Line bundle (original) (raw)

About DBpedia

数学における直線束(ちょくせんそく、英: line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 1 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。1×1 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、1×1 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。

Property Value
dbo:abstract In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a vector bundle of rank 1. Line bundles are specified by choosing a one-dimensional vector space for each point of the space in a continuous manner. In topological applications, this vector space is usually real or complex. The two cases display fundamentally different behavior because of the different topological properties of real and complex vector spaces: If the origin is removed from the real line, then the result is the set of 1×1 invertible real matrices, which is homotopy-equivalent to a discrete two-point space by contracting the positive and negative reals each to a point; whereas removing the origin from the complex plane yields the 1×1 invertible complex matrices, which have the homotopy type of a circle. From the perspective of homotopy theory, a real line bundle therefore behaves much the same as a fiber bundle with a two-point fiber, that is, like a double cover. A special case of this is the orientable double cover of a differentiable manifold, where the corresponding line bundle is the determinant bundle of the tangent bundle (see below). The Möbius strip corresponds to a double cover of the circle (the θ → 2θ mapping) and by changing the fiber, can also be viewed as having a two-point fiber, the unit interval as a fiber, or the real line. Complex line bundles are closely related to circle bundles. There are some celebrated ones, for example the Hopf fibrations of spheres to spheres. In algebraic geometry, an invertible sheaf (i.e., locally free sheaf of rank one) is often called a line bundle. Every line bundle arises from a divisor with the following conditions (I) If X is reduced and irreducible scheme, then every line bundle comes from a divisor. (II) If X is projective scheme then the same statement holds. (en) En mathématiques, un fibré en droites est une construction qui décrit une droite attachée en chaque point d'un espace. Par exemple, une courbe dans le plan possède une tangente en chaque point, et si la courbe est suffisamment lisse alors la tangente évolue de manière « continue » lorsqu'on se déplace sur la courbe. De manière plus formelle on peut définir un fibré en droites comme un fibré vectoriel de rang 1. Le langage des fibrés en droites est utilisé en topologie et en géométrie algébrique, mais il apparaît aussi en géométrie différentielle et donc dans les domaines de la physique qui utilisent ces outils, en particulier les théories de jauges. L'intérêt de se focaliser sur les fibrés en droites c'est que dans bien des cas les invariants ou les propriétés de constructions plus élaborées (par exemple, des fibrés vectoriels) se calculent ou s'obtiennent à partir des invariants ou propriétés correspondants sur les fibrés en droites : c'est le principe de décomposition (voir plus bas), qui prend la forme particulière du pour les fibrés holomorphes sur le plan projectif complexe. Les fibrés en droites constituent donc les briques de bases de la théorie des fibrés vectoriels. (fr) 数学における直線束(ちょくせんそく、英: line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 1 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。1×1 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、1×1 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。 (ja) Em matemática, um fibrado de linhas expressa o conceito de uma linha que varia de ponto a ponto do espaço. Por exemplo uma curva no plano tendo uma linha tangente em cada ponto determina uma linha variante: o fibrado tangente é um modo de organizar estas. Mais formalmente, em topologia algébrica e topologia diferencial um fibrado de linhas é definido como um fibrado vectorial de ordem 1. Existe uma diferença evidente entre fibrados de linhas reais monodimensionais (como já descrito) e fibrados de linhas complexos monodimensionais. De fato a topologia das matrizes reais 1×1 invertíveis e matrizes complexas é inteiramente diferente: a primeira delas é uma homotopia espacial equivalente a um espaço discreto de dois pontos (reais positivos e negativos contraidos), enquanto o segundo tem o tipo homotópico de um círculo. Um fibrado de linhas real está entretanto no cerne da teoria de homotopia assim como um fibrado com um fibrado de dois pontos - uma cobertura dupla. Isto relembra a cobertura dupla orientada sobre uma variedade diferenciável: na verdade esse é um caso especial no qual o fibrado de linhas é o fibrado determinante (produto exterior superior) do fibrado tangente. A fita de Möbius corresponde à dupla cobertura do círculo (o mapeamento θ → 2θ) e pode ser visto como se nós tivéssemos um fibrado de dois pontos, o intervalo unitário ou a linha real: os dados são equivalentes. No caso do fibrado de linhas complexo, nós estamos procurando, de fato, também por fibrados circulares. Existem alguns celebrados, por exemplo as fibrações de Hopf de esferas para esferas. (pt)
dbo:wikiPageExternalLink http://www.maths.adelaide.edu.au/michael.murray/line_bundles.pdf https://books.google.com/books%3Fid=4pieAwAAQBAJ&printsec=frontcover&dq=isbn:9780821814291&hl=en&sa=X&ved=0ahUKEwis462l7c7jAhUCG80KHa44B_oQ6AEIKjAA%23v=onepage&q=%22Line%20bundle%22&f=false
dbo:wikiPageID 361366 (xsd:integer)
dbo:wikiPageLength 11572 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID 1076237183 (xsd:integer)
dbo:wikiPageWikiLink dbr:Projective_space dbr:Quaternion dbr:Robin_Hartshorne dbr:Algebraic_topology dbr:Hopf_fibration dbr:Characteristic_class dbr:Curve dbr:Invertible_sheaf dbr:Stiefel–Whitney_class dbr:Contractible dbr:Mathematics dbr:Smooth_structure dbr:Tangent_bundle dbr:Classifying_space dbr:Möbius_strip dbr:Complex_manifold dbr:Splitting_principle dbr:Tangent dbc:Vector_bundles dbr:Pontryagin_class dbr:Algebraic_geometry dbr:Ample_line_bundle dbc:Algebraic_topology dbc:Differential_topology dbr:Exterior_power dbr:Fiber_bundle dbr:Finitely_generated_module dbr:Differential_topology dbr:Discrete_two-point_space dbr:Double_cover_(topology) dbr:Kodaira_embedding_theorem dbr:Lefschetz_pencil dbr:Tensor_density dbr:Projective_module dbc:Homotopy_theory dbr:Group_action_(mathematics) dbr:Invertible dbr:Cotangent_bundle dbr:Tensor_product dbr:Chern_class dbr:Homogeneous_coordinates dbr:Homotopy dbr:Homotopy_theory dbr:Differentiable_manifold dbr:CW_complex dbr:Sphere dbr:Circle_bundle dbr:Unit_interval dbr:Orientable_manifold dbr:Sheaf_(mathematics) dbr:Smooth_manifold dbr:Vector_bundle dbr:I-bundle dbr:Line dbr:Principal_bundle dbr:Universal_property dbr:Stiefel-Whitney_class dbr:Orientable_double_cover dbr:Exponential_sequence dbr:Holomorphic_line_bundle dbr:Locally_free_sheaf
dbp:wikiPageUsesTemplate dbt:ISBN dbt:Main dbt:Reflist dbt:See_also dbt:Short_description
dct:subject dbc:Vector_bundles dbc:Algebraic_topology dbc:Differential_topology dbc:Homotopy_theory
rdf:type owl:Thing yago:WikicatVectorBundles yago:Abstraction100002137 yago:Collection107951464 yago:Group100031264 yago:Package108008017
rdfs:comment 数学における直線束(ちょくせんそく、英: line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 1 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。1×1 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、1×1 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。 (ja) In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a vector bundle of rank 1. Complex line bundles are closely related to circle bundles. There are some celebrated ones, for example the Hopf fibrations of spheres to spheres. Every line bundle arises from a divisor with the following conditions (en) En mathématiques, un fibré en droites est une construction qui décrit une droite attachée en chaque point d'un espace. Par exemple, une courbe dans le plan possède une tangente en chaque point, et si la courbe est suffisamment lisse alors la tangente évolue de manière « continue » lorsqu'on se déplace sur la courbe. De manière plus formelle on peut définir un fibré en droites comme un fibré vectoriel de rang 1. Le langage des fibrés en droites est utilisé en topologie et en géométrie algébrique, mais il apparaît aussi en géométrie différentielle et donc dans les domaines de la physique qui utilisent ces outils, en particulier les théories de jauges. (fr) Em matemática, um fibrado de linhas expressa o conceito de uma linha que varia de ponto a ponto do espaço. Por exemplo uma curva no plano tendo uma linha tangente em cada ponto determina uma linha variante: o fibrado tangente é um modo de organizar estas. Mais formalmente, em topologia algébrica e topologia diferencial um fibrado de linhas é definido como um fibrado vectorial de ordem 1. No caso do fibrado de linhas complexo, nós estamos procurando, de fato, também por fibrados circulares. Existem alguns celebrados, por exemplo as fibrações de Hopf de esferas para esferas. (pt)
rdfs:label Geradenbündel (Faserbündel) (de) Fibré en droites (fr) Line bundle (en) 선다발 (ko) 直線束 (ja) Fibrado de linhas (pt)
rdfs:seeAlso dbr:Quillen_metric
owl:sameAs freebase:Line bundle yago-res:Line bundle wikidata:Line bundle dbpedia-de:Line bundle dbpedia-fr:Line bundle dbpedia-ja:Line bundle dbpedia-ko:Line bundle dbpedia-pt:Line bundle https://global.dbpedia.org/id/WjWS
prov:wasDerivedFrom wikipedia-en:Line_bundle?oldid=1076237183&ns=0
foaf:isPrimaryTopicOf wikipedia-en:Line_bundle
is dbo:wikiPageRedirects of dbr:Determinant_line_bundle dbr:Determinant_bundle dbr:Determinant_line-bundle dbr:Determinant_module dbr:Smooth_line_bundle dbr:Complex_line_bundle
is dbo:wikiPageWikiLink of dbr:List_of_acronyms:_C dbr:List_of_algebraic_topology_topics dbr:List_of_differential_geometry_topics dbr:Mirror_symmetry_conjecture dbr:Bohr_model dbr:Borel–Weil–Bott_theorem dbr:Determinant_line_bundle dbr:Algebraic_K-theory dbr:Algebraic_geometry_of_projective_spaces dbr:Anosov_diffeomorphism dbr:Appell–Humbert_theorem dbr:Representation_theory_of_the_Lorentz_group dbr:Cyclic_cover dbr:D-module dbr:Vector_space dbr:Volume_form dbr:Deformed_Hermitian_Yang–Mills_equation dbr:Degree_of_an_algebraic_variety dbr:Invertible_sheaf dbr:Jacobian_variety dbr:Kähler_differential dbr:Stiefel–Whitney_class dbr:Max_Noether dbr:General_position dbr:Nef_line_bundle dbr:Reider's_theorem dbr:Standard_monomial_theory dbr:Quillen_metric dbr:Modular_form dbr:Conformal_geometry dbr:SYZ_conjecture dbr:Bohr–Sommerfeld_model dbr:Complex_geometry dbr:Complex_projective_space dbr:Complex_torus dbr:Density_on_a_manifold dbr:Frobenioid dbr:Fubini–Study_metric dbr:Koszul_cohomology dbr:Picard_group dbr:Splitting_principle dbr:Mathematical_descriptions_of_the_electromagnetic_field dbr:Bundle_of_principal_parts dbr:Adams_operation dbr:Adjunction_formula dbr:GJMS_operator dbr:Ginzburg–Landau_theory dbr:Haboush's_theorem dbr:Jumping_line dbr:Line_field dbr:Linear_system_of_divisors dbr:Sheaf_of_modules dbr:Affine_space dbr:Ample_line_bundle dbr:Ambient_construction dbr:Brill–Noether_theory dbr:Diamagnetic_inequality dbr:Good_filtration dbr:Hirzebruch–Riemann–Roch_theorem dbr:Italian_school_of_algebraic_geometry dbr:Kawamata–Viehweg_vanishing_theorem dbr:Lefschetz_theorem_on_(1,1)-classes dbr:Tensor_field dbr:Projective_variety dbr:Harmonic_Maass_form dbr:Height_function dbr:Hirzebruch_surface dbr:Cousin_problems dbr:Cox_ring dbr:Abelian_variety dbr:Chern_class dbr:Birational_geometry dbr:Birkhoff_factorization dbr:Birkhoff–Grothendieck_theorem dbr:Blowing_up dbr:Cohen–Macaulay_ring dbr:Coherent_duality dbr:Tautological_bundle dbr:Todd_class dbr:Twisted_Poincaré_duality dbr:Divisor_(algebraic_geometry) dbr:Automorphic_function dbr:C-symmetry dbr:CR_manifold dbr:Poincaré_half-plane_model dbr:Spin-weighted_spherical_harmonics dbr:Circle_bundle dbr:Grothendieck–Riemann–Roch_theorem dbr:Kodaira_dimension dbr:Canonical_bundle dbr:Canonical_ring dbr:Real_projective_space dbr:Sheaf_(mathematics) dbr:Vector_bundle dbr:I-bundle dbr:Iitaka_dimension dbr:Quot_scheme dbr:Motivic_zeta_function dbr:Theorem_of_the_cube dbr:Topological_quantum_field_theory dbr:Quillen_determinant_line_bundle dbr:Vector_bundles_on_algebraic_curves dbr:Tensor_product_bundle dbr:Riemann–Roch_theorem dbr:Determinant_bundle dbr:Determinant_line-bundle dbr:Determinant_module dbr:Smooth_line_bundle dbr:Complex_line_bundle
is foaf:primaryTopic of wikipedia-en:Line_bundle