Doubling the cube (original) (raw)

About DBpedia

Zdvojení krychle (také reduplikace krychle, duplikace krychle či délský problém) je jeden ze tří nejslavnějších antických konstrukčních problémů (zbylé dva jsou kvadratura kruhu a trisekce úhlu; souhrnně jsou nazývány Tři klasické problémy antické matematiky). Tyto úlohy byly formulovány již v 5. století př. n. l. a odolávaly po dlouhá staletí všem pokusům o vyřešení, než bylo v 19. století dokázáno, že jsou neřešitelné.

thumbnail

Property Value
dbo:abstract La duplicació del cub (també conegut com a problema delià) és un dels tres problemes irresolubles mitjançant una construcció amb regle i compàs de la geometria grega. La duplicació del cub ha estat un dels problemes més importants i influents de la història de les matemàtiques, ja que molts dels intents per solucionar-lo han desembocat en l'aparició i desenvolupament de moltes eines i teories matemàtiques importants. Juntament amb la quadratura del cercle i la trisecció de l'angle, formen els anomenats tres problemes especials de la matemàtica grega. Tot i que la quadratura del cercle es troba en altres cultures, probablement de forma independent, i ja havia estat tractat pels egipcis, la duplicació del cub i la trissecció de l'angle són d'origen purament hel·lènic. (ca) Zdvojení krychle (také reduplikace krychle, duplikace krychle či délský problém) je jeden ze tří nejslavnějších antických konstrukčních problémů (zbylé dva jsou kvadratura kruhu a trisekce úhlu; souhrnně jsou nazývány Tři klasické problémy antické matematiky). Tyto úlohy byly formulovány již v 5. století př. n. l. a odolávaly po dlouhá staletí všem pokusům o vyřešení, než bylo v 19. století dokázáno, že jsou neřešitelné. (cs) مسألة مضاعفة المكعب (وتعرف أيضاً بمسألة ديليان) هي واحدة من ثلاث مسائل في الهندسة الرياضية التي لا يمكن حلها بإنشاءات الفرجار والمسطرة. وقد كانت هذه المسألة معروفة من قبل المصريين والإغريق والهنود. مضاعفة المكعب تعني أنه من أجل مكعب طول ضلعه s وحجمه V، المطلوب هو إنشاء مكعب جديد أكبر من الأول بحجم 2V وبالتالي يكون طول ضلع المكعب الجديد . المسألة معروفة بأنها مستحيلة الحل بإنشاءات الفرجار والمسطرة لأن من المستحيل إنشاء ضلع طوله بالمسطرة والفرجار. (ar) Ο Διπλασιασμός του κύβου (επίσης γνωστός ως πρόβλημα της Δήλου - Δήλιον πρόβλημα) είναι ένα από τα τρία γνωστά προβλήματα της αρχαιότητας που δεν είναι δυνατόν να λυθούν μόνο με κανόνα και διαβήτη. Ήταν γνωστό στους μαθηματικούς της αρχαιότητας στην Αίγυπτο, την Ελλάδα και την Ινδία. Το πρόβλημα συνίσταται στην κατασκευή ενός κύβου με διπλάσιο όγκο από ένα γνωστό κύβο πλευράς α. Ο απλός διπλασιασμός του μήκους της ακμής του κύβου οδηγεί σε οχταπλασιασμό του όγκου. (el) Die Würfelverdoppelung, auch bekannt als Delisches Problem, bezeichnet die geometrische Aufgabe, zu einem gegebenen Würfel einen zweiten Würfel mit dem doppelten Volumen zu konstruieren. Das Problem gehört zu den drei „klassischen Problemen der antiken Mathematik“ und wurde bereits im 5. Jahrhundert v. Chr. im antiken Griechenland formuliert. Ein Ausgangswürfel mit der Kantenlänge (ein sogenannter Einheitswürfel) hat das Volumen Ein weiterer Würfel habe die Kantenlänge und das Volumen Die neue Kantenlänge ist die Kubikwurzel aus , also . Diese kann als Grenzwert geeigneter Folgen bestimmt werden, ist jedoch aus den Strecken 0 und 1 über Zirkel und Lineal nicht in endlich vielen Schritten konstruierbar. Versucht man also das Problem der Würfelverdoppelung ausschließlich mit den Hilfsmitteln zu bearbeiten, die Euklid in seinen Elementen nutzte, nämlich mit Zirkel und unmarkiertem Lineal, ist es nicht lösbar. Diese Aussage lässt sich in die Fachsprache der Algebra übersetzen, wodurch schließlich ein mathematischer Beweis für die Unmöglichkeit der Konstruktion angegeben werden kann. Ein solcher wurde zuerst vom französischen Mathematiker Pierre Wantzel im Jahr 1837 geführt. Jedoch gilt es als sehr wahrscheinlich, dass Carl Friedrich Gauß bereits früher einen Beweis kannte, diesen aber nicht niederschrieb. Identische Probleme bestehen bei Vergrößerungen des Würfelvolumens auf das 3-, 4-, 5-, 6- und 7-fache des ursprünglichen Rauminhaltes. Dagegen ist die Aufgabe zum Beispiel einer Volumenverachtfachung kein Problem, weil die Kubikwurzel aus 8 problemlos berechenbar und die resultierende Kantenlängenverdoppelung leicht machbar ist. Schwächt man die Einschränkung ab und lässt ein zusätzliches Hilfsmittel zu, wie zum Beispiel entsprechende Markierungen auf dem Lineal oder spezielle Kurven, dann ist die Konstruktion eines Würfels mit doppeltem Volumen möglich. Entsprechende Verfahren waren bereits in der Antike bekannt. (de) Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other tools. The Egyptians, Indians, and particularly the Greeks were aware of the problem and made many futile attempts at solving what they saw as an obstinate but soluble problem. However, the nonexistence of a compass-and-straightedge solution was finally proven by Pierre Wantzel in 1837. In algebraic terms, doubling a unit cube requires the construction of a line segment of length x, where x3 = 2; in other words, x = , the cube root of two. This is because a cube of side length 1 has a volume of 13 = 1, and a cube of twice that volume (a volume of 2) has a side length of the cube root of 2. The impossibility of doubling the cube is therefore equivalent to the statement that is not a constructible number. This is a consequence of the fact that the coordinates of a new point constructed by a compass and straightedge are roots of polynomials over the field generated by the coordinates of previous points, of no greater degree than a quadratic. This implies that the degree of the field extension generated by a constructible point must be a power of 2. The field extension generated by , however, is of degree 3. (en) La duplicación del cubo, también conocida como el problema de Delos,​ describe una cuestión geométrica que consiste en construir un cubo que tenga el doble de volumen que un cubo dado. Es uno de los tres problemas clásicos de la matemática antigua, que ya había sido formulado en el siglo V a. C. en la Antigua Grecia. Sería en el siglo XIX cuando se demostró que el problema no se puede resolver utilizando exclusivamente regla y compás. (es) Fadhb chlasaiceach sa mhatamaitic, ciúb a thógáil de thoirt atá dhá oiread toirt ciúib ar leith, gan ach rialóir is compáis a úsáid mar uirlisí chun taobh an chiúib nua a chinneadh. Tá matamaiticeoirí ag plé léi ón 5ú céad RC, ach níor cruthaíodh gur fadhb dho-dhéanta í go dtí an 19ú céad. Saothraíodh tuilleadh cruthuithe ar a dodhéantacht le teicníochtaí nua-aoiseacha na grúptheoirice. (ga) La duplication du cube est un problème classique de mathématiques. C'est un problème géométrique, faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la trisection de l'angle. Ce problème consiste à construire un cube dont le volume est deux fois plus grand qu'un cube donné, à l'aide d'une règle et d'un compas. Ce problème revient à multiplier l'arête du cube par la racine cubique de 2, la constante délienne. Il est impossible de construire un tel cube à la règle et au compas (théorème de Wantzel). (fr) 입방배적문제(立方倍積問題,Doubling the cube)는 역사적으로 델리안 문제(Delian problem) 또는 델로스 문제라고도 불린다. 원적문제, 각의 3등분 문제와 함께 고대 그리스 시절부터 제기되어 온 기하학의 3대 문제중 하나로서, 피에르 방첼은 1837년에 2개의 입방체가 구성 가능하지 않다는 것을 증명했다. 즉 컴퍼스와 자만으로 작도가 불가능한 문제임이 증명되었다. (ko) Il problema della duplicazione del cubo, ossia la costruzione di un cubo avente volume doppio rispetto a quello di un cubo di spigolo dato, costituisce, assieme al problema della trisezione dell'angolo e a quello della quadratura del cerchio, uno dei tre problemi classici della geometria greca. Questi tre problemi nacquero nel periodo classico della matematica greca (600 a.C. - 300 a.C.) e attraversarono tutta la storia della matematica. Il problema della duplicazione del cubo è giunto a noi sotto forma di mito. La prima testimonianza in merito è una lettera di Eratostene al re Tolomeo III citata, settecento anni più tardi, dal commentatore Eutocio di Ascalona. Vi si narra di un antico tragico che, mettendo in scena il re Minosse al cospetto del sepolcro in costruzione, di forma cubica, del re Glauco, disse: «piccolo sepolcro per un re: lo si faccia doppio conservandone la forma; si raddoppino, pertanto, tutti i lati». Eratostene, dopo aver rilevato che l'ordine dato era erroneo, perché raddoppiando i lati di un cubo se ne ottiene un altro con volume otto volte maggiore, riferisce che nacque tra gli studiosi il cosiddetto "problema della duplicazione del cubo". La seconda testimonianza, conosciuta come Problema di Delo, è dell'espositore Teone di Smirne. Egli, citando Eratostene, riporta che gli abitanti di Delo, avendo interrogato l'oracolo di Apollosul modo di liberarsi dalla peste, avessero ricevuto l'ordine di costruire un altare, di forma cubica, dal volume doppio rispetto a quello esistente. I problemi classici, così come tutti i problemi della matematica, non risultano ben posti se non dopo che si sia precisato l'insieme degli strumenti assegnati per la loro risoluzione. (it) 立方体倍積問題(りっぽうたいばいせきもんだい)は、三大作図問題の1つである。古代エジプト人、ギリシア人、インド人にも知られていた。 立方体倍積問題とは、一辺の長さがs、体積がV= s3のある立方体に対し、体積が2V、つまり一辺の長さがの立方体を与える問題である。この問題は、 ≈ 1.25992105が作図可能数ではないため、定規とコンパスだけでは作図が不可能であることが証明されている。 (ja) Podwojenie sześcianu, problem delijski – jeden z trzech, obok trysekcji kąta i kwadratury koła, wielkich problemów starożytnej matematyki greckiej, polegający na zbudowaniu sześcianu o objętości dwa razy większej niż dany. Legenda mówi, że w czasie zarazy na Delos wyrocznia delficka przekazała proroctwo Apollina, że choroba ustanie, gdy jego ołtarz w świątyni w Delfach zostanie powiększony dwukrotnie. Zrozumiano to w ten sposób, że należy dwukrotnie powiększyć objętość ołtarza, zachowując jego kształt sześcianu. Klasyczne rozwiązanie problemu przy pomocy cyrkla i linijki nie jest możliwe; problem może jednak być rozwiązany przy pomocy metod nieklasycznych, na przykład , i konchoidy Nikomedesa lub cysoidy Dioklesa. W języku algebry problem podwojenia sześcianu sprowadza się do zbudowania odcinka spełniającego równanie gdzie jest dane. Przyjmując za jednostkę, problem sprowadza się do zbudowania pierwiastka 3 stopnia z liczby 2. Nie jest to jednak możliwe: jest liczbą algebraiczną stopnia 3, podczas gdy teoria mówi, że dana liczba daje się skonstruować za pomocą cyrkla i linijki wtedy i tylko wtedy, gdy jej stopień nad ciałem liczb wymiernych jest naturalną potęgą liczby 2. (pl) Verdubbeling van de kubus is een van de drie beroemdste geometrische problemen die niet door constructie met passer en liniaal zijn op te lossen. Het probleem was bekend bij Griekse wiskundigen en al eerder bij Indische mathematici. Verdubbeling van de kubus houdt in bij een gegeven kubus met zijde en dus volume een nieuwe, grotere, kubus te construeren met volume en daardoor met zijde . De constructie van bij gegeven is met alleen een passer en een liniaal niet uitvoerbaar. Dit is bewezen door de Franse wiskundige Pierre-Laurent Wantzel in 1837. (nl) Deliska problemet eller kubens fördubbling är en omöjlig geometrisk konstruktion som mycket sysselsatte forntidens lärde och i vilken det gäller att med passare och ograderad linjal konstruera kanten av den kub eller tärning, vars volym är dubbelt så stor som en given kubs (duplicatio cubi). Plutarchos berättar att, då en pest härjade Aten, gav oraklet på Delos de rådfrågande det svaret att man för att farsoten skulle upphöra, borde "fördubbla" Apollons kubformade altare. För att få veta sidlängden på det blivande altaret vände man sig till Platon, vilken, ur stånd att besvara frågan, förklarade att det guden mindre åsyftade var att hans altare skulle fördubblas, utan snarare att grekerna skulle vinnlägga sig om geometrins studium. Emellertid visar det sig att det inte går att fördubbla kuben med hjälp av konstruktionerna i euklidisk geometri. Detta kan visas genom att formulera problemet algebraiskt: Kalla den givna kubens kant a och den söktas x; de respektive kubernas volymer blir då a ³ och x ³, och följande likhet kan uppställas: För att lösa uppgiften behöver man alltså kunna konstruera talet . Man kan dock visa att detta inte är ett , ty kroppsutvidgningen av de rationella talen med ett konstruerbart tal måste ha ett gradtal som är en tvåpotens, och gradtalet för kroppsutvidgningen är detsamma som talets minimalpolynom. Minimalpolynomet till är som har grad 3. (sv) A duplicação do cubo ou o problema de Delos é o problema de geometria que consiste em obter um método para, dada a aresta de um cubo, construir, com régua e compasso, a aresta do cubo cujo volume é o dobro do cubo inicial. (pt) Подвоєння куба або Делійська задача — класична антична задача на побудову циркулем та лінійкою ребра куба, об'єм якого вдвічі більший за об'єм заданого куба. Разом з трисекцією кута та квадратурою круга, є однією з найвідоміших нерозв'язних задач на побудову за допомогою циркуля та лінійки. (uk) 倍立方是古希腊数学里尺规作图领域當中的著名问题,和三等分角、化圓為方問題被並列為古希臘尺规作图三大难题。尺规作图是古希腊人的数学研究课题之一,是对具体的直尺和圆规画图可能性的抽象化,研究是否能用规定的作图法在有限步内达到给定的目标。倍立方问题的内容是: “能否用尺规作图的方法作出一立方体的稜长,使该立方体的体积等于一给定立方体的两倍?” 倍立方问题的实质是能否通过尺规作图从单位长度出发作出的问题。 三大難題提出后,在漫长的两千余年中,曾有众多的尝试,但没有人能够给出严格的答案。随着十九世纪群论和域论的发展,法国数学家首先利用伽罗瓦理论证明,三等分角問題的答案是否定的。运用类似的方法,可以证明倍立方问题的答案同样是否定的。具体来说,给定单位长度後,所有能够经由尺规作图达到的长度值被称为规矩数,而如果能够作出,那么就能做出不属于规矩数的长度,从而反证出通过尺规作图作出给定立方体体积两倍的立方体是不可能的。 如果不将手段局限在尺规作图法中,放宽限制或借助更多的工具的话,作出给定立方体体积两倍的立方体是可行的。 (zh) Удвоение куба — классическая античная задача на построение циркулем и линейкой ребра куба, объём которого вдвое больше объёма заданного куба. Наряду с трисекцией угла и квадратурой круга, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.Эти задачи сыграли важнейшую роль в истории математики. (ru)
dbo:thumbnail wiki-commons:Special:FilePath/01-Würfelverdoppelung-4.svg?width=300
dbo:wikiPageExternalLink https://web.archive.org/web/20080718193733/http:/mathforum.org/dr.math/faq/davies/cubedbl.htm https://www.youtube.com/watch%3Fv=O1sPvUr0YC0 http://www-history.mcs.st-and.ac.uk/HistTopics/Doubling_the_cube.html http://www.cut-the-knot.org/Curriculum/Geometry/Delian.shtml https://commons.wikimedia.org/wiki/File:01-W%C3%BCrfelverdoppelung-E-15-Animation.gif
dbo:wikiPageID 91110 (xsd:integer)
dbo:wikiPageLength 15143 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1122156373 (xsd:integer)
dbo:wikiPageWikiLink dbr:Cartesian_plane dbr:Power_of_2 dbr:Menaechmus dbr:Coordinate dbr:Delos dbr:Delphi dbr:Archytas dbr:Republic_(Plato) dbr:Cube dbr:Volume dbr:Degree_of_a_field_extension dbr:Degree_of_a_polynomial dbc:Cubic_irrational_numbers dbr:Intersection dbr:Line_segment dbr:Pseudomathematics dbc:Unsolvable_puzzles dbr:Analytic_geometry dbr:Mathematical_induction dbr:Mathematics dbr:Oracle dbr:Origin_(mathematics) dbr:Pappus_of_Alexandria dbr:Circles dbr:Equal_temperament dbr:Gauss's_lemma_(polynomial) dbr:Geometry dbr:Greek_mathematics dbr:Music_theory dbr:Conchoid_(mathematics) dbr:Constructible_number dbr:The_Republic_(Plato) dbr:Thomas_Heath_(classicist) dbr:Apollo dbr:Mathematics_of_paper_folding dbr:Parallel_(geometry) dbr:Major_third dbr:Squaring_the_circle dbr:Centre_(geometry) dbr:Wikimedia_Commons dbr:Coefficients dbr:Crank_(person) dbr:Irreducible_polynomial dbr:Minimal_polynomial_(field_theory) dbr:Philo_line dbc:Euclidean_plane_geometry dbr:Cube_root dbr:Cut-the-knot dbr:Eratosthenes dbr:Eudoxus_of_Cnidus dbr:Factorisation dbr:Field_(mathematics) dbc:Compass_and_straightedge_constructions dbc:History_of_geometry dbr:Hippocrates_of_Chios dbr:Logical_equivalence dbr:Mathematical_proof dbr:Edge_(geometry) dbr:Egyptian_mathematics dbr:Pierre_Wantzel dbr:Plato dbr:Plutarch dbr:Polynomial dbr:Cissoid_of_Diocles dbr:Field_extension dbr:Indian_mathematics dbr:Integer dbr:Neusis dbr:Octave dbr:Rational_number dbr:Real_number dbr:Sisyphus_(dialogue) dbr:Unit_cube dbr:Eutocius_of_Ascalon dbr:Neusis_construction dbr:Pandrosion dbr:Linear_factor dbr:Musical_interval dbr:Conic dbr:Quadratic_polynomial dbr:Pure_geometry dbr:Compass_and_straightedge dbr:Straightedge_and_compass dbr:Trisecting_the_angle dbr:File:01-Würfelverdoppelung-4.svg dbr:File:Doubling_the_cube.svg
dbp:id p/d034200 (en)
dbp:title Duplication of the cube (en)
dbp:wikiPageUsesTemplate dbt:Springer dbt:= dbt:Authority_control dbt:Circa dbt:Commons_category dbt:Efn dbt:Math dbt:Mvar dbt:Notelist dbt:R dbt:Reflist dbt:Rp dbt:Short_description dbt:OEIS2C dbt:Greek_mathematics dbt:Algebraic_numbers
dcterms:subject dbc:Cubic_irrational_numbers dbc:Unsolvable_puzzles dbc:Euclidean_plane_geometry dbc:Compass_and_straightedge_constructions dbc:History_of_geometry
gold:hypernym dbr:Problem
rdf:type owl:Thing yago:WikicatMathematicalProblems yago:Abstraction100002137 yago:AlgebraicNumber113730902 yago:Attribute100024264 yago:ComplexNumber113729428 yago:Condition113920835 yago:DefiniteQuantity113576101 yago:Difficulty114408086 yago:IrrationalNumber113730584 yago:Measure100033615 yago:Number113582013 yago:Problem114410605 yago:RealNumber113729902 dbo:Disease yago:State100024720 yago:WikicatAlgebraicNumbers
rdfs:comment Zdvojení krychle (také reduplikace krychle, duplikace krychle či délský problém) je jeden ze tří nejslavnějších antických konstrukčních problémů (zbylé dva jsou kvadratura kruhu a trisekce úhlu; souhrnně jsou nazývány Tři klasické problémy antické matematiky). Tyto úlohy byly formulovány již v 5. století př. n. l. a odolávaly po dlouhá staletí všem pokusům o vyřešení, než bylo v 19. století dokázáno, že jsou neřešitelné. (cs) مسألة مضاعفة المكعب (وتعرف أيضاً بمسألة ديليان) هي واحدة من ثلاث مسائل في الهندسة الرياضية التي لا يمكن حلها بإنشاءات الفرجار والمسطرة. وقد كانت هذه المسألة معروفة من قبل المصريين والإغريق والهنود. مضاعفة المكعب تعني أنه من أجل مكعب طول ضلعه s وحجمه V، المطلوب هو إنشاء مكعب جديد أكبر من الأول بحجم 2V وبالتالي يكون طول ضلع المكعب الجديد . المسألة معروفة بأنها مستحيلة الحل بإنشاءات الفرجار والمسطرة لأن من المستحيل إنشاء ضلع طوله بالمسطرة والفرجار. (ar) Ο Διπλασιασμός του κύβου (επίσης γνωστός ως πρόβλημα της Δήλου - Δήλιον πρόβλημα) είναι ένα από τα τρία γνωστά προβλήματα της αρχαιότητας που δεν είναι δυνατόν να λυθούν μόνο με κανόνα και διαβήτη. Ήταν γνωστό στους μαθηματικούς της αρχαιότητας στην Αίγυπτο, την Ελλάδα και την Ινδία. Το πρόβλημα συνίσταται στην κατασκευή ενός κύβου με διπλάσιο όγκο από ένα γνωστό κύβο πλευράς α. Ο απλός διπλασιασμός του μήκους της ακμής του κύβου οδηγεί σε οχταπλασιασμό του όγκου. (el) La duplicación del cubo, también conocida como el problema de Delos,​ describe una cuestión geométrica que consiste en construir un cubo que tenga el doble de volumen que un cubo dado. Es uno de los tres problemas clásicos de la matemática antigua, que ya había sido formulado en el siglo V a. C. en la Antigua Grecia. Sería en el siglo XIX cuando se demostró que el problema no se puede resolver utilizando exclusivamente regla y compás. (es) Fadhb chlasaiceach sa mhatamaitic, ciúb a thógáil de thoirt atá dhá oiread toirt ciúib ar leith, gan ach rialóir is compáis a úsáid mar uirlisí chun taobh an chiúib nua a chinneadh. Tá matamaiticeoirí ag plé léi ón 5ú céad RC, ach níor cruthaíodh gur fadhb dho-dhéanta í go dtí an 19ú céad. Saothraíodh tuilleadh cruthuithe ar a dodhéantacht le teicníochtaí nua-aoiseacha na grúptheoirice. (ga) La duplication du cube est un problème classique de mathématiques. C'est un problème géométrique, faisant partie des trois grands problèmes de l'Antiquité, avec la quadrature du cercle et la trisection de l'angle. Ce problème consiste à construire un cube dont le volume est deux fois plus grand qu'un cube donné, à l'aide d'une règle et d'un compas. Ce problème revient à multiplier l'arête du cube par la racine cubique de 2, la constante délienne. Il est impossible de construire un tel cube à la règle et au compas (théorème de Wantzel). (fr) 입방배적문제(立方倍積問題,Doubling the cube)는 역사적으로 델리안 문제(Delian problem) 또는 델로스 문제라고도 불린다. 원적문제, 각의 3등분 문제와 함께 고대 그리스 시절부터 제기되어 온 기하학의 3대 문제중 하나로서, 피에르 방첼은 1837년에 2개의 입방체가 구성 가능하지 않다는 것을 증명했다. 즉 컴퍼스와 자만으로 작도가 불가능한 문제임이 증명되었다. (ko) 立方体倍積問題(りっぽうたいばいせきもんだい)は、三大作図問題の1つである。古代エジプト人、ギリシア人、インド人にも知られていた。 立方体倍積問題とは、一辺の長さがs、体積がV= s3のある立方体に対し、体積が2V、つまり一辺の長さがの立方体を与える問題である。この問題は、 ≈ 1.25992105が作図可能数ではないため、定規とコンパスだけでは作図が不可能であることが証明されている。 (ja) Verdubbeling van de kubus is een van de drie beroemdste geometrische problemen die niet door constructie met passer en liniaal zijn op te lossen. Het probleem was bekend bij Griekse wiskundigen en al eerder bij Indische mathematici. Verdubbeling van de kubus houdt in bij een gegeven kubus met zijde en dus volume een nieuwe, grotere, kubus te construeren met volume en daardoor met zijde . De constructie van bij gegeven is met alleen een passer en een liniaal niet uitvoerbaar. Dit is bewezen door de Franse wiskundige Pierre-Laurent Wantzel in 1837. (nl) A duplicação do cubo ou o problema de Delos é o problema de geometria que consiste em obter um método para, dada a aresta de um cubo, construir, com régua e compasso, a aresta do cubo cujo volume é o dobro do cubo inicial. (pt) Подвоєння куба або Делійська задача — класична антична задача на побудову циркулем та лінійкою ребра куба, об'єм якого вдвічі більший за об'єм заданого куба. Разом з трисекцією кута та квадратурою круга, є однією з найвідоміших нерозв'язних задач на побудову за допомогою циркуля та лінійки. (uk) 倍立方是古希腊数学里尺规作图领域當中的著名问题,和三等分角、化圓為方問題被並列為古希臘尺规作图三大难题。尺规作图是古希腊人的数学研究课题之一,是对具体的直尺和圆规画图可能性的抽象化,研究是否能用规定的作图法在有限步内达到给定的目标。倍立方问题的内容是: “能否用尺规作图的方法作出一立方体的稜长,使该立方体的体积等于一给定立方体的两倍?” 倍立方问题的实质是能否通过尺规作图从单位长度出发作出的问题。 三大難題提出后,在漫长的两千余年中,曾有众多的尝试,但没有人能够给出严格的答案。随着十九世纪群论和域论的发展,法国数学家首先利用伽罗瓦理论证明,三等分角問題的答案是否定的。运用类似的方法,可以证明倍立方问题的答案同样是否定的。具体来说,给定单位长度後,所有能够经由尺规作图达到的长度值被称为规矩数,而如果能够作出,那么就能做出不属于规矩数的长度,从而反证出通过尺规作图作出给定立方体体积两倍的立方体是不可能的。 如果不将手段局限在尺规作图法中,放宽限制或借助更多的工具的话,作出给定立方体体积两倍的立方体是可行的。 (zh) Удвоение куба — классическая античная задача на построение циркулем и линейкой ребра куба, объём которого вдвое больше объёма заданного куба. Наряду с трисекцией угла и квадратурой круга, является одной из самых известных неразрешимых задач на построение с помощью циркуля и линейки.Эти задачи сыграли важнейшую роль в истории математики. (ru) La duplicació del cub (també conegut com a problema delià) és un dels tres problemes irresolubles mitjançant una construcció amb regle i compàs de la geometria grega. La duplicació del cub ha estat un dels problemes més importants i influents de la història de les matemàtiques, ja que molts dels intents per solucionar-lo han desembocat en l'aparició i desenvolupament de moltes eines i teories matemàtiques importants. (ca) Die Würfelverdoppelung, auch bekannt als Delisches Problem, bezeichnet die geometrische Aufgabe, zu einem gegebenen Würfel einen zweiten Würfel mit dem doppelten Volumen zu konstruieren. Das Problem gehört zu den drei „klassischen Problemen der antiken Mathematik“ und wurde bereits im 5. Jahrhundert v. Chr. im antiken Griechenland formuliert. (de) Doubling the cube, also known as the Delian problem, is an ancient geometric problem. Given the edge of a cube, the problem requires the construction of the edge of a second cube whose volume is double that of the first. As with the related problems of squaring the circle and trisecting the angle, doubling the cube is now known to be impossible to construct by using only a compass and straightedge, but even in ancient times solutions were known that employed other tools. (en) Il problema della duplicazione del cubo, ossia la costruzione di un cubo avente volume doppio rispetto a quello di un cubo di spigolo dato, costituisce, assieme al problema della trisezione dell'angolo e a quello della quadratura del cerchio, uno dei tre problemi classici della geometria greca. Questi tre problemi nacquero nel periodo classico della matematica greca (600 a.C. - 300 a.C.) e attraversarono tutta la storia della matematica. (it) Podwojenie sześcianu, problem delijski – jeden z trzech, obok trysekcji kąta i kwadratury koła, wielkich problemów starożytnej matematyki greckiej, polegający na zbudowaniu sześcianu o objętości dwa razy większej niż dany. Legenda mówi, że w czasie zarazy na Delos wyrocznia delficka przekazała proroctwo Apollina, że choroba ustanie, gdy jego ołtarz w świątyni w Delfach zostanie powiększony dwukrotnie. Zrozumiano to w ten sposób, że należy dwukrotnie powiększyć objętość ołtarza, zachowując jego kształt sześcianu. (pl) Deliska problemet eller kubens fördubbling är en omöjlig geometrisk konstruktion som mycket sysselsatte forntidens lärde och i vilken det gäller att med passare och ograderad linjal konstruera kanten av den kub eller tärning, vars volym är dubbelt så stor som en given kubs (duplicatio cubi). Plutarchos berättar att, då en pest härjade Aten, gav oraklet på Delos de rådfrågande det svaret att man för att farsoten skulle upphöra, borde "fördubbla" Apollons kubformade altare. För att få veta sidlängden på det blivande altaret vände man sig till Platon, vilken, ur stånd att besvara frågan, förklarade att det guden mindre åsyftade var att hans altare skulle fördubblas, utan snarare att grekerna skulle vinnlägga sig om geometrins studium. Emellertid visar det sig att det inte går att fördubbla ku (sv)
rdfs:label مضاعفة المكعب (ar) Duplicació del cub (ca) Zdvojení krychle (cs) Würfelverdoppelung (de) Διπλασιασμός του κύβου (el) Duplicación del cubo (es) Doubling the cube (en) Dúbláil an chiúib (ga) Duplicazione del cubo (it) Duplication du cube (fr) 입방배적문제 (ko) 立方体倍積問題 (ja) Verdubbeling van de kubus (nl) Podwojenie sześcianu (pl) Duplicação do cubo (pt) Удвоение куба (ru) Deliska problemet (sv) Подвоєння куба (uk) 倍立方 (zh)
owl:sameAs freebase:Doubling the cube yago-res:Doubling the cube http://d-nb.info/gnd/4149044-7 wikidata:Doubling the cube dbpedia-als:Doubling the cube dbpedia-ar:Doubling the cube dbpedia-ca:Doubling the cube dbpedia-cs:Doubling the cube dbpedia-de:Doubling the cube dbpedia-el:Doubling the cube dbpedia-es:Doubling the cube dbpedia-et:Doubling the cube dbpedia-fa:Doubling the cube dbpedia-fi:Doubling the cube dbpedia-fr:Doubling the cube dbpedia-ga:Doubling the cube dbpedia-he:Doubling the cube dbpedia-hu:Doubling the cube http://hy.dbpedia.org/resource/Խորանարդի_կրկնապատկում dbpedia-it:Doubling the cube dbpedia-ja:Doubling the cube dbpedia-ka:Doubling the cube dbpedia-ko:Doubling the cube dbpedia-nl:Doubling the cube dbpedia-nn:Doubling the cube dbpedia-no:Doubling the cube dbpedia-pl:Doubling the cube dbpedia-pt:Doubling the cube dbpedia-ro:Doubling the cube dbpedia-ru:Doubling the cube dbpedia-sk:Doubling the cube dbpedia-sl:Doubling the cube dbpedia-sr:Doubling the cube dbpedia-sv:Doubling the cube http://ta.dbpedia.org/resource/கனசதுரத்தை_இரட்டிப்பாக்குதல் dbpedia-tr:Doubling the cube dbpedia-uk:Doubling the cube dbpedia-zh:Doubling the cube https://global.dbpedia.org/id/22aXv
prov:wasDerivedFrom wikipedia-en:Doubling_the_cube?oldid=1122156373&ns=0
foaf:depiction wiki-commons:Special:FilePath/01-Würfelverdoppelung-4.svg wiki-commons:Special:FilePath/Doubling_the_cube.svg
foaf:isPrimaryTopicOf wikipedia-en:Doubling_the_cube
is dbo:notableIdea of dbr:Archytas
is dbo:wikiPageDisambiguates of dbr:Doubling
is dbo:wikiPageRedirects of dbr:Doubling_the_Cube dbr:Delian_problem dbr:Cube_root_of_two dbr:Duplicate_the_cube dbr:Duplicating_the_cube dbr:Duplication_of_the_Cube dbr:Duplication_of_the_cube dbr:Doubing_the_cube dbr:Double_the_cube dbr:Doubling_a_cube dbr:Doubling_of_the_cube dbr:∛2 dbr:Cube_duplication dbr:Cube_root_of_2 dbr:Delian_constant
is dbo:wikiPageWikiLink of dbr:Proof_of_impossibility dbr:Menaechmus dbr:Archytas dbr:List_of_numbers dbr:Cube dbr:Curve dbr:David_Richeson dbr:Definable_real_number dbr:Doubling_the_Cube dbr:Indiana_Pi_Bill dbr:Intercept_theorem dbr:Problem_of_Apollonius dbr:Pseudomathematics dbr:Timeline_of_algebra dbr:Geometric_Constructions dbr:Geometric_Origami dbr:Nicomedes_(mathematician) dbr:Pappus_of_Alexandria dbr:Quadratrix dbr:Timeline_of_geometry dbr:Timeline_of_mathematics dbr:1837_in_science dbr:Galois_theory dbr:Greek_mathematics dbr:Constructible_number dbr:Angle_trisection dbr:Straightedge_and_compass_construction dbr:Delian_problem dbr:Mathematics_of_paper_folding dbr:Philo_of_Byzantium dbr:Squaring_the_circle dbr:Mathematical_Cranks dbr:Truncated_triangular_trapezohedron dbr:James_Henry_Weaver dbr:Philo_line dbr:Albrecht_Dürer dbr:Cube_(algebra) dbr:Cube_root dbr:Cube_root_of_two dbr:Cubic_equation dbr:Field_(mathematics) dbr:Balanos_Vasilopoulos dbr:Parabola dbr:Diocles_(mathematician) dbr:Foundations_of_mathematics dbr:Hilbert's_third_problem dbr:Doubling dbr:Kampyle_of_Eudoxus dbr:Kosmas_Balanos dbr:Hyperbola dbr:Duplication dbr:The_Ancient_Tradition_of_Geometric_Problems dbr:Pierre_Wantzel dbr:Poncelet–Steiner_theorem dbr:Cissoid_of_Diocles dbr:Origami dbr:Theon_of_Smyrna dbr:Unit_cube dbr:Euclidean_geometry dbr:Timeline_of_women_in_mathematics dbr:Neusis_construction dbr:Wilbur_Knorr dbr:The_Parrot's_Theorem dbr:Trisectrix dbr:Pandrosion dbr:Why_Beauty_Is_Truth dbr:Duplicate_the_cube dbr:Duplicating_the_cube dbr:Duplication_of_the_Cube dbr:Duplication_of_the_cube dbr:Doubing_the_cube dbr:Double_the_cube dbr:Doubling_a_cube dbr:Doubling_of_the_cube dbr:∛2 dbr:Cube_duplication dbr:Cube_root_of_2 dbr:Delian_constant
is dbp:notableIdeas of dbr:Archytas
is foaf:primaryTopic of wikipedia-en:Doubling_the_cube