Profinite group (original) (raw)

About DBpedia

In der Mathematik ist eine proendliche oder profinite Gruppe eine topologische Gruppe G, die der inverse (projektive) Limes eines Systems von endlichen Gruppen ist. Dieser Limes wird in der Kategorie der topologischen Gruppen gebildet; hierbei betrachtet man jede endliche Gruppe als topologische Gruppe mit der diskreten Topologie. Eine topologische Gruppe ist genau dann proendlich, wenn sie Hausdorffsch, kompakt und total unzusammenhängend ist.

Property Value
dbo:abstract In der Mathematik ist eine proendliche oder profinite Gruppe eine topologische Gruppe G, die der inverse (projektive) Limes eines Systems von endlichen Gruppen ist. Dieser Limes wird in der Kategorie der topologischen Gruppen gebildet; hierbei betrachtet man jede endliche Gruppe als topologische Gruppe mit der diskreten Topologie. Eine topologische Gruppe ist genau dann proendlich, wenn sie Hausdorffsch, kompakt und total unzusammenhängend ist. (de) En matemática, un grupo pro-finito G es un grupo que, en cierto modo, está muy "próximo" a ser finito. (es) In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. Properties of the profinite group are generally speaking uniform properties of the system. For example, the profinite group is finitely generated (as a topological group) if and only if there exists such that every group in the system can be generated by elements. Many theorems about finite groups can be readily generalised to profinite groups; examples are Lagrange's theorem and the Sylow theorems. To construct a profinite group one needs a system of finite groups and group homomorphisms between them. Without loss of generality, these homomorphisms can be assumed to be surjective, in which case the finite groups will appear as quotient groups of the resulting profinite group; in a sense, these quotients approximate the profinite group. Important examples of profinite groups are the additive groups of p-adic integers and the Galois groups of infinite-degree field extensions. Every profinite group is compact and totally disconnected. A non-compact generalization of the concept is that of locally profinite groups. Even more general are the totally disconnected groups. (en) En théorie des groupes, un groupe profini est un groupe topologique obtenu comme limite projective de groupes finis discrets. La notion de groupe profini est particulièrement utile en théorie de Galois, pour pouvoir travailler avec des extensions infinies. Comme plus généralement en théorie des catégories, cette limite projective est uniquement définie à unique isomorphisme près. Elle peut être interprétée comme objet final d'une bonne catégorie. (fr) 수학에서 사유한군(射有限群, 영어: profinite group)은 유한군의 으로 얻어지는 위상군이다. (ko) In matematica, un gruppo profinito è un gruppo topologico che si può costruire con un certo processo di limite a partire da gruppi finiti. Molti teoremi validi per i gruppi finiti, quali i teoremi di Sylow, ammettono generalizzazioni naturali ai gruppi profiniti. Formalmente, un gruppo profinito si può definire come un gruppo topologico T2, compatto con un sistema di intorni di fatto di sottogruppi normali. (it) 数学において射有限群(しゃゆうげんぐん、英語: pro-finite group)あるいは副有限群(ふくゆうげんぐん)は、有限群の射影系の極限になっているような位相群である。ガロア群やp-進整数を係数とする代数群など、数論的に興味深い様々な群が射有限群の構造を持つ。 射有限群は完全不連結でコンパクトなハウスドルフ位相群として定義される。同値な定義として、離散有限群の成す射影系(逆系)の射影極限(逆極限)として得られる位相群に同型であるような群を射有限群と定めるいうこともできる。 (ja) In de groepentheorie, een deelgebied van de wiskunde, is een profiniete groep een topologische groep die in zekere zin wordt samengesteld uit eindige groepen. Profinieet groepen hebben veel eigenschappen gemeen met hun eindige quotiënten. (nl) У математиці проскінченною групою називається топологічна група, яка є проєктивною границею скінченних груп. Для них існують узагальнення багатьох властивостей скінченних груп, зокрема теореми Лагранжа і Силова. Некомпактним узагальненням проскінченних груп є локально проскінченні групи. (uk) Проконечная группа — топологическая группа, являющаяся проективным пределом системы конечных групп , , снабженных дискретной топологией ( — предупорядоченное множество). (ru)
dbo:wikiPageExternalLink http://websites.math.leidenuniv.nl/algebra/Lenstra-Profinite.pdf
dbo:wikiPageID 24266 (xsd:integer)
dbo:wikiPageLength 17285 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1119819286 (xsd:integer)
dbo:wikiPageWikiLink dbr:Product_topology dbr:Pro-p_group dbr:Algebraic_topology dbr:Index_of_a_subgroup dbr:Inverse_Galois_problem dbr:Lifting_property dbr:Totally_disconnected_group dbr:Compact_space dbr:Mathematical_Research_Institute_of_Oberwolfach dbr:Mathematics dbr:Nikolay_Nikolov_(mathematician) dbr:Normal_subgroup dbr:Quotient_group dbr:Galois_theory dbr:Generating_set_of_a_group dbr:Profinite_integer dbr:Probabilities dbr:Totally_disconnected dbr:Locally_cyclic_group dbr:Lou_van_den_Dries dbr:Stone_space dbr:Closed_set dbr:Compact_group dbr:Dense_set dbr:Fundamental_group dbr:Proceedings_of_the_American_Mathematical_Society dbr:Pseudo_algebraically_closed_field dbr:Subgroup dbc:Topological_groups dbr:Topological_group dbr:Dual_(category_theory) dbr:Galois_extension dbr:Galois_group dbr:Haar_measure dbr:Hausdorff_completion dbr:Hausdorff_space dbr:Locally_finite_group dbr:Locally_profinite_group dbr:Alexander_Lubotzky dbr:Algebraic_variety dbr:Dan_Segal dbr:Field_automorphism dbr:Finite_field dbc:Infinite_group_theory dbr:P-adic_number dbr:Direct_limit dbr:Directed_set dbr:Isomorphism dbr:Rational_function dbr:Residual_property_(mathematics) dbr:Residually_finite_group dbr:Group_homomorphism dbr:Inverse_limit dbr:Jean-Pierre_Serre dbr:Prime_number dbr:Abelian_group dbr:Absolute_Galois_group dbr:Lagrange's_theorem_(group_theory) dbr:Surjective_function dbr:Sylow_theorems dbr:Cohomological_dimension dbr:Discrete_topology dbr:Torsion_group dbr:Direct_product_of_groups dbr:Discrete_space dbr:Bulletin_of_the_American_Mathematical_Society dbr:CW_complex dbr:Pontryagin_duality dbr:Classification_of_finite_simple_groups dbr:Field_extension dbr:Filtered_category dbr:Continuous_function_(topology) dbr:Factor_group dbr:Integral dbr:Natural_number dbr:Category_theory dbr:Section_(category_theory) dbr:Étale_fundamental_group dbr:Inverse_system dbr:Wolfgang_Krull dbr:Subspace_topology dbr:Exact_functor dbr:Finite_group dbr:Universal_property dbr:Partial_order dbr:Totally_disconnected_space dbr:Springer-Verlag dbr:Finitely_generated_subgroup dbr:Quotient_topology dbr:Profinite_integers dbr:Locally_finite_rooted_tree dbr:Subspace_(topology) dbr:Ind-group
dbp:wikiPageUsesTemplate dbt:Citation dbt:Cite_book dbt:Harvtxt dbt:Reflist
dct:subject dbc:Topological_groups dbc:Infinite_group_theory
gold:hypernym dbr:Groups
rdf:type yago:WikicatTopologicalGroups yago:Abstraction100002137 yago:Group100031264 dbo:Event
rdfs:comment In der Mathematik ist eine proendliche oder profinite Gruppe eine topologische Gruppe G, die der inverse (projektive) Limes eines Systems von endlichen Gruppen ist. Dieser Limes wird in der Kategorie der topologischen Gruppen gebildet; hierbei betrachtet man jede endliche Gruppe als topologische Gruppe mit der diskreten Topologie. Eine topologische Gruppe ist genau dann proendlich, wenn sie Hausdorffsch, kompakt und total unzusammenhängend ist. (de) En matemática, un grupo pro-finito G es un grupo que, en cierto modo, está muy "próximo" a ser finito. (es) En théorie des groupes, un groupe profini est un groupe topologique obtenu comme limite projective de groupes finis discrets. La notion de groupe profini est particulièrement utile en théorie de Galois, pour pouvoir travailler avec des extensions infinies. Comme plus généralement en théorie des catégories, cette limite projective est uniquement définie à unique isomorphisme près. Elle peut être interprétée comme objet final d'une bonne catégorie. (fr) 수학에서 사유한군(射有限群, 영어: profinite group)은 유한군의 으로 얻어지는 위상군이다. (ko) In matematica, un gruppo profinito è un gruppo topologico che si può costruire con un certo processo di limite a partire da gruppi finiti. Molti teoremi validi per i gruppi finiti, quali i teoremi di Sylow, ammettono generalizzazioni naturali ai gruppi profiniti. Formalmente, un gruppo profinito si può definire come un gruppo topologico T2, compatto con un sistema di intorni di fatto di sottogruppi normali. (it) 数学において射有限群(しゃゆうげんぐん、英語: pro-finite group)あるいは副有限群(ふくゆうげんぐん)は、有限群の射影系の極限になっているような位相群である。ガロア群やp-進整数を係数とする代数群など、数論的に興味深い様々な群が射有限群の構造を持つ。 射有限群は完全不連結でコンパクトなハウスドルフ位相群として定義される。同値な定義として、離散有限群の成す射影系(逆系)の射影極限(逆極限)として得られる位相群に同型であるような群を射有限群と定めるいうこともできる。 (ja) In de groepentheorie, een deelgebied van de wiskunde, is een profiniete groep een topologische groep die in zekere zin wordt samengesteld uit eindige groepen. Profinieet groepen hebben veel eigenschappen gemeen met hun eindige quotiënten. (nl) У математиці проскінченною групою називається топологічна група, яка є проєктивною границею скінченних груп. Для них існують узагальнення багатьох властивостей скінченних груп, зокрема теореми Лагранжа і Силова. Некомпактним узагальненням проскінченних груп є локально проскінченні групи. (uk) Проконечная группа — топологическая группа, являющаяся проективным пределом системы конечных групп , , снабженных дискретной топологией ( — предупорядоченное множество). (ru) In mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. Properties of the profinite group are generally speaking uniform properties of the system. For example, the profinite group is finitely generated (as a topological group) if and only if there exists such that every group in the system can be generated by elements. Many theorems about finite groups can be readily generalised to profinite groups; examples are Lagrange's theorem and the Sylow theorems. (en)
rdfs:label Proendliche Gruppe (de) Grupo profinito (es) Groupe profini (fr) Gruppo profinito (it) 사유한군 (ko) 射有限群 (ja) Profinite group (en) Profiniete groep (nl) Проконечная группа (ru) Проскінченна група (uk)
owl:sameAs freebase:Profinite group yago-res:Profinite group wikidata:Profinite group dbpedia-de:Profinite group dbpedia-es:Profinite group dbpedia-fr:Profinite group dbpedia-he:Profinite group dbpedia-it:Profinite group dbpedia-ja:Profinite group dbpedia-ko:Profinite group dbpedia-nl:Profinite group dbpedia-ru:Profinite group dbpedia-tr:Profinite group dbpedia-uk:Profinite group https://global.dbpedia.org/id/SCqe
prov:wasDerivedFrom wikipedia-en:Profinite_group?oldid=1119819286&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Profinite_group
is dbo:wikiPageRedirects of dbr:Procyclic_group dbr:Krull_topology dbr:Pro-finite dbr:Pro-finite_group dbr:Profinite_completion dbr:Profinite_groups dbr:Profinite_topology dbr:Projective_profinite_group
is dbo:wikiPageWikiLink of dbr:Procyclic_group dbr:Pro-p_group dbr:John_Stuart_Wilson dbr:Ind-completion dbr:Iwasawa_algebra dbr:Totally_disconnected_group dbr:Compact_space dbr:Anabelian_geometry dbr:Fundamental_theorem_of_Galois_theory dbr:Congruence_subgroup dbr:Core_(group_theory) dbr:Profinite_integer dbr:Profinite dbr:László_Pyber dbr:Stone_space dbr:Compact_group dbr:Embedding_problem dbr:Kummer_theory dbr:Pseudo_algebraically_closed_field dbr:Topological_group dbr:Wilfried_Brauer dbr:Galois_cohomology dbr:Galois_group dbr:Hausdorff_completion dbr:Locally_profinite_group dbr:Supernatural_number dbr:Alan_Reid_(mathematician) dbr:Finite_field dbr:Glossary_of_field_theory dbr:Zoé_Chatzidakis dbr:Procyclic dbr:Residual_property_(mathematics) dbr:Residually_finite_group dbr:Grothendieck–Teichmüller_group dbr:Atiyah–Segal_completion_theorem dbr:Cover_(algebra) dbr:Absolute_Galois_group dbr:Cofinal_(mathematics) dbr:Moduli_stack_of_formal_group_laws dbr:Reductive_group dbr:Burnside_category dbr:Class_field_theory dbr:Class_formation dbr:Fiber_functor dbr:Grigorchuk_group dbr:Grothendieck's_Galois_theory dbr:Group_theory dbr:Serge_Lang dbr:Séminaire_Nicolas_Bourbaki_(1950–1959) dbr:Séminaire_Nicolas_Bourbaki_(1960–1969) dbr:Étale_fundamental_group dbr:Krull dbr:Lyndon–Hochschild–Serre_spectral_sequence dbr:Finite_group dbr:Five-term_exact_sequence dbr:Totally_disconnected_space dbr:P-adic_L-function dbr:Peter–Weyl_theorem dbr:Prüfer_rank dbr:Tannakian_formalism dbr:Krull_topology dbr:Pro-finite dbr:Pro-finite_group dbr:Profinite_completion dbr:Profinite_groups dbr:Profinite_topology dbr:Projective_profinite_group
is foaf:primaryTopic of wikipedia-en:Profinite_group