Google Scholar]

84. Bell G.D., Yang Y., Leung E., Krissansen G.W. mRNA transfection by a Xentry-protamine cell-penetrating peptide is enhanced by TLR antagonist E6446. PLoS ONE. 2018;13:e0201464. doi: 10.1371/journal.pone.0201464. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Sedic M., Senn J.J., Lynn A., Laska M., Smith M., Platz S.J., Bolen J., Hoge S., Bulychev A., Jacquinet E., et al. Safety Evaluation of lipid nanoparticle–formulated modified mRNA in the sprague-dawley rat and cynomolgus monkey. Vet. Pathol. 2018;55:341–354. doi: 10.1177/0300985817738095. [PubMed] [CrossRef] [Google Scholar]

86. Jorritsma S., Gowans E., Grubor-Bauk B., Wijesundara D. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine. 2016;34:5488–5494. doi: 10.1016/j.vaccine.2016.09.062. [PubMed] [CrossRef] [Google Scholar]

87. Alu A., Chen L., Lei H., Wei Y., Tian X., Wei X. Intranasal COVID-19 vaccines: From bench to bed. EbioMedicine. 2022;76:103841. doi: 10.1016/j.ebiom.2022.103841. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

88. Rosa S.S., Prazeres D.M.F., Azevedo A.M., Marques M.P.C. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine. 2021;39:2190–2200. doi: 10.1016/j.vaccine.2021.03.038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

89. John S., Yuzhakov O., Woods A., Deterling J., Hassett K., Shaw C.A., Ciaramella G. Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. Vaccine. 2018;36:1689–1699. doi: 10.1016/j.vaccine.2018.01.029. [PubMed] [CrossRef] [Google Scholar]

90. Karikó K., Muramatsu H., Ludwig J., Weissman D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011;39:e142. doi: 10.1093/nar/gkr695. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

91. Weissman D., Pardi N., Muramatsu H., Karikó K. HPLC purification of in vitro transcribed long RNA. Methods Mol Biol. 2013;969:43–54. doi: 10.1007/978-1-62703-260-5_3. [PubMed] [CrossRef] [Google Scholar]

92. Shivalingam A., Taemaitree L., El-Sagheer A.H., Brown T. Squaramides and ureas: A flexible approach to polymerase-compatible nucleic acid assembly. Angew. Chem. Int. Ed. 2020;59:11416–11422. doi: 10.1002/anie.202000209. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

93. Fiolet T., Kherabi Y., MacDonald C.-J., Ghosn J., Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022;28:202–221. doi: 10.1016/j.cmi.2021.10.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

94. Abu Mouch S., Roguin A., Hellou E., Ishai A., Shoshan U., Mahamid L., Zoabi M., Aisman M., Goldschmid N., Yanay N.B. Myocarditis following COVID-19 mRNA vaccination. Vaccine. 2021;39:3790–3793. doi: 10.1016/j.vaccine.2021.05.087. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

95. Muthukumar A., Narasimhan M., Li Q.-Z., Mahimainathan L., Hitto I., Fuda F., Batra K., Jiang X., Zhu C., Schoggins J., et al. In-depth evaluation of a case of presumed myocarditis after the second dose of COVID-19 mRNA vaccine. Circulation. 2021;144:487–498. doi: 10.1161/CIRCULATIONAHA.121.056038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

96. Zhao P., Hou X., Yan J., Du S., Xue Y., Li W., Xiang G., Dong Y. Long-term storage of lipid-like nanoparticles for mRNA delivery. Bioact. Mater. 2020;5:358–363. doi: 10.1016/j.bioactmat.2020.03.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

97. Crommelin D.J., Anchordoquy T.J., Volkin D.B., Jiskoot W., Mastrobattista E. Addressing the cold reality of mRNA vaccine stability. J. Pharm. Sci. 2021;110:997–1001. doi: 10.1016/j.xphs.2020.12.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

98. Ahmed T. Immunotherapy for neuroblastoma using mRNA vaccines. Adv. Cancer Biol.—Metastasis. 2022;4:100033. doi: 10.1016/j.adcanc.2022.100033. [CrossRef] [Google Scholar]

99. Islam M.A., Rice J., Reesor E., Zope H., Tao W., Lim M., Ding J., Chen Y., Aduluso D., Zetter B.R., et al. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials. 2021;266:120431. doi: 10.1016/j.biomaterials.2020.120431. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

100. Jahanafrooz Z., Baradaran B., Mosafer J., Hashemzaei M., Rezaei T., Mokhtarzadeh A., Hamblin M.R. Comparison of DNA and mRNA vaccines against cancer. Drug Discov. Today. 2020;25:552–560. doi: 10.1016/j.drudis.2019.12.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Heine A., Juranek S., Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases. Mol. Cancer. 2021;20:52. doi: 10.1186/s12943-021-01339-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

102. Kramps T., Elbers K. Introduction to RNA vaccines. Methods Mol Biol. 2017;1499:1–11. doi: 10.1007/978-1-4939-6481-9_1. [PubMed] [CrossRef] [Google Scholar]

103. Oh S.J., Lee J., Kim Y., Song K.-H., Cho E., Kim M., Jung H., Kim T.W. Far beyond cancer immunotherapy: Reversion of multi-malignant phenotypes of immunotherapeutic-resistant cancer by targeting the NANOG signaling axis. Immune Netw. 2020;20:e7. doi: 10.4110/in.2020.20.e7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

104. Yang Q., Guo N., Zhou Y., Chen J., Wei Q., Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm. Sin. B. 2020;10:2156–2170. doi: 10.1016/j.apsb.2020.04.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Liu C., Papukashvili D., Dong Y., Wang X., Hu X., Yang N., Cai J., Xie F., Rcheulishvili N., Wang P.G. Identification of tumor antigens and design of mRNA vaccine for colorectal cancer based on the immune subtype. Front. Cell Dev. Biol. 2022;9:783527. doi: 10.3389/fcell.2021.783527. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

106. Chesney J.A., Mitchell R.A., Yaddanapudi K. Myeloid-derived suppressor cells—A new therapeutic target to overcome resistance to cancer immunotherapy. J. Leukoc. Biol. 2017;102:727–740. doi: 10.1189/jlb.5VMR1116-458RRR. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Zhou J., Tang Z., Gao S., Li C., Feng Y., Zhou X. Tumor-associated macrophages: Recent insights and therapies. Front. Oncol. 2020;10:188. doi: 10.3389/fonc.2020.00188. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

108. Togashi Y., Shitara K., Nishikawa H. Regulatory T cells in cancer immunosuppression—Implications for anticancer therapy. Nat. Rev. Clin. Oncol. 2019;16:356–371. doi: 10.1038/s41571-019-0175-7. [PubMed] [CrossRef] [Google Scholar]

109. Galluzzi L., Chan T.A., Kroemer G., Wolchok J.D., López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci. Transl. Med. 2018;10:eaat7807. doi: 10.1126/scitranslmed.aat7807. [PubMed] [CrossRef] [Google Scholar]

110. Cassetta L., Kitamura T. Macrophage targeting: Opening new possibilities for cancer immunotherapy. Immunology. 2018;155:285–293. doi: 10.1111/imm.12976. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

111. Saeed M., Gao J., Shi Y., Lammers T., Yu H. Engineering nanoparticles to reprogram the tumor immune microenvironment for improved cancer immunotherapy. Theranostics. 2019;9:7981–8000. doi: 10.7150/thno.37568. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Riley R.S., June C.H., Langer R., Mitchell M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019;18:175–196. doi: 10.1038/s41573-018-0006-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

113. Thomas S., Prendergast G.C. Cancer vaccines: A brief overview. Methods Mol Biol. 2016;1403:755–761. doi: 10.1007/978-1-4939-3387-7_43. [PubMed] [CrossRef] [Google Scholar]

114. Cheever M.A., Higano C.S. PROVENGE (Sipuleucel-T) in prostate cancer: The first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 2011;17:3520–3526. doi: 10.1158/1078-0432.CCR-10-3126. [PubMed] [CrossRef] [Google Scholar]

115. Handy C.E., Antonarakis E.S. Sipuleucel-T for the treatment of prostate cancer: Novel insights and future directions. Futur. Oncol. 2018;14:907–917. doi: 10.2217/fon-2017-0531. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

116. Song Q., Zhang C.-D., Wu X.-H. Therapeutic cancer vaccines: From initial findings to prospects. Immunol. Lett. 2018;196:11–21. doi: 10.1016/j.imlet.2018.01.011. [PubMed] [CrossRef] [Google Scholar]

117. Tsai H.-J. Clinical cancer chemoprevention: From the hepatitis B virus (HBV) vaccine to the human papillomavirus (HPV) vaccine. Taiwan. J. Obstet. Gynecol. 2015;54:112–115. doi: 10.1016/j.tjog.2013.11.009. [PubMed] [CrossRef] [Google Scholar]

118. Wei J., Hui A.-M. The paradigm shift in treatment from COVID-19 to oncology with mRNA vaccines. Cancer Treat. Rev. 2022;107:102405. doi: 10.1016/j.ctrv.2022.102405. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

119. Abbott M., Ustoyev Y. Cancer and the immune system: The history and background of immunotherapy. Semin. Oncol. Nurs. 2019;35:150923. doi: 10.1016/j.soncn.2019.08.002. [PubMed] [CrossRef] [Google Scholar]

120. Zhang Y., Zhang Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020;17:807–821. doi: 10.1038/s41423-020-0488-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

121. Velcheti V., Schalper K. Basic Overview of current immunotherapy approaches in cancer. Am. Soc. Clin. Oncol. Educ. Book. 2016;35:298–308. doi: 10.1200/EDBK_156572. [PubMed] [CrossRef] [Google Scholar]

122. Tay B., Wright Q., Ladwa R., Perry C., Leggatt G., Simpson F., Wells J., Panizza B., Frazer I., Cruz J. Evolution of cancer vaccines—Challenges, achievements, and future directions. Vaccines. 2021;9:535. doi: 10.3390/vaccines9050535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

123. Maiorano B., Schinzari G., Ciardiello D., Rodriquenz M., Cisternino A., Tortora G., Maiello E. Cancer vaccines for genitourinary tumors: Recent progresses and future possibilities. Vaccines. 2021;9:623. doi: 10.3390/vaccines9060623. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

124. Donninger H., Li C., Eaton J., Yaddanapudi K. Cancer vaccines: Promising therapeutics or an unattainable dream. Vaccines. 2021;9:668. doi: 10.3390/vaccines9060668. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

125. Janczar S., Bulas M., Walenciak J., Baranska D., Ussowicz M., Młynarski W., Zalewska-Szewczyk B. Pulmonary exacerbation of undiagnosed toxocariasis in intensively-treated high-risk neuroblastoma patients. Children. 2020;7:169. doi: 10.3390/children7100169. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

126. Kim C.-G., Sang Y.-B., Lee J.-H., Chon H.-J. Combining cancer vaccines with immunotherapy: Establishing a new immunological approach. Int. J. Mol. Sci. 2021;22:8035. doi: 10.3390/ijms22158035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

127. Gautam A., Beiss V., Wang C., Wang L., Steinmetz N.F. Plant viral nanoparticle conjugated with anti-PD-1 peptide for ovarian cancer immunotherapy. Int. J. Mol. Sci. 2021;22:9733. doi: 10.3390/ijms22189733. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

128. Liu C.-C., Yang H., Zhang R., Zhao J.-J., Hao D.-J. Tumour-associated antigens and their anti-cancer applications. Eur. J. Cancer Care. 2017;26:e12446. doi: 10.1111/ecc.12446. [PubMed] [CrossRef] [Google Scholar]

129. Salomon N., Vascotto F., Selmi A., Vormehr M., Quinkhardt J., Bukur T., Schrörs B., Löewer M., Diken M., Türeci Ö., et al. A liposomal RNA vaccine inducing neoantigen-specific CD4+ T cells augments the antitumor activity of local radiotherapy in mice. Oncoimmunology. 2020;9:1771925. doi: 10.1080/2162402X.2020.1771925. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

130. Hollingsworth R.E., Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019;4:7. doi: 10.1038/s41541-019-0103-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

131. Melero I., Gaudernack G., Gerritsen W., Huber C., Parmiani G., Scholl S., Thatcher N., Wagstaff J., Zielinski C., Faulkner I., et al. Therapeutic vaccines for cancer: An overview of clinical trials. Nat. Rev. Clin. Oncol. 2014;11:509–524. doi: 10.1038/nrclinonc.2014.111. [PubMed] [CrossRef] [Google Scholar]

132. Yarchoan M., Johnson B.A., III, Lutz E.R., Laheru D.A., Jaffee E.M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer. 2017;17:209–222. doi: 10.1038/nrc.2016.154. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

133. Li L., Goedegebuure S., Gillanders W. Preclinical and clinical development of neoantigen vaccines. Ann. Oncol. 2017;28:xii11–xii17. doi: 10.1093/annonc/mdx681. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

134. Srivastava P.K. Neoepitopes of cancers: Looking back, looking ahead. Cancer Immunol. Res. 2015;3:969–977. doi: 10.1158/2326-6066.CIR-15-0134. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

135. Blass E., Ott P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 2021;18:215–229. doi: 10.1038/s41571-020-00460-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

136. Szanto C.L., Cornel A.M., Vijver S.V., Nierkens S. Monitoring immune responses in neuroblastoma patients during therapy. Cancers. 2020;12:519. doi: 10.3390/cancers12020519. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

137. Park J.A., Cheung N.K.V. Targets and antibody formats for immunotherapy of neuroblastoma. J. Clin. Oncol. 2020;38:1836–1848. doi: 10.1200/JCO.19.01410. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

138. Modak S., Cheung N.-K.V. Disialoganglioside directed immunotherapy of neuroblastoma. Cancer Investig. 2007;25:67–77. doi: 10.1080/07357900601130763. [PubMed] [CrossRef] [Google Scholar]

139. Karikó K., Muramatsu H., Welsh F.A., Ludwig J., Kato H., Akira S., Weissman D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008;16:1833–1840. doi: 10.1038/mt.2008.200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

140. Thess A., Grund S., Mui B.L., Hope M.J., Baumhof P., Fotin-Mleczek M., Schlake T. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 2015;23:1456–1464. doi: 10.1038/mt.2015.103. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

141. Guan S., Rosenecker J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017;24:133–143. doi: 10.1038/gt.2017.5. [PubMed] [CrossRef] [Google Scholar]

142. Hornung V., Barchet W., Schlee M., Hartmann G. Toll-Like Receptors (TLRs) and innate immunity. Springer; Berlin/Heidelberg, Germany: 2008. RNA recognition via TLR7 and TLR8; pp. 71–86. [PubMed] [CrossRef] [Google Scholar]

143. Wilusz C.J., Wormington M., Peltz S.W. The cap-to-tail guide to mRNA turnover. Nat. Rev. Mol. Cell Biol. 2001;2:237–246. doi: 10.1038/35067025. [PubMed] [CrossRef] [Google Scholar]

144. Martin S.A., Paoletti E., Moss B. Purification of mRNA guanylyltransferase and mRNA (guanine-7-) methyltransferase from vaccinia virions. J. Biol. Chem. 1975;250:9322–9329. doi: 10.1016/S0021-9258(19)40646-7. [PubMed] [CrossRef] [Google Scholar]

145. Stepinski J., Waddell C., Stolarski R., Darzynkiewicz E., Rhoads R.E. Synthesis and properties of mRNAs containing the novel “anti-reverse” cap analogs 7-methyl(3’-O-methyl)GpppG and 7-methyl (3’-deoxy)GpppG. RNA. 2001;7:1486–1495. [PMC free article] [PubMed] [Google Scholar]

146. Weissman D., Karikó K. mRNA: Fulfilling the promise of gene therapy. Mol. Ther. 2015;23:1416–1417. doi: 10.1038/mt.2015.138. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

147. Fry T.J., Shah N.N., Orentas R.J., Stetler-Stevenson M., Yuan C.M., Ramakrishna S., Wolters P., Martin S., Delbrook C., Yates B., et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018;24:20–28. doi: 10.1038/nm.4441. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

148. Marchioni M., Nazzani S., Preisser F., Bandini M., Karakiewicz P.I. Therapeutic strategies for organ-confined and non-organ-confined bladder cancer after radical cystectomy. Expert Rev. Anticancer Ther. 2018;18:377–387. doi: 10.1080/14737140.2018.1439744. [PubMed] [CrossRef] [Google Scholar]

149. Zhang Z., Liu S., Zhang B., Qiao L., Zhang Y. T cell dysfunction and exhaustion in cancer. Front. Cell Dev. Biol. 2020;8:17. doi: 10.3389/fcell.2020.00017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

150. Pardi N., Tuyishime S., Muramatsu H., Kariko K., Mui B.L., Tam Y.K., Madden T.D., Hope M.J., Weissman D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control. Release. 2015;217:345–351. doi: 10.1016/j.jconrel.2015.08.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

151. Senti G., Kündig T.M. Intralymphatic immunotherapy. World Allergy Organ. J. 2015;8:9. doi: 10.1186/s40413-014-0047-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

152. Van der Jeught K., Joe P.T., Bialkowski L., Heirman C., Daszkiewicz L., Liechtenstein T., Escors D., Thielemans K., Breckpot K. Intratumoral administration of mRNA encoding a fusokine consisting of IFN-β and the ectodomain of the TGF-β receptor II potentiates antitumor immunity. Oncotarget. 2014;5:10100–10113. doi: 10.18632/oncotarget.2463. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

153. Beyaert S., Machiels J.-P., Schmitz S. Vaccine-based immunotherapy for head and neck cancers. Cancers. 2021;13:6041. doi: 10.3390/cancers13236041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

154. Karan D., Holzbeierlein J.M., Van Veldhuizen P., Thrasher J.B. Cancer immunotherapy: A paradigm shift for prostate cancer treatment. Nat. Rev. Urol. 2012;9:376–385. doi: 10.1038/nrurol.2012.106. [PubMed] [CrossRef] [Google Scholar]

155. Finn O.J. The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 2017;18:183–194. doi: 10.1038/nri.2017.140. [PubMed] [CrossRef] [Google Scholar]

156. Colella P., Ronzitti G., Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther.—Methods Clin. Dev. 2018;8:87–104. doi: 10.1016/j.omtm.2017.11.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

157. Sabnis S., Kumarasinghe E.S., Salerno T., Mihai C., Ketova T., Senn J.J., Lynn A., Bulychev A., McFadyen I., Chan J., et al. A novel amino lipid series for mRNA delivery: Improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 2018;26:1509–1519. doi: 10.1016/j.ymthe.2018.03.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

158. Chahal J.S., Khan O.F., Cooper C.L., McPartlan J.S., Tsosie J.K., Tilley L.D., Sidik S.M., Lourido S., Langer R., Bavari S., et al. Dendrimer-RNA nanoparticles generate protective immunity against lethal Ebola, H1N1 influenza, and Toxoplasma gondii challenges with a single dose. Proc. Natl. Acad. Sci. USA. 2016;113:E4133–E4142. doi: 10.1073/pnas.1600299113. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

159. Besin G., Milton J., Sabnis S., Howell R., Mihai C., Burke K., Benenato K.E., Stanton M., Smith P., Senn J., et al. Accelerated blood clearance of lipid nanoparticles entails a biphasic humoral response of B-1 followed by B-2 lymphocytes to distinct antigenic moieties. Immunohorizons. 2019;3:282–293. doi: 10.4049/immunohorizons.1900029. [PubMed] [CrossRef] [Google Scholar]

160. Adams D., Gonzalez-Duarte A., O’Riordan W.D., Yang C.-C., Ueda M., Kristen A.V., Tournev I., Schmidt H.H., Coelho T., Berk J.L., et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 2018;379:11–21. doi: 10.1056/NEJMoa1716153. [PubMed] [CrossRef] [Google Scholar]

161. Yamamoto T.N., Kishton R.J., Restifo N.P. Developing neoantigen-targeted T cell–based treatments for solid tumors. Nat. Med. 2019;25:1488–1499. doi: 10.1038/s41591-019-0596-y. [PubMed] [CrossRef] [Google Scholar]

162. Aurisicchio L., Pallocca M., Ciliberto G., Palombo F. The perfect personalized cancer therapy: Cancer vaccines against neoantigens. J. Exp. Clin. Cancer Res. 2018;37:86. doi: 10.1186/s13046-018-0751-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

163. Wells D.K., van Buuren M.M., Dang K.K., Hubbard-Lucey V.M., Sheehan K.C., Campbell K.M., Lamb A., Ward J.P., Sidney J., Blazquez A.B., et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell. 2020;183:818–834. doi: 10.1016/j.cell.2020.09.015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

164. Gubin M.M., Artyomov M.N., Mardis E.R., Schreiber R.D. Tumor neoantigens: Building a framework for personalized cancer immunotherapy. J. Clin. Investig. 2015;125:3413–3421. doi: 10.1172/JCI80008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

165. Roudko V., Greenbaum B., Bhardwaj N. Computational prediction and validation of tumor-associated neoantigens. Front. Immunol. 2020;11:27. doi: 10.3389/fimmu.2020.00027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

166. Hu Z., Leet D.E., Allesøe R.L., Oliveira G., Li S., Luoma A.M., Liu J., Forman J., Huang T., Iorgulescu J.B., et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma. Nat. Med. 2021;27:515–525. doi: 10.1038/s41591-020-01206-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

167. Ott P.A., Hu Z., Keskin D.B., Shukla S.A., Sun J., Bozym D.J., Zhang W., Luoma A., Giobbie-Hurder A., Peter L., et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–221. doi: 10.1038/nature22991. Erratum in Nature 2018, 555, 402. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

168. Rubinsteyn A., Kodysh J., Hodes I., Mondet S., Aksoy B.A., Finnigan J.P., Bhardwaj N., Hammerbacher J. Computational pipeline for the PGV-001 neoantigen vaccine trial. Front. Immunol. 2018;8:1807. doi: 10.3389/fimmu.2017.01807. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

169. Esprit A., De Mey W., Shahi R.B., Thielemans K., Franceschini L., Breckpot K. Neo-antigen mRNA vaccines. Vaccines. 2020;8:776. doi: 10.3390/vaccines8040776. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

170. Cantwell-Dorris E.R., O’Leary J.J., Sheils O.M. BRAFV600E: Implications for carcinogenesis and molecular therapy. Mol. Cancer Ther. 2011;10:385–394. doi: 10.1158/1535-7163.MCT-10-0799. [PubMed] [CrossRef] [Google Scholar]

171. Boespflug A., Caramel J., Dalle S., Thomas L. Treatment of _NRAS_-mutated advanced or metastatic melanoma: Rationale, current trials and evidence to date. Ther. Adv. Med Oncol. 2017;9:481–492. doi: 10.1177/1758834017708160. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

172. Sahin U., Derhovanessian E., Miller M., Kloke B.-P., Simon P., Löwer M., Bukur V., Tadmor A.D., Luxemburger U., Schrörs B., et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–226. doi: 10.1038/nature23003. [PubMed] [CrossRef] [Google Scholar]

173. Nature Biotechnology The problem with neoantigen prediction. Nat. Biotechnol. 2017;35:97. doi: 10.1038/nbt.3800. [PubMed] [CrossRef] [Google Scholar]

174. Wang G., Gao Y., Chen Y., Wang K., Zhang S., Li G. Identification of novel tumor antigens and the immune landscapes of bladder cancer patients for mRNA vaccine development. Front. Oncol. 2022;12:921711. doi: 10.3389/fonc.2022.921711. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

175. Ping H., Yu W., Gong X., Tong X., Lin C., Chen Z., Cai C., Guo K., Ke H. Analysis of melanoma tumor antigens and immune subtypes for the development of mRNA vaccine. Investig. New Drugs. 2022;40:1173–1184. doi: 10.1007/s10637-022-01290-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

176. Nierengarten M.B. Messenger RNA vaccine advances provide treatment possibilities for cancer. Cancer. 2022;128:213–214. doi: 10.1002/cncr.34068. [PubMed] [CrossRef] [Google Scholar]

177. Lu Y., He W., Huang X., He Y., Gou X., Liu X., Hu Z., Xu W., Rahman K., Li S., et al. Strategies to package recombinant adeno-associated virus expressing the N-terminal gasdermin domain for tumor treatment. Nat. Commun. 2021;12:7155. doi: 10.1038/s41467-021-27407-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

178. Wu C.-C., Chiang C.-Y., Liu S.-J., Chen H.-W. A novel recombinant Fcγ receptor-targeted survivin combines with chemotherapy for efficient cancer treatment. Biomedicines. 2021;9:806. doi: 10.3390/biomedicines9070806. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

179. Wu C., Qin C., Long W., Wang X., Xiao K., Liu Q. Tumor antigens and immune subtypes of glioblastoma: The fundamentals of mRNA vaccine and individualized immunotherapy development. J. Big Data. 2022;9:92. doi: 10.1186/s40537-022-00643-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

180. Chen Z., Wang X., Yan Z., Zhang M. Identification of tumor antigens and immune subtypes of glioma for mRNA vaccine development. Cancer Med. 2022;11:2711–2726. doi: 10.1002/cam4.4633. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

181. Wang S., Yang Y., Li L., Ma P., Jiang Y., Ge M., Yu Y., Huang H., Fang Y., Jiang N., et al. Identification of tumor antigens and immune subtypes of malignant mesothelioma for mRNA vaccine development. Vaccines. 2022;10:1168. doi: 10.3390/vaccines10081168. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

182. You W., Ouyang J., Cai Z., Chen Y., Wu X. Comprehensive analyses of immune subtypes of stomach adenocarcinoma for mRNA vaccination. Front. Immunol. 2022;13:827506. doi: 10.3389/fimmu.2022.827506. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

183. Zhang S., Li S., Wei Y., Xiong Y., Liu Q., Hu Z., Zeng Z., Tang F., Ouyang Y. Identification of potential antigens for developing mRNA vaccine for immunologically cold mesothelioma. Front. Cell Dev. Biol. 2022;10:879278. doi: 10.3389/fcell.2022.879278. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

184. Maruggi G., Zhang C., Li J., Ulmer J.B., Yu D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol. Ther. 2019;27:757–772. doi: 10.1016/j.ymthe.2019.01.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

185. Schlake T., Thess A., Fotin-Mleczek M., Kallen K.-J. Developing mRNA-vaccine technologies. RNA Biol. 2012;9:1319–1330. doi: 10.4161/rna.22269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

186. Tanyi J.L., Bobisse S., Ophir E., Tuyaerts S., Roberti A., Genolet R., Baumgartner P., Stevenson B.J., Iseli C., Dangaj D., et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci. Transl. Med. 2018;10:eaao5931. doi: 10.1126/scitranslmed.aao5931. [PubMed] [CrossRef] [Google Scholar]

187. Snell L.M., McGaha T.L., Brooks D.G. Type I interferon in chronic virus infection and cancer. Trends Immunol. 2017;38:542–557. doi: 10.1016/j.it.2017.05.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

188. Hassett K.J., Benenato K.E., Jacquinet E., Lee A., Woods A., Yuzhakov O., Himansu S., Deterling J., Geilich B.M., Ketova T., et al. Optimization of lipid nanoparticles for intramuscular administration of mRNA vaccines. Mol. Ther. Nucleic Acids. 2019;15:1–11. doi: 10.1016/j.omtn.2019.01.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

189. Miao L., Li L., Huang Y., Delcassian D., Chahal J., Han J., Shi Y., Sadtler K., Gao W., Lin J., et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 2019;37:1174–1185. doi: 10.1038/s41587-019-0247-3. [PubMed] [CrossRef] [Google Scholar]

190. Van der Jeught K., De Koker S., Bialkowski L., Heirman C., Tjok Joe P., Perche F., Maenhout S., Bevers S., Broos K., Deswarte K., et al. Dendritic cell targeting mRNA Lipopolyplexes combine strong antitumor t-cell immunity with improved inflammatory safety. ACS Nano. 2018;12:9815–9829. doi: 10.1021/acsnano.8b00966. [PubMed] [CrossRef] [Google Scholar]

191. Son S., Nam J., Zenkov I., Ochyl L.J., Xu Y., Scheetz L., Shi J., Farokhzad O.C., Moon J.J. Sugar-nanocapsules imprinted with microbial molecular patterns for mRNA vaccination. Nano Lett. 2020;20:1499–1509. doi: 10.1021/acs.nanolett.9b03483. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

192. Verbeke R., Lentacker I., Breckpot K., Janssens J., Van Calenbergh S., De Smedt S., Dewitte H. Broadening the message: A nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity through conventional and natural killer T cells. ACS Nano. 2019;13:1655–1669. doi: 10.1021/acsnano.8b07660. [PubMed] [CrossRef] [Google Scholar]

193. Lou B., De Koker S., Lau C.Y.J., Hennink W.E., Mastrobattista E. mRNA polyplexes with post-conjugated GALA peptides efficiently target, transfect, and activate antigen presenting cells. Bioconjugate Chem. 2019;30:461–475. doi: 10.1021/acs.bioconjchem.8b00524. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

194. Coolen A.-L., Lacroix C., Mercier-Gouy P., Delaune E., Monge C., Exposito J.-Y., Verrier B. Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation. Biomaterials. 2019;195:23–37. doi: 10.1016/j.biomaterials.2018.12.019. [PubMed] [CrossRef] [Google Scholar]

195. Perche F., Clemençon R., Schulze K., Ebensen T., Guzmán C.A., Pichon C. Neutral lipopolyplexes for in vivo delivery of conventional and replicative RNA vaccine. Mol. Ther. -Nucleic Acids. 2019;17:767–775. doi: 10.1016/j.omtn.2019.07.014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

196. Oberli M.A., Reichmuth A.M., Dorkin J.R., Mitchell M.J., Fenton O.S., Jaklenec A., Anderson D.G., Langer R., Blankschtein D. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2016;17:1326–1335. doi: 10.1021/acs.nanolett.6b03329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

197. Sahin U., Oehm P., Derhovanessian E., Jabulowsky R.A., Vormehr M., Gold M., Maurus D., Schwarck-Kokarakis D., Kuhn A.N., Omokoko T., et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020;585:107–112. doi: 10.1038/s41586-020-2537-9. [PubMed] [CrossRef] [Google Scholar]

198. Linch M., Papai Z., Takacs I., Imedio E.R., Kühnle M.-C., Derhovanessian E., Vogler I., Renken S., Graham P., Sahin U., et al. 421 A first-in-human (FIH) phase I/IIa clinical trial assessing a ribonucleic acid lipoplex (RNA-LPX) encoding shared tumor antigens for immunotherapy of prostate cancer; preliminary analysis of PRO-MERIT. J. Immunother. Cancer. 2021;9:A451. doi: 10.1136/jitc-2021-SITC2021.421. [CrossRef] [Google Scholar]

199. Braiteh F., LoRusso P., Balmanoukian A., Klempner S., Camidge D.R., Hellmann M., Gordon M., Bendell J., Mueller L., Sabado R., et al. Abstract CT169: A phase Ia study to evaluate RO7198457, an individualized Neoantigen Specific immunoTherapy (iNeST), in patients with locally advanced or metastatic solid tumors. Cancer Res. 2020;80:CT169. doi: 10.1158/1538-7445.AM2020-CT169. [CrossRef] [Google Scholar]

200. Srikrishna D., Sachsenmeier K. We need to bring R0 < 1 to treat cancer too. Genome Med. 2021;13:120. doi: 10.1186/s13073-021-00940-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

201. Bauman J., Burris H., Clarke J., Patel M., Cho D., Gutierrez M., Julian R., Scott A., Cohen P., Frederick J., et al. 798 Safety, tolerability, and immunogenicity of mRNA-4157 in combination with pembrolizumab in subjects with unresectable solid tumors (KEYNOTE-603): An update. J. Immunother. Cancer. 2020;8 doi: 10.1136/jitc-2020-sitc2020.0798. [CrossRef] [Google Scholar]

202. Wadhwa A., Aljabbari A., Lokras A., Foged C., Thakur A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics. 2020;12:102. doi: 10.3390/pharmaceutics12020102. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

203. Burris H.A., Patel M.R., Cho D.C., Clarke J.M., Gutierrez M., Zaks T.Z. A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients with resected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors. JCO. 2019;37((Suppl. S15)):2523. doi: 10.1200/JCO.2019.37.15_suppl.2523. [CrossRef] [Google Scholar]

204. Liang X., Li D., Leng S., Zhu X. RNA-based pharmacotherapy for tumors: From bench to clinic and back. Biomed. Pharmacother. 2020;125:109997. doi: 10.1016/j.biopha.2020.109997. [PubMed] [CrossRef] [Google Scholar]

205. Cafri G., Gartner J.J., Hopson K., Meehan R.S., Zaks T.Z., Robbins P., Rosenberg S.A. Immunogenicity and tolerability of personalized mRNA vaccine mRNA-4650 encoding defined neoantigens expressed by the autologous cancer. J. Clin. Oncol. 2019;37:2643. doi: 10.1200/JCO.2019.37.15_suppl.2643. [CrossRef] [Google Scholar]

206. De Keersmaecker B., Claerhout S., Carrasco J., Bar I., Corthals J., Wilgenhof S., Neyns B., Thielemans K. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: Link between T-cell activation and clinical responses in advanced melanoma. J. Immunother. Cancer. 2019;8:e000329. doi: 10.1136/jitc-2019-000329. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

207. Wilgenhof S., Van Nuffel A.M.T., Benteyn D., Corthals J., Aerts C., Heirman C., Van Riet I., Bonehill A., Thielemans K., Neyns B. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann. Oncol. 2013;24:2686–2693. doi: 10.1093/annonc/mdt245. [PubMed] [CrossRef] [Google Scholar]

208. Jansen Y., Kruse V., Corthals J., Schats K., Van Dam P.-J., Seremet T., Heirman C., Brochez L., Kockx M., Thielemans K., et al. A randomized controlled phase II clinical trial on mRNA electroporated autologous monocyte-derived dendritic cells (TriMixDC-MEL) as adjuvant treatment for stage III/IV melanoma patients who are disease-free following the resection of macrometastases. Cancer Immunol. Immunother. 2020;69:2589–2598. doi: 10.1007/s00262-020-02618-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

209. Deng Z., Tian Y., Song J., An G., Yang P. mRNA vaccines: The dawn of a new era of cancer immunotherapy. Front. Immunol. 2022;13:887125. doi: 10.3389/fimmu.2022.887125. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Rausch S., Schwentner C., Stenzl A., Bedke J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum. Vaccines Immunother. 2014;10:3146–3152. doi: 10.4161/hv.29553. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

211. Kübler H., Scheel B., Gnad-Vogt U., Miller K., Schultze-Seemann W., Vom Dorp F., Parmiani G., Hampel C., Wedel S., Trojan L., et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: A first-in-man phase I/IIa study. J. Immunother. Cancer. 2015;3:26. doi: 10.1186/s40425-015-0068-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

212. Kimura H., Matsui Y., Nakajima T., Iizasa T., Ishikawa A. Phase III randomized controlled trial of adjuvant chemoimmunotherapy in patients with resected primary lung cancer. Ann. Oncol. 2017;28:v403. doi: 10.1093/annonc/mdx376. [CrossRef] [Google Scholar]

213. Sebastian M., Schröder A., Scheel B., Hong H.S., Muth A., von Boehmer L., Zippelius A., Mayer F., Reck M., Atanackovic D., et al. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol. Immunother. 2019;68:799–812. doi: 10.1007/s00262-019-02315-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

214. Sabari J., Ramirez K.A., Schwarzenberger P., Ricciardi T., Macri M. Phase 1/2 study of mRNA vaccine therapy + durvalumab (durva) ± tremelimumab (treme) in patients with metastatic non-small cell lung cancer (NSCLC); Proceedings of the Fourth CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference: Translating Science into Survival; New York, NY, USA. 30 September–3 October 2018. [Google Scholar]

215. Papachristofilou A., Hipp M.M., Klinkhardt U., Früh M., Sebastian M., Weiss C., Pless M., Cathomas R., Hilbe W., Pall G., et al. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J. Immunother. Cancer. 2019;7:38. doi: 10.1186/s40425-019-0520-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

216. Liu L., Wang Y., Miao L., Liu Q., Musetti S., Li J., Huang L. Combination immunotherapy of MUC1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther. 2018;26:45–55. doi: 10.1016/j.ymthe.2017.10.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

217. Hamid O., Hellman M., Carneiro B. Preliminary safety, antitumor activity and pharmacodynamics results of HIT-IT MEDI1191 (mRNA IL-12) in patients with advanced solid tumors and superficial lesions; Proceedings of the ESMO Targeted Anticancer Therapies (TAT); Virtual Congress. 1–2 March 2021. [Google Scholar]

218. Weide B., Carralot J.-P., Reese A., Scheel B., Eigentler T.K., Hoerr I., Rammensee H.-G., Garbe C., Pascolo S. Results of the first phase i/ii clinical vaccination trial with direct injection of mrna. J. Immunother. 2008;31:180–188. doi: 10.1097/CJI.0b013e31815ce501. [PubMed] [CrossRef] [Google Scholar]

219. Rittig S.M., Haentschel M., Weimer K.J., Heine A., Muller M.R., Brugger W., Horger M.S., Maksimovic O., Stenzl A., Hoerr I., et al. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ Immune responses and induce clinical benefit in vaccinated patients. Mol. Ther. 2011;19:990–999. doi: 10.1038/mt.2010.289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

220. Rosenthal R., Cadieux E.L., Salgado R., Bakir M.A., Moore D.A., Hiley C.T., Lund T., Tanić M., Reading J.L., Joshi K., et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567:479–485. doi: 10.1038/s41586-019-1032-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

221. Beatty G.L., Gladney W.L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 2015;21:687–692. doi: 10.1158/1078-0432.CCR-14-1860. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

222. Bialkowski L., Van Der Jeught K., Bevers S., Tjok Joe P., Renmans D., Heirman C., Aerts J.L., Thielemans K. Immune checkpoint blockade combined with IL-6 and TGF-β inhibition improves the therapeutic outcome of mRNA-based immunotherapy. Int. J. Cancer. 2018;143:686–698. doi: 10.1002/ijc.31331. [PubMed] [CrossRef] [Google Scholar]

223. Wang Y., Zhang L., Xu Z., Miao L., Huang L. mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Mol. Ther. 2018;26:420–434. doi: 10.1016/j.ymthe.2017.11.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

224. Koyama S., Akbay E.A., Li Y.Y., Herter-Sprie G.S., Buczkowski K.A., Richards W.G., Gandhi L., Redig A.J., Rodig S.J., Asahina H., et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat. Commun. 2016;7:10501. doi: 10.1038/ncomms10501. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

225. Zhang N.-N., Li X.-F., Deng Y.-Q., Zhao H., Huang Y.-J., Yang G., Huang W.-J., Gao P., Zhou C., Zhang R.-R., et al. A thermostable mRNA vaccine against COVID-19. Cell. 2020;182:1271–1283.e16. doi: 10.1016/j.cell.2020.07.024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

226. Parhiz H., Brenner J.S., Patel P.N., Papp T.E., Shahnawaz H., Li Q., Shi R., Zamora M.E., Yadegari A., Marcos-Contreras O.A., et al. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE) J. Control. Release. 2021;344:50–61. doi: 10.1016/j.jconrel.2021.12.027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

227. Igyártó B.Z., Jacobsen S., Ndeupen S. Future considerations for the mRNA-lipid nanoparticle vaccine platform. Curr. Opin. Virol. 2022;48:65–72. doi: 10.1016/j.coviro.2021.03.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

228. Dirisala A., Uchida S., Toh K., Li J., Osawa S., Tockary T.A., Liu X., Abbasi S., Hayashi K., Mochida Y., et al. Transient stealth coating of liver sinusoidal wall by anchoring two-armed PEG for retargeting nanomedicines. Sci. Adv. 2020;6:eabb8133. doi: 10.1126/sciadv.abb8133. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

229. Krause W. Contrast Agents II. Volume 222. Springer; Berlin/Heidelberg, Germany: New York, NY, USA: 2002. Liver-specific X-ray contrast agents; pp. 173–200. [Google Scholar]